
Article

Applied Psychological Measurement
1–16

� The Author(s) 2017

Reprints and permissions:
sagepub.com/journalsPermissions.nav

DOI: 10.1177/0146621617733954
journals.sagepub.com/home/apm

Measuring Patient-Reported
Outcomes Adaptively:
Multidimensionality Matters!

Muirne C. S. Paap1,2, Karel A. Kroeze3, Cees A. W. Glas3,
Caroline B. Terwee4, Job van der Palen3,5, and
Bernard P. Veldkamp3

Abstract

As there is currently a marked increase in the use of both unidimensional (UCAT) and multidi-
mensional computerized adaptive testing (MCAT) in psychological and health measurement, the
main aim of the present study is to assess the incremental value of using MCATrather than sep-
arate UCATs for each dimension. Simulations are based on empirical data that could be consid-
ered typical for health measurement: a large number of dimensions (4), strong correlations
among dimensions (.77-.87), and polytomously scored response data. Both variable- (SE \ .316,
SE \ .387) and fixed-length conditions (total test length of 12, 20, or 32 items) are studied. The
item parameters and variance–covariance matrix F are estimated with the multidimensional
graded response model (GRM). Outcome variables include computerized adaptive test (CAT)
length, root mean square error (RMSE), and bias. Both simulated and empirical latent trait dis-
tributions are used to sample vectors of true scores. MCATs were generally more efficient (in
terms of test length) and more accurate (in terms of RMSE) than their UCAT counterparts.
Absolute average bias was highest for variable-length UCATs with termination rule SE \ .387.
Test length of variable-length MCATs was on average 20% to 25% shorter than test length
across separate UCATs. This study showed that there are clear advantages of using MCAT
rather than UCAT in a setting typical for health measurement.
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Introduction

In the last decade, multidimensional computerized adaptive tests (MCATs; e.g., Segall, 1996,

2000) based on multidimensional item response theory (MIRT; e.g., Reckase, 2009) have

become increasingly popular in applied settings, ranging from personnel selection to (mental)

health measurement (Allen, Ni, & Haley, 2008; Gibbons et al., 2012; Makransky & Glas, 2013;

Makransky, Mortensen, & Glas, 2013; Nikolaus et al., 2013; Nikolaus et al., 2015; Petersen et

al., 2006). It is no surprise that MIRT models appeal to researchers in the fields of psychology

and health measurement, as multifaceted constructs (such as psychopathology or quality of life)

are the rule rather than the exception in these fields. Using MIRT allows one to concurrently

estimate item parameters and a covariance structure among items/domains. Provided that the

domains have nonzero correlations, items belonging to one domain can provide information

about the latent trait scores on the other domains, either directly (if items load on more than

one domain) or indirectly (through the correlations among the domains). This ‘‘borrowing’’ of

information across domains allows for a more precise estimation of the latent trait values on

the underlying domains compared with unidimensional IRT.

Studies comparing MCATs with unidimensional computerized adaptive tests (UCATs) can

be roughly divided into those comparing an MCAT with one large UCAT (multidimensionality

is ignored), and studies comparing an MCAT with performing a separate UCAT for each

dimension. Here, we focus on the latter. The first studies explicitly comparing MCAT with sep-

arate UCATs focused on measuring ability (rather than, e.g., quality of life). These early studies

showed that MCAT resulted in shorter tests (MCATs were 25%-33% shorter; Luecht, 1996;

Segall, 1996), more accurate ability estimates (Li & Schafer, 2005), and a more balanced item

exposure (Li & Schafer, 2005). Aforementioned studies varied in the type of model used:

Whereas Segall (1996) and Li and Schafer (2005) used a three parameter logistic (3PL) model,

Luecht (1996) used a multidimensional extension of the one parameter logistic model (OPLM).

Other differences were whether content constraints were imposed, whether items were allowed

to load onto multiple dimensions, whether the tests served a dual purpose, and the number of

dimensions studied.

Ten years after the first ability MCAT studies were published, Haley, Ni, Ludlow, and

Fragala-Pinkham (2006) bridged the gap with health measurement by comparing MCAT with

UCAT for an existing pediatric health assessment tool. Using a multidimensional extension of

the Rasch model, they found that using MCAT resulted in a 33% test reduction compared with

using separate UCATs. Several authors—across different assessment settings—have shown that

the added value associated with MCAT (in terms of test length and accuracy) increases as a

function of the correlation among the domains (e.g., Frey & Seitz, 2010; Makransky & Glas,

2013; Makransky et al., 2013; W.-C. Wang & Chen, 2004). However, in a recent study focused

on patient-reported outcomes, Bass, Morris, and Neapolitan (2015) reported a test reduction

of only 11% when MCAT was compared with separate UCATs, in spite of the high correlation

(r = .88) between the two dimensions under study. The authors tried to explain this unexpected

finding by arguing that the studied items were highly informative, and therefore UCATs were

already highly efficient, leaving little to no room for MCAT to further increase efficiency.

However, Bass and colleagues used a maximum total test length of 20 items. As a result, up to

43% of their simulees did not reach the variable-length stopping rule. This may have had a sub-

stantial impact on their results.

Summarizing the available literature illustrating the feasibility and advantages of using

MCAT in the field of health measurement, it can be observed that—although each of these stud-

ies made important contributions to the field—each of them had serious limitations when it

comes to demonstrating the incremental value of MCAT over using separate UCATs. Some
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articles focused only on dichotomous data (Allen et al., 2008; Haley et al., 2006), which is atypi-

cal for health measurement applications; other studies used very short item banks based on

existing instruments not specifically developed for computerized adaptive testing (Michel et al.,

2016; Petersen et al., 2006), while the study by Bass and colleagues had a relatively low maxi-

mum test length and was restricted to two dimensions (Bass et al., 2015). Nikolaus and col-

leagues advanced the field by studying the working mechanism of the MCAT they had

developed to measure fatigue in patients with rheumatoid arthritis (Nikolaus et al., 2015), as

well as patient acceptance (Nikolaus et al., 2014); they did not, however, explicitly compare

MCAT with UCAT conditions.

As there is currently a marked increase in the use of CAT in psychological and health measure-

ment, the main aim of the present study is to assess the benefits of using MCAT rather than sepa-

rate UCATs for each domain with a setup typical for these fields. More specifically, data from an

operational MCAT encompassing four correlated domains (developed to be used in a CAT) con-

sisting of polytomous items are used. Given the results reported by Bass and colleagues, we were

especially curious to see whether a more substantial reduction in test length would be observed

when using MCAT (compared with separate UCATs). Similar to Bass and colleagues, the item

parameters and covariance structure are estimated using empirical data and the multidimensional

graded response model (GRM). We chose to study the effect of MCAT on test efficiency for both

variable- and fixed-length conditions. In the variable-length condition, we opted for a high maxi-

mum test length, allowing us to truly study the effect of MCAT on a variable-length test.

Method

CATs are typically based on item banks calibrated with an IRT model. To facilitate MCAT, a

multidimensional item bank calibrated with a MIRT model is required. Adams, Wilson, and

Wang (1997) distinguished between two types of multidimensionality: within-item and

between-item multidimensional models, which correspond to the ‘‘simple’’ and ‘‘complex’’

structures in factor analysis, respectively (W.-C. Wang & Chen, 2004). In this study, we focus

on between-item multidimensionality, meaning that each item relates to one subdimension

only; multidimensionality is expressed through the correlations among the latent dimensions

(these are estimated jointly with the item parameters and latent trait values). The multidimen-

sional GRM is used to obtain estimates of the item parameters and estimates of the covariance

structure. The probability of a response in category j in item i with m total response categories,

P(Xij = 1ju), is given by

Pij uð Þ=
1�C a0u� bi1ð Þ if j = 0,

C a0u� bij

� �
�C a0u� bi j + 1ð Þ

� �
if 0\j\m,

C(a0u� bim) if j = m,

8><
>:

where C(x) is the logistic function,

C xð Þ= exp xð Þ
1 + exp xð Þ ,

and a0u denotes the dot product of the vector of discrimination parameters and latent traits. To

ensure that the probabilities are always positive, response categories must be sorted by diffi-

culty, that is, bi(j + 1).bij for 0\j\m. The following parameters are calculated for each item:

one discrimination parameter (denoted a) and a number of threshold parameters (denoted bij);

the number of threshold parameters equals the number of categories minus 1.
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Simulation Study

We start this section by briefly introducing the simulation design, after which we will illustrate

the different components of the simulation design in more detail. The simulation study is based

on an empirical multidimensional item bank that was developed to support MCAT, containing

194 items from four domains (subdimensions). The number of items per domain is listed in

Table 1. The main design factor in the simulation is CAT type: MCAT versus UCAT. Two

types of termination rules are also considered: fixed-length and variable-length/fixed precision.

CAT performance is evaluated using three outcome variables: total length across domains, bias,

and root mean square error (RMSE). Bias and RMSE are calculated per domain. Bias is here

defined as the mean difference between CAT-based estimates ûCAT and the true u value uTRUE

(or complete item score pattern estimate uCOMPL).1 It expresses the degree to which the CAT

estimates are systematically different from the true u values (‘‘accuracy’’):

Bias =
1

N

XN

i = 1

ûCAT � uTRUE:

RMSE is measured as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i = 1

ûCAT � uTRUE

� �2

vuut :

Three sets of data (response patterns) are used to evaluate CAT performance: two synthetic

datasets and one empirical. All responses for the synthetic datasets are generated based on the

multidimensional GRM. For the empirical dataset, full-bank estimates are used as a proxy for

true u values. CAT simulations were run in R (R Development Core Team, 2012) using the

package ShadowCAT2 (Kroeze & de Vries, 2015).

The empirical item bank. The item bank consisted of the following domains: fatigue, physical

function, and ability to participate in social roles and activities from the patient-reported out-

come measurement information system (PROMIS; e.g., Cella et al., 2010; Terwee et al.; 2014);

and a disease-specific set of items developed for patients with chronic obstructive pulmonary

disease called the COPD-SIB (Paap, Lenferink, Herzog, Kroeze, & van der Palen, 2016). The

calibration was performed using data from 795 patients with chronic obstructive pulmonary

disease (COPD). The total number of items was distributed among three booklets each contain-

ing around 100 items, which were linked using 10 anchor items per domain (i.e., alternate form

equating or common-item equating). Each booklet contained items pertaining to at least two

Table 1. Covariance Matrix of Latent Traits F and Number of Items Per Domain.

Fatigue COPD-SIB Physical function Social roles

Fatigue 1 0.77 0.77 0.87
COPD-SIB 1 0.76 0.77
Physical function 1 0.84
Social roles 1
No. items per domain 50 46 63 35

Note. COPD-SIB = chronic obstructive pulmonary disease–specific item bank; social roles = ability to participate in

social roles and activities.
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domains (see Supplement 1 for a graphical illustration of the booklet structure). Originally, all

items in the item bank were scored on a 5-point scale ranging from 0 to 4. Following Paap et

al. (2016), for 55 of 194 items, item response categories that showed low endorsement (fewer

than 10 responses) were merged with adjacent categories. Higher scores were indicative of

higher quality of life for all domains. The item bank was calibrated using the software package

IRTPRO (Cai, Thissen, & du Toit, 2011). A multivariate normal distribution was assumed. To

identify the model, the mean was set equal to 0, and variances were fixed to 1. The covariances

were estimated freely. Note that in IRTPRO, an ‘‘easiness’’ parameter is estimated (denoted c)

instead of difficulty; the bij parameter described above equals the negative value of IRTPRO’s

c parameter.

Experimental design factors. There are two main design factors: CAT type (two levels) and termi-

nation rule (five levels). In the MCAT conditions, the covariance matrix F estimated using the

multidimensional GRM is used as a prior. In the UCAT conditions, a separate UCAT is run for

each domain with a N(0,1) prior. The termination rule is either fixed-length (k = 12, k = 20, k =

32 items) or variable-length/fixed precision (termination when SE(u) \ .387, SE(u) \ .316).

For the MCAT conditions, the fixed-length k is specified across domains. For the UCAT condi-

tions, the fixed-length is specified per domain: k=4. For variable-length conditions, item selec-

tion for a particular dimension is terminated when the SE threshold is reached for that particular

dimension. Test developers and content experts who are not very familiar with IRT tend to favor

reporting/interpreting the conditional reliability index—which is in fact a standardized SE—

over information or SE. In this study, the SE termination rules were chosen such that they—at

least in the unidimensional case and using a standard normal metric for u—roughly correspond

to reliability values of .85 and .90; these values are widely used in health measurement. See

Raju, Price, Oshima, and Nering (2007) for more information on the topic of conditional relia-

bility, including relevant equations.

CAT algorithm. The CAT algorithm used is illustrated in Figure 1. There are different starting

rules to initialize a CAT (i.e., to obtain the initial u value); two commonly used starting rules

are to set u at 0, or to administer a number of items to obtain an initial estimate. In this study,

we chose the latter approach and administered a random item from each domain before initia-

lizing the CAT. Maximum a posteriori (MAP) estimates were used in all conditions in this

study, as it allows prior knowledge to be introduced into the estimation process and has been

shown to require fewer calculations than other Bayesian estimators such as the expected a pos-

teriori estimator (Segall, 2000). Simulations were performed in a fashion largely identical to

Segall’s (1996) approach: The determinant of the posterior Fisher Information matrix was used

as the objective function for item selection. Following this item-selection strategy, items are

selected that provide the largest decrease of the size of the posterior credibility region (Segall,

2000). C. Wang, Chang, and Boughton (2013) referred to this item-selection method as the

‘‘D-rule,’’Diao and Reckase (2009) called it ‘‘Bayesian Volume Decrease,’’ and Yao (2013)

simply abbreviated it as ‘‘Volume’’ or ‘‘Vm.’’ However, in the variable-length conditions item

selection for a dimension was terminated when the SE for that particular dimension had reached

the SE threshold. This prevented the CAT from selecting items that were technically superior

but no longer needed to fulfill the stopping criteria. The maximum test length was set to 100

(to prevent the algorithm continuing to bank depletion in situations where ‘‘high quality’’ items

were no longer available). For the UCAT conditions, separate CATs were run for each dimen-

sion; the starting, item-selection, and stopping procedures were largely equivalent to those used

in the MCATs but adapted to a unidimensional setting, the only exception being how the fixed

test length was set: across domains or by domain (see ‘‘Experimental Design Factors’’ section).
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Data generation. Three sets of data (response patterns) were used to evaluate CAT performance.

Dataset 1 consists of synthetic response data, generated based on 21,000 vectors of discrete

fixed latent trait points across the domains: 1,000 for every increment of .2 on the multidimen-

sional u scale between values 22 and 2. To handle the computational complexity that results

from the four-dimensional ability space, the u values considered for the four domains were set

to be equal. In other words, a straight line is drawn through a four-dimensional space, where

u(1) = u(2) = u(3) = u(4). These vectors were chosen to explicitly evaluate the impact of the experi-

mental design factors for more extreme trait scores (which are relatively rare when a multivari-

ate normal distribution is assumed). Dataset 2 consists of synthetic response data, generated

based on 1,000 vectors of true u values sampled from a multivariate normal distribution with

mean vector 0 and covariance matrix F. Dataset 3 consists of the empirical response patterns

that were used to estimate the multidimensional GRM (missing data due to the booklet structure

was imputed using the multidimensional GRM). The latter two datasets allow us to evaluate

the impact of the experimental design factors under realistic circumstances. A more detailed

description of the data-generation procedure follows below.

All responses were generated based on the multidimensional GRM. Responses were gener-

ated by comparing a draw u from a U (0, 1) distribution to the cumulative probabilities of endor-

sing a response category j, Pcum(xj) =
Pj

q = 0 P(xqj . . . ). The generated response is equal to the

lowest response category where the cumulative probability is greater than the random draw:

u;U 0, 1ð Þ
x = min

j
Pcum xj

� �
.u:

Given that the cumulative probability of the highest response category is always 1, this guar-

antees an answer. ShadowCAT uses R’s built-in uniform distribution for this purpose. For the

second dataset, simulees were drawn from a N(0, F) distribution, where the off-diagonal ele-

ments in the population variance–covariance matrix F were specified from the empirical corre-

lations among the four domains. Given the booklet design, not all data were available for the

empirical sample. Rather than constrain the CATs to use only available responses, we decided

to impute the missing responses based on available data. This was done in two steps: First, for

all respondents, a u vector was estimated using a MAP estimator, with a mean vector of 0, and

Figure 1. CAT flowchart.
Note. CAT = computerized adaptive test; MAP = maximum a posteriori.
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prior covariance equal to the population covariance. Thus, a multivariate structure was assumed

in imputation for both unidimensional and multidimensional simulations. Second, missing data

were imputed using the same response generation method that was used for simulated

respondents.

Results

Multidimensional Calibration

Figure 2 presents the bank information functions for each domain. It can be seen that the entire

range of latent trait values is covered, and information is fairly high for all domains, especially

for the PROMIS domains; this is a common finding for clinical/health-related tests, where

Figure 2. Bank information functions for all four domains.
Note. COPD-SIB = chronic obstructive pulmonary disease–specific item bank.
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constructs are often conceptually narrow and thus have high discrimination parameters (Reise

& Waller, 2009). Item exposure rates for the MCAT and UCAT conditions can be found in

Supplement 1.

CAT Simulation Studies

Comparison of the MCAT and UCAT conditions. The average test lengths (averaged over domains)

for the various CAT conditions can be found in Table 2. It shows that MCAT outperforms

UCAT in terms of test length for both SE-based termination rules and all datasets. MCATs were

on average 20% to 25% shorter than UCATs for Dataset 1, 22% to 23% shorter for Dataset 2

(simulated normal distribution), and 21% to 23% shorter for Dataset 3 (empirical sample).

Bias and RMSE for all CAT conditions based on Dataset 2 and Dataset 3 can be found in

Tables 3 and 4, respectively. Average bias was low for most MCAT conditions, especially for

the fixed-length tests. Average RMSE across termination rules and domains was somewhat

lower for MCAT (Dataset 2: 0.283 and 0.305 for MCAT and UCAT, respectively; Dataset 3:

0.259 and 0.292 for MCAT and UCAT, respectively). Thus, on average, MCATs were shorter

than UCATs while resulting in similar or better RMSE. Figures 3 and 4 show bias and RMSE

for the two variable-length termination rules based on Dataset 1. Figure 3 shows MCATs and

UCATs performed equally well in terms of bias for average u values, but MCATs always

Table 2. Average Total Test Length for Variable-Length CATs and All Three Datasets (Columns).

Dataset 1 Dataset 2 Dataset 3

CAT type Termination rule, SE 22 21 0 1 2 Normal simulated Empirical sample

Total (across domains)
MCAT \0.387 12.9 9.6 9.1 8.7 11.8 9.5 9.6

\0.316 20.4 14.1 13.2 13.0 18.8 14.4 14.8
UCAT \0.387 16.7 12.7 11.7 11.3 14.7 12.3 12.4

\0.316 26.1 17.8 16.6 16.2 23.9 18.5 18.8
Fatigue

MCAT \0.387 2.4 2.0 2.0 2.0 2.7 2.1 2.1
\0.316 3.5 3.0 2.9 3.0 4.2 3.1 3.2

UCAT \0.387 3.1 2.9 2.8 2.9 4.5 3.0 3.0
\0.316 4.3 4.0 3.8 3.8 5.7 4.2 4.3

COPD-SIB
MCAT \0.387 4.2 3.7 3.5 3.2 3.7 3.5 3.5

\0.316 7.5 6.0 5.7 5.5 6.5 5.9 6.0
UCAT \0.387 6.0 4.9 4.6 4.4 5.0 4.7 4.7

\0.316 9.7 7.4 6.9 6.8 8.0 7.3 7.4
Physical function

MCAT \0.387 3.9 2.2 2.0 2.0 3.1 2.2 2.2
\0.316 5.7 3.0 2.6 2.6 4.3 3.0 3.1

UCAT \0.387 4.6 2.7 2.2 2.1 2.8 2.5 2.5
\0.316 6.5 3.5 3.1 3.0 4.3 3.6 3.6

Ability to participate in social roles and activities
MCAT \0.387 2.3 1.7 1.6 1.6 2.2 1.7 1.8

\0.316 3.7 2.1 2.0 2.0 3.9 2.4 2.5
UCAT \0.387 2.9 2.3 2.1 2.0 2.4 2.2 2.2

\0.316 5.7 3.0 2.8 2.6 5.9 3.4 3.6

Note. CATs = computerized adaptive tests; MCAT = multidimensional CAT; UCAT = unidimensional CAT; COPD-SIB

= chronic obstructive pulmonary disease-specific item bank.
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resulted in lower absolute bias than UCATs for more extreme u values. Moreover, Figure 4

shows that MCATs resulted in lower RMSE values than UCATs for all conditions, domains,

and u values. Figures 5 and 6 show bias and RMSE for the three fixed-length termination rules

based on Dataset 1; these figures illustrate that MCATs generally performed equally well or bet-

ter in terms of bias and RMSE for all conditions and domains. The benefits of using MCAT for

fixed-length tests are most pronounced for the higher u values and the 12-item termination rule.

Comparison of the termination rules: Variable-length versus fixed-length. Table 3 shows that fixed-

length MCATs were associated with the lowest absolute average bias. Absolute average bias

was highest for variable-length UCATs with termination rule SE \ .387. When looking at

Table 4, a striking domain-related pattern emerges for RMSE. If we take Dataset 2 as an exam-

ple, we see that—for all PROMIS domains—the fixed-length tests resulted in the lowest RMSE

values when MCAT was used. When UCATs were used, the lowest RMSE values were found

Table 3. Average Bias for the Four Domains (Dataset 2 and Dataset 3).

Dataset 2 (normal simulated) Dataset 3 (empirical sample)

CAT type Termination rule FAT CSIB PHYS SOC FAT CSIB PHYS SOC

MCAT SE \ .387 20.006 0.023 20.007 20.008 20.026 20.009 20.017 20.017
SE \ .316 0.015 20.004 0.006 0.017 20.002 20.002 20.015 20.012

UCAT SE \ .387 0 0.021 0.006 0.029 20.010 20.019 20.014 20.021
SE \ .316 20.014 0.007 0 20.009 0.007 20.014 20.002 20.021

MCAT Fixed 12 0.006 0.007 0.003 0.003 20.011 20.001 20.006 20.013
Fixed 20 0.001 20.001 0.003 20.005 20.004 20.005 20.007 20.006
Fixed 32 0.002 0.004 0.01 0.002 0.005 20.006 0.003 20.004

UCAT Fixed 12 20.005 0.003 0.016 0.003 20.014 20.008 20.013 20.024
Fixed 20 0.013 20.006 0.002 20.002 20.010 20.020 20.008 20.011
Fixed 32 20.001 0 20.003 20.008 0.001 20.012 20.001 20.012

Note. CAT = computerized adaptive test; FAT = fatigue; CSIB = chronic obstructive pulmonary disease-specific item

bank; PHYS = physical function; SOC = ability to participate in social roles and activities; MCAT = multidimensional

CAT; UCAT = unidimensional CAT.

Table 4. Average RMSE for the Four Domains (Dataset 2 and Dataset 3).

Dataset 2 (normal simulated) Dataset 3 (empirical sample)

CAT type Termination rule FAT CSIB PHYS SOC FAT CSIB PHYS SOC

MCAT SE \ .387 0.352 0.367 0.340 0.333 0.344 0.352 0.298 0.280
SE \ .316 0.298 0.317 0.306 0.281 0.295 0.292 0.257 0.249

UCAT SE \ .387 0.349 0.377 0.368 0.347 0.355 0.384 0.342 0.351
SE \ .316 0.311 0.305 0.300 0.29 0.285 0.309 0.278 0.259

MCAT Fixed 12 0.294 0.391 0.284 0.254 0.279 0.381 0.253 0.210
Fixed 20 0.238 0.330 0.229 0.200 0.221 0.325 0.208 0.177
Fixed 32 0.200 0.276 0.200 0.172 0.177 0.274 0.181 0.145

UCAT Fixed 12 0.332 0.469 0.340 0.301 0.354 0.461 0.316 0.272
Fixed 20 0.284 0.357 0.258 0.229 0.261 0.367 0.243 0.221
Fixed 32 0.216 0.284 0.207 0.184 0.204 0.292 0.194 0.173

Note. RMSE = root mean square error; CAT = computerized adaptive test; FAT = fatigue; CSIB = chronic obstructive

pulmonary disease-specific item bank; PHYS = physical function; SOC = ability to participate in social roles and

activities; MCAT = multidimensional CAT; UCAT = unidimensional CAT.
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for 32-item fixed-length tests and the SE \ .316 termination rule. For the COPD-SIB, the pat-

tern that emerges is the same for MCAT and UCAT: The lowest RMSE was found for 32-item

fixed-length tests, followed by the SE \ .316 termination rule, and 20-item fixed-length tests.

Inspection of Figures 3 to 6 shows that bias and RMSE differ as a function of the latent trait.

RMSE is clearly highest for the following combination of conditions: UCAT, 12-item fixed-

length tests, more extreme u values, COPD-SIB domain.

Discussion

This study shows a clear benefit of using MCAT rather than separate UCATs: MCATs were

generally more efficient (in terms of test length) and more accurate (in terms of bias and

RMSE) than their UCAT counterparts. The gains in accuracy were largest for fixed-length tests,

Figure 3. Bias as a function of the true u value on a given domain using Dataset 1.
Note. It is shown for variable-length CATs. CAT = computerized adaptive test; COPD-SIB = chronic obstructive

pulmonary disease-specific item bank; UCAT = unidimensional CAT; MCAT = multidimensional CAT.
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and most pronounced for higher u values, short tests (k = 12), and the domain with the lowest

discrimination parameters.

We compared MCAT with UCAT for two types of termination rules: fixed-length and vari-

able-length. MCAT outperformed UCAT for both types of rules. The findings of the present

study suggest that, overall, fixed-length tests perform well in terms of latent trait estimation

accuracy when using MCAT based on highly correlated dimensions containing many good

quality items (high discrimination parameters). For dimensions with lower discrimination para-

meters, variable-length MCATs may be more suitable, especially for more extreme u values as

in such instances, fixed-length CATs may be too short to provide accurate measurement. In this

study, we used the D-rule/Bayesian Volume Decrease item-selection rule. As we were inter-

ested in optimizing measurement efficiency for each of the dimensions, items were selected

Figure 4. RMSE as a function of the true u value on a given domain using Dataset 1.
Note. It is shown for variable-length CATs. RMSE = root mean square error; CAT = computerized adaptive test;

COPD-SIB = chronic obstructive pulmonary disease-specific item bank; UCAT = unidimensional CAT; MCAT =

multidimensional CAT.
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only from those dimensions whose SE threshold had not been reached yet (variable-length

MCAT conditions). More research is needed to investigate whether our findings can be gen-

eralized to other item-selection rule and stopping rule combinations. Relevant item-selection

rules could include the E-rule (minimum eigenvalue rule), T-rule (maximum trace rule), and

K-rule (maximum Kullback–Leibler divergence rule) described by C. Wang et al. (2013), in

combination with the SE and the predicted standard error reduction (PSER) stopping rules

(e.g., Yao, 2013).

As has been pointed out previously, item selection and parameter estimation under an

MCAT are rather complex, and implementing MCAT methodology may require a larger invest-

ment in terms of resources compared with a UCAT. However, the present study indicates that

it may well be worth it: A lot can be gained by incorporating information regarding the

Figure 5. Bias as a function of the true u value on a given domain using Dataset 1 for three fixed-length
termination rules.
Note. k = maximum number at which test is terminated; CAT = computerized adaptive test; COPD-SIB = chronic

obstructive pulmonary disease-specific item bank; UCAT = unidimensional CAT; MCAT = multidimensional CAT.
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covariance structure among domains into the item-selection process in a CAT, also for polyto-

mously scored items. Polytomous items are generally richer in information (they cover a wider

range of u values) than dichotomously scored items, which could theoretically lead to smaller

benefits of ‘‘borrowing’’ additional information across domains compared with a dichotomous

item bank scenario. It would be interesting to compare dichotomous and polytomous item

banks directly in a future study when comparing UCAT with MCAT.

In the current study, we used a multidimensional item bank with four domains, calibrated

using empirical polytomous data, which allowed us to show the benefits of MCAT under realis-

tic testing conditions typical for patient-reported outcomes. CAT is gaining momentum in

Figure 6. RMSE as a function of the true u value on a given domain using Dataset 1 for three fixed-
length termination rules.
Note. k = maximum number at which test is terminated; RMSE = root mean square error; CAT = computerized

adaptive test; COPD-SIB = chronic obstructive pulmonary disease-specific item bank; UCAT = unidimensional CAT;

MCAT = multidimensional CAT.

Paap et al. 13



psychological and health measurement, and therefore our findings may be especially valuable

to test developers and administrators in these fields.
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Notes

1. For the computerized adaptive test simulations based on empirical data, no ‘‘true’’u is available; in

this scenario, the maximum a posteriori (MAP) estimate of u based on all available item responses

(denoted uCOMPL) is used as a substitute for the true u value.

2. ShadowCAT facilitates simulation and live administration of CATs. Options include four generalized

multidimensional models (three-parameter logistic model, generalized partial credit model, graded

response model, sequential model), three estimators (maximum likelihood, maximum a posteriori,

expected a posteriori), Fisher Information, and Kullback–Leibler distance-based item selection, con-

straints, content balancing and exposure control with Shadow Testing.
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