Export 2294 results:
Journal Article
PDF icon ra02-04.pdf (29.76 KB)
Koppel, N. B. (2000). Lagrangian relaxation for constrained curve-fitting with binary variables: Applications in educational testing. Dissertation Abstracts International Section A: Humanities and Social Sciences, 61, 1063.
Xu, H., Fang, G., Chen, Y., Liu, J., & Ying, Z.. (2018). Latent Class Analysis of Recurrent Events in Problem-Solving Items. Applied Psychological Measurement, 42, 478-498. doi:10.1177/0146621617748325
Traub, R. E., & Lam, Y. R.. (1985). Latent structure and item sampling models for testing. Annual Review of Psychology, 36, 19-48.
van Buuren, N., & Eggen, T. J. H. M.. (2017). Latent-Class-Based Item Selection for Computerized Adaptive Progress Tests. Journal of Computerized Adaptive Testing, 5(2), 22-43. doi:10.7333/1704-0502022
Binet, A., & Simon, T.. (1908). Le development de lintelligence chez les enfants. LAnee Psychologique, 14, 1-94.
Pommerich, M., & Segall, D. O.. (2008). Local Dependence in an Operational CAT: Diagnosis and Implications. Journal of Educational Measurement, 45, 201–223. doi:10.1111/j.1745-3984.2008.00061.x
Pohl, S. (2013). Longitudinal Multistage Testing. Journal of Educational Measurement, 50, 447–468. doi:10.1111/jedm.12028
Glas, C. A. W., & van der Linden, W. J.. (2010). Marginal likelihood inference for a model for item responses and response times. British Journal of Mathematical and Statistical Psychology, 63, 603-26.
PDF icon ba06157.pdf (56.69 KB)
Han, K. T. (2016). Maximum Likelihood Score Estimation Method With Fences for Short-Length Tests and Computerized Adaptive Tests. Applied Psychological Measurement, 40, 289-301. doi:10.1177/0146621616631317
Cheng, Y., & Chang, H. - H.. (2009). The maximum priority index method for severely constrained item selection in computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 62, 369-83. presented at the May.
PDF icon measefficiency_MCAT.pdf (1.1 MB)
May, K., & Nicewander, W. A.. (1998). Measuring change conventionally and adaptively. Educational and Psychological Measurement, 58, 882-897.
Weiss, D. J., & Von Minden, S.. (2011). Measuring Individual Growth With Conventional and Adaptive Tests. Journal of Methods and Measurement in the Social Sciences, 2(1), 80-101.
PDF icon Measuring Individual Change -- JMM.PDF (934.54 KB)
PDF icon PRO_multidimmatters_APM.pdf (894.8 KB)
Cella, D., & Nowinski, C. J.. (2002). Measuring quality of life in chronic illness: the functional assessment of chronic illness therapy measurement system. Archives of Physical Medicine and Rehabilitation, 83, S10-7. presented at the Dec.
Stocking, M.,, & Swanson, L.. (1993). A method for severely constrained item selection in adaptive testing. Applied Psychological Measurement, 17, 277-292.
Stocking, M. L., & Swanson, L.. (1993). A Method for Severely Constrained Item Selection in Adaptive Testing. Applied Psychological Measurement, 17(3), 277-292.
PDF icon v17n3p277.pdf (1.06 MB)
Barrada, J. R., Olea, J., Ponsoda, V., & Abad, F. J.. (2010). A Method for the Comparison of Item Selection Rules in Computerized Adaptive Testing. Applied Psychological Measurement, 34, 438-452. doi:10.1177/0146621610370152
Barrada, J. R., Olea, J., & Ponsoda, V.. (2007). Methods for restricting maximum exposure rate in computerized adaptative testing. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 3, 14-23.
PDF icon ba07014.pdf (398.44 KB)
Vos, H. J. (2001). A minimax procedure in the context of sequential testing problems in psychodiagnostics. British Journal of Mathematical and Statistical Psychology, 54, 139-159.
Edmonds, J., & Armstrong, R. D.. (2009). A mixed integer programming model for multiple stage adaptive testing. European Journal of Operational Research, 193, 342-350.
Hong Jiao,, Macready, G., Liu, J., & Cho, Y.. (2012). A Mixture Rasch Model–Based Computerized Adaptive Test for Latent Class Identification. Applied Psychological Measurement, 36, 469-493. doi:10.1177/0146621612450068
Stocking, M.,, & Swanson, L.. (1993). A model and heuristic for solving very large item selection problems. Applied Psychological Measurement, 17, 151-166.
van der Linden, W. J., & Reese, L. M.. (1998). A model for optimal constrained adaptive testing. Applied Psychological Measurement, 22, 259-270.
Wise, S. L., & G. Kingsbury, G.. (2016). Modeling Student Test-Taking Motivation in the Context of an Adaptive Achievement Test. Journal of Educational Measurement, 53, 86–105. doi:10.1111/jedm.12102
van Abswoude, A. A. H., Vermunt, J. K., Hemker, B. T., & van der Ark, A. L.. (2004). Mokken Scale Analysis Using Hierarchical Clustering Procedures. Applied Psychological Measurement, 28, 332-354. doi:10.1177/0146621604265510
Zhang, J., & Li, J.. (2016). Monitoring Items in Real Time to Enhance CAT Security. Journal of Educational Measurement, 53, 131–151. doi:10.1111/jedm.12104
Belov, D. I., Armstrong, R. D., & Weissman, A.. (2008). A Monte Carlo Approach for Adaptive Testing With Content Constraints. Applied Psychological Measurement, 32, 431-446. doi:10.1177/0146621607309081
Belov, D. I., Armstrong, R. D., & Weissman, A.. (2008). A monte carlo approach for adaptive testing with content constraints. Applied Psychological Measurement, 32, 431-446. doi:10.1177/0146621607309081
Belov, D. I., & Armstrong, R. D.. (2008). A Monte Carlo Approach to the Design, Assembly, and Evaluation of Multistage Adaptive Tests. Applied Psychological Measurement, 32, 119-137. doi:10.1177/0146621606297308
PDF icon v3n1p065.pdf (543.67 KB)
Kim, H. - O. (1994). Monte Carlo simulation comparison of two-stage testing and computerized adaptive testing. Dissertation Abstracts International Section A: Humanities & Social Sciences, 54, 2548.
Belov, D. I., & Armstrong, R. D.. (2005). Monte Carlo Test Assembly for Item Pool Analysis and Extension. Applied Psychological Measurement, 29, 239-261. doi:10.1177/0146621605275413

Pages