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Abstract

It is currently not entirely clear to what degree the research on multidimensional computerized
adaptive testing (CAT) conducted in the field of educational testing can be generalized to fields
such as health assessment, where CAT design factors differ considerably from those typically
used in educational testing. In this study, the impact of a number of important design factors on
CAT performance is systematically evaluated, using realistic example item banks for two main
scenarios: health assessment (polytomous items, small to medium item bank sizes, high discrim-
ination parameters) and educational testing (dichotomous items, large item banks, small- to
medium-sized discrimination parameters). Measurement efficiency is evaluated for both
between-item multidimensional CATs and separate unidimensional CATs for each latent dimen-
sion. In this study, we focus on fixed-precision (variable-length) CATs because it is both feasible
and desirable in health settings, but so far most research regarding CAT has focused on fixed-
length testing. This study shows that the benefits associated with fixed-precision multidimen-
sional CAT hold under a wide variety of circumstances.
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Introduction

In the last decade, the item response theory (IRT) framework has taken the field of health mea-

surement by storm. IRT offers special advantages, such as facilitating the evaluation of
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reliability conditional on the latent trait value, scale linking, differential item functioning (DIF)

analysis, and computerized adaptive testing (CAT; e.g., Cook, O’Malley, & Roddey, 2005;

Reise & Waller, 2009). CAT offers many advantages over traditional testing formats; a CAT

could be seen as a flexible short form that is tailored to the individual person, so that a highly

efficient test can be achieved that is optimally informative for a given person.

Currently, most CATs used for health measurement are based on unidimensional IRT mod-

els. However, multidimensional IRT (MIRT) models (Reckase, 2009) and multidimensional

CAT (MCAT; Luecht, 1996; Segall, 1996, 2010) are becoming increasingly popular in health

measurement; this is especially true for between-item multidimensional models (Smits, Paap, &

Boehnke, 2018). In recent years, several authors have shown that taking into account the corre-

lation among health-related dimensions, when estimating patient scores in CATs, offers poten-

tial benefits (e.g., Nikolaus et al., 2015; Paap, Kroeze, Glas, et al., 2017). The overall message

seems to be that MCAT improves measurement efficiency as compared with using separate uni-

dimensional CATs (UCATs) for each latent dimension, especially, if latent dimensions are

highly correlated (e.g., Makransky & Glas, 2013; Segall, 1996; Wang & Chen, 2004).

While recognizing the advantages of IRT, several authors have drawn attention to the fact

that a transition to the IRT framework in the field of health measurement also poses a number

of challenges (Bjorner, Chang, Thissen, & Reeve, 2007; Fayers, 2007; Reise & Waller, 2009;

Thissen, Reeve, Bjorner, & Chang, 2007). Since IRT was first applied in educational testing and

attainment/intelligence tests used in military contexts, the lion’s share of IRT and CAT research

is devoted to models for dichotomous data (modeling correct and incorrect responses). In con-

trast, patient-reported outcomes (PROs) are often scored using polytomous items. Another

important contrast between the educational and clinical context is that cognitive tests and educa-

tional examinations are typically lengthy tests, whereas clinicians may prefer a relatively short

questionnaire due to time constraints and to keep the response burden to a minimum (e.g.,

Fayers, 2007). Item parameters have also been shown to follow different distributions for the

two fields; discrimination parameters in health measurement are often much higher than in edu-

cational testing, and, threshold parameters either cover the entire trait range or are clustered in

the trait range indicative of clinical dysfunction (Reise & Waller, 2009). Finally, in educational

testing, fixed-length tests are typically favored for a number of practical reasons, whereas fixed-

precision (also known as variable-length) tests may be favored in many health measurement

settings—be it in combination with an additional termination rule, such as a maximum test

length or change in u score (e.g., Sunderland, Batterham, Carragher, Calear, & Slade, 2016). To

date, fixed-precision CATs have received significantly less attention compared with fixed-

length CATs. Aforementioned differences between health measurement and educational testing

have direct implications for the development of item banks and CATs.

In sum, it is currently not entirely clear to what degree the research on MIRT and MCAT

conducted in the field of educational testing can be generalized to fields such as health mea-

surement, where CAT design factors may differ considerably from those typically used in edu-

cational testing. Therefore, a set of simulations with differing item bank properties that are

thought to typify the two scenarios will be performed. Typical for the educational testing field

are dichotomous items, large item banks, and small to moderately sized discrimination para-

meters; whereas polytomous items, small to medium item bank sizes, and high discrimination

parameters are more typical for the health measurement field. Item parameters will be sampled

from distributions that are informed by empirical data typical for the two respective fields.

Since MCAT is gaining momentum, the main focus will be on exploring whether the efficiency

gain associated with MCAT that is observed in the field of educational testing is also found in

health measurement. We focus on fixed-precision CATs because this type of testing is both
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feasible and desirable in health measurement, but so far most research regarding MCAT has

focused on fixed-length testing (see, e.g., Wang, Chang, & Boughton, 2013).

Method

Constructing Item Banks

To ensure realistic CAT simulations, two-parameter logistic (2PL) or graded response model

(GRM) item parameters were extracted from widely known empirical item banks used in health

measurement (Patient-Reported Outcomes Measurement Information System [PROMIS]) and

educational testing (Trends in International Mathematics and Science Study [TIMSS] and

Progress in International Reading Literacy Study [PIRLS]). Empirical item banks for health

contained highly discriminating polytomous items, whereas for education, they contained

dichotomous items with moderate discrimination. Hence, any comparison between the two

types of item banks would be, to some extent, confounded by the response type and discrimina-

tion level. To disentangle the two impact sources, artificial dichotomous versions of the health

item banks were created by collapsing the original five categories to two. Thus, in the end, this

resulted in item banks under the following three scenarios: health polytomous (HEPO), health

dichotomous (HEDI), and education dichotomous (EDDI), with the middle scenario serving as

comparison link between the two main scenarios.

For each scenario, the distributions of item parameters from the empirical item banks were

synthesized into an average distribution, which we refer to as the average item bank. These

average item banks then served as models to generate realistic simulated item banks that would

be used in the CAT simulations. This procedure is illustrated in Figure 1 (a more detailed expla-

nation can be found in the online supplement).

We do not claim the simulated item banks to be representative for all conceivable item banks

in their respective measurement field. Hence, it is important to inspect the psychometric proper-

ties of the simulated item banks to understand the scenario labels that are used.

Psychometric Properties of the Item Banks

A Tukey five-number summary of the distribution of the item parameters in the synthesized

average item banks is presented in Table 1 for the three scenarios (i.e., HEPO, HEDI, and

EDDI). In short, EDDI is characterized by moderately discriminating dichotomous items with a

Figure 1. Visual representation of the procedure used for item bank construction.
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symmetric nonextreme item difficulty distribution, and HEPO is characterized by highly discri-

minating polytomous items with well-spread within-item category thresholds and an item diffi-

culty distribution skewed toward the lower middle trait levels of the latent scale. The linking

scenario HEDI has discrimination parameters that are comparable with the HEPO scenario, but

the item difficulty distribution is more skewed toward the lower levels of the latent scale. The

correlations between the discrimination parameter ai and the threshold bi1 were substantially

larger for the health measurement scenarios compared with the educational testing scenario.

The mean (SD) correlations were as follows: .02 (.21) for EDDI, .41 (.11) for HEDI, and .53

(.12) for HEPO.

The resulting information and reliability profiles of item banks under each scenario are illu-

strated in Figure 2. The HEPO and HEDI scenarios with their highly discriminating items not

only contained a large amount of information but also showed a clear ceiling effect not covering

the higher end of the latent scale (i.e., high quality of life). For a given bank size, the HEDI sce-

nario was, due to the collapsing of categories to obtain a dichotomous response type, always less

informative and contracted to a smaller range compared with the HEPO scenario. The EDDI

banks were more symmetrically and centrally targeted on the latent scale, but had much lower

information values than the health banks, which is a direct effect of the EDDI banks containing

fewer highly discriminating items.

Table 1. Distribution of Item Parameters in the Synthesized Average Item Banks for Three Scenarios:
EDDI, HEDI, and HEPO.

a b1 d12 d23 d34

EDDI
Minimum 0.33 –1.72
Q1 0.65 –0.34
Median 0.80 0.12
Q3 0.97 0.56
Maximum 1.50 1.62

HEDI
Minimum 1.85 –2.28
Q1 2.88 –1.69
Median 3.48 –1.47
Q3 4.00 –1.27
Maximum 4.99 –0.67

HEPO
Minimum 1.85 –3.23 0.44 0.56 0.53
Q1 2.89 –2.41 0.64 0.70 0.67
Median 3.50 –2.17 0.71 0.77 0.74
Q3 3.99 –1.95 0.80 0.85 0.82
Maximum 4.97 –1.39 1.15 1.06 1.14

Note. Q1 = 25th percentile; Q3 = 75th percentile; a = discrimination parameter; b1= first location parameter; d12 is

the step size from b1 to b2; d23 is the step size from b2 to b3, d34 is the step size from b3 to b4. The average banks

were synthesized from empirical item bank data: PROMIS (health measurement) and TIMSS and PIRLS (educational

testing), respectively. For the HEDI and EDDI scenarios, with dichotomous response data, there are only two

response categories, and hence one location parameter, such that the step sizes are not applicable. Hence, step sizes

are only relevant for the polytomous items in the HEPO scenario. EDDI = education dichotomous; HEDI = health

dichotomous; HEPO = health polytomous; PROMIS = Patient-Reported Outcomes Measurement Information System;

TIMSS = Trends in International Mathematics and Science Study; PIRLS = Progress in International Reading Literacy

Study.
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Experimental Design of the CAT Simulation

The simulated item banks were generated in line with an experimental design (Figure 3) in

which the following item bank design factors were manipulated: research field of the underly-

ing bank (health or education), the response type (dichotomous or polytomous), and the number

of items. For each cell in the design, 100 replications were generated. The number of latent

dimensions was kept constant and set to D = 3.

For each scenario, a multidimensional item bank with three dimensions (sub-banks) was

simulated. The sub-banks were of equal size J = {5, 15, 30, 120, 240}, such that the multidi-

mensional bank size I equaled J 3 3. The design was not fully crossed; since smaller bank sizes

are atypical for educational testing and—conversely—larger bank sizes are atypical for health

measurement, the level J \ 30 in the EDDI scenario and the level J = 240 in the HEPO scenario

were not covered. The HEDI scenario contained the levels J = 30 and J = 120, thus creating

overlap with both HEPO and EDDI. This overlap among conditions facilitates disentangling the

impact of measurement field from the impact of response type.

For each replication, a new multidimensional bank was simulated and used to generate a data

set Yn3I consisting of item responses for n = 10,000 simulees on I items. The data-generating

IRT model was a between-item multidimensional GRM:

ÐÐÐ
up

QI
i = 1

Pr Ypi = ypijup, ai, bik

� �
N 0, Rð Þdup1dup2dup3,

where Ypi represents the response on item i by person p, N(0, R) denotes the multivariate nor-

mal prior distribution for the latent dimensions, up is the vector of latent trait scores (one score

for each dimension) for person p, ai is the vector of discrimination parameters for item i, and bik

Figure 2. Item bank information and local reliability as a function of the number of items per dimension
for the three scenarios: HEPO, HEDI, and EDDI.
Note. Black lines represent the average of the 100 simulated item banks contained in the gray envelope area. HEPO =

health polytomous; HEDI =health dichotomous; EDDI = education dichotomous.
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is the location parameter for item i and response category k. Between-item multidimensionality

implies a so-called simple structure, meaning that an item has a nonzero discrimination para-

meter on the dimension it is assigned to and zero-value discrimination parameters on the other

dimensions e:g:, for an item i belonging to the first dimension, ai = ai1, ai2, ai3½ � = ai1, 0, 0½ �ð Þ.
Between-item multidimensional models are direct extensions of their unidimensional counter-

parts. The dimensions are linked through their correlations. In an MCAT, these correlations

make it possible to gain (more precise) information about a person’s position on one dimension

by borrowing the information gained through responses to items in other dimensions.

In this study, the correlation matrix of the multivariate normal prior distribution for the

latent dimensions was set to be homogeneous with the correlation among each pair of dimen-

sions fixed to a value r: R =

1 r r

r 1 r

r r 1

2
4

3
5. Three person population distributions N(0, R) were

considered — one for each of the following correlation levels: .00, .56, and .80. These values

of r correspond to 0%, 32%, and 64% overlap in variance between the latent dimensions,

respectively. Different sets of data were, thus, generated for each population separately, so that

MCAT could be compared with UCAT within each population for each cell of our experimen-

tal design.

CAT Simulations

The performance of the fixed-precision CATs was evaluated in terms of efficiency of the test

administration procedure and quality of the latent trait estimation. For each replication (100 in

total) within a cell of the experimental design, both an MCAT and a UCAT approach were

applied to the same pregenerated item response data set and corresponding item bank. This

means that CAT algorithm (UCAT/MCAT) is a within-subjects factor in the simulation design.

Figure 3. Experimental design for the CAT simulation study.
Note. The design is not fully crossed, with no data generated for the gray shaded cells. The HEDI scenario serves as

comparison link between the main HEPO and EDDI scenarios. Item banks in the two health scenarios are

characterized by high discrimination parameters, whereas more moderate discrimination levels apply to the EDDI item

banks. For each cell, both a UCAT and MCAT are administered for the same simulees based on the same item bank.

HEPO = health polytomous; HEDI = health dichotomous; EDDI = education dichotomous; CAT = computerized

adaptive test; UCAT = unidimensional CAT; MCAT = multidimensional CAT.
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CAT Algorithm. In setting up a CAT, a few choices have to be made with respect to the specific

algorithm that will be implemented to run the CAT. Here, the most commonly used setup for

an MCAT as proposed by Segall (1996) was chosen: item selection and latent trait estimation

were based on a maximum a posteriori (MAP) procedure using a multivariate normal prior with

mean vector equal to zero and covariance matrix equal to R. Following Segall (2010), item

selection was based on the value of the determinant of the posterior information matrix (this

value is computed and evaluated for each of the remaining items in the item bank, and the item

for which the value is largest is selected). This rule is also known as the DP-rule, which is a

Bayesian version of D-optimality. To initialize the MCAT, the most informative item in the

(multi)dimensional bank for an average person in the population (up = 0, 0, 0½ �) was used as the

starting item. Subsequent item selection was based on the same information criterion, while

taking into account the responses to previously administered items.

If, for a certain iteration, the fixed-precision threshold had been reached for a particular

dimension, the remaining items pertaining to that dimension could no longer be selected

for the following iteration (this could be seen as a constraint preventing the selection of

items pertaining to dimensions for which the fixed-precision threshold has already been

reached). The MCAT was terminated as soon as one or more of the following criteria had

been met: (a) All three estimated latent trait values (denoted ûp) had been estimated with a

local reliability of at least .85 (i:e:, 8d, SE(ûpd) � :387) or (b) the multidimensional bank

was depleted.

For the UCAT conditions, separate CATs were run for each dimension; the starting, item

selection, and stopping procedures were equivalent to those used in the MCATs, but adapted to

a unidimensional setting (e.g., a univariate normal prior with mean equal to zero and variance

equal to 1 was used). Note that given these settings, the MCAT and combined UCATs will pro-

duce equivalent results for conditions with latent trait population prior correlations of r = 0 (i.e.,

identical u values and standard errors, differently ordered but same set of selected items, and

equal total test length across the three dimensions).

The CAT simulations under these algorithmic settings were run in R (R Development Core

Team, 2012) version 3.4 with the package mirtCAT (Chalmers, 2012) version 1.6.1.

CAT Evaluation Criteria. Feasibility of the CAT administration procedure was evaluated using

two variables: (a) the percentage of simulees for whom the CAT reached SE termination on all

three dimensions and (b) maximum obtained SE of the latent trait estimates across the three

dimensions. Quality of CAT-based trait recovery was evaluated using the average absolute bias

across the three dimensions. Bias was calculated as the difference between the true data-

generating u values and the corresponding CAT-based estimates. To study the efficiency of the

CAT administration procedure, total test length across the three dimensions was evaluated. To

facilitate the direct comparison of MCAT with UCAT conditions, relative efficiency of MCAT

was computed for each simulee: 100(1 – MCAT [total test length] / UCAT [total test length]),

with positive and negative values indicating gain and loss percentages in efficiency on the

UCAT test length scale, respectively.

We were not merely interested in total average CAT performance but also in CAT perfor-

mance conditional on u values. For this purpose, four mutually exclusive u-score groups were

defined based on their location and Mahalanobis distance from the center of the latent three-

dimensional hyperspace: (a) a middle group, (b) a concordant high group with persons located

on the higher side of the scale on all three dimensions, (c) a concordant low group with persons

located on the lower side of the scale on all three dimensions, and (d) a discordant group with

Paap et al. 7



persons located on mixed sides of the scale across the three dimensions (e.g., high, low, high).

Additional details regarding group assignment can be found in the online supplement.

Results

CAT Simulation Results

The CAT simulation results are displayed in Tables 2 and 3 and Figures 4 to 6. First, the feasi-

bility of using CAT is evaluated for each cell in the simulation design, along with the quality of

CAT-based trait recovery. Second, results on measurement efficiency in terms of CAT length

are presented.

Feasibility of the CAT administration procedure and quality of CAT-based trait recovery
CAT termination. Table 2 shows the percentage of simulees for whom the CATs reached SE

termination. To facilitate interpretation, we suggest that design cells with a percentage that falls

below 80% for both MCAT and UCAT simulations should be disregarded when evaluating bias

and measurement efficiency, because the conditions in these cells were not adequate for sup-

porting fixed-precision CAT with the prespecified SE threshold. By focusing on the cells that

could effectively support CAT (Table 2), it can be seen that MCAT results in a higher percent-

age of successful termination in 39% of the cases. This MCAT-associated increase in success-

ful termination was larger for HEDI and HEPO than for EDDI. For four design cells, UCAT

failed to reach the 80% successful termination criterion, whereas MCAT did result in meeting

this criterion. All four cells pertained to the health scenarios, and three of these four cells con-

cerned the discordant u-score group.

For the EDDI scenario, the maximum obtained SE of the latent trait estimates across the

three dimensions fell just below the fixed-precision threshold of 0.387 for most design cells

(Figure 4). This is what you would expect to see for a well-functioning fixed-precision CAT.

However, it also became clear that a sub-bank size J = 30 was too small to reach the fixed-

precision threshold under the EDDI scenario. This was the case for both UCAT and MCAT;

although—for the population with prior correlation r = .80—the MCAT did result in substan-

tially lower maximum SEs (which for two groups got very close to the desired precision level).

In the HEPO scenario, the location of the simulees in the latent trait space (u-score group)

had a substantial impact on whether or not the fixed-precision threshold could be reached. For

the well-targeted concordant low u-score group, SE termination was even feasible for the smal-

lest sub-bank size under study (J = 5). As bank size increased, the number of u-score groups that

could be adequately measured went up. This was true for both MCATs and UCATs.

The HEDI scenario was included in the design to link the EDDI and HEPO scenarios. This

scenario can help disentangle the effects of item type and size of the discrimination parameters.

The results from the HEDI scenario indicate that the differences between the EDDI and HEPO

scenarios with respect to the impact of sub-bank size on CAT feasibility cannot be explained

by a difference in item discrimination alone. The HEDI results showed that having highly dis-

criminating dichotomous items restricted the measurement range considerably, such that, in

contrast to HEPO, CAT was only feasible for the well-targeted concordant low u-score group.

Comparing the results under the EDDI and HEDI scenarios with those under the HEPO sce-

nario shows that having polytomous items with well spread out thresholds is crucial in making

CAT feasible for both a wider measurement range and relatively small sub-bank sizes.

Bias. The average absolute bias across the three dimensions is shown in Figure 5. Bias was

slightly larger for groups that were less well targeted (i.e., both concordant u-score groups in

EDDI and the concordant high u-score group in HEPO and HEDI). Bias was generally
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Figure 4. The maximum observed standard error (SE) across the latent trait dimensions as a function
of number of items per dimension and correlation among the dimensions for the three scenarios and the
four u groups.
Note. CAT = computerized adaptive test; UCAT = unidimensional CAT; MCAT = multidimensional CAT.

Figure 5. Average absolute bias of the latent trait estimation as a function of number of items per
dimension and correlation among the dimensions for the three scenarios and the four u groups.
Note. CAT = computerized adaptive test; UCAT = unidimensional CAT; MCAT = multidimensional CAT.

Paap et al. 11



comparable between UCAT and MCAT across the three scenarios. The minor differences that

occurred were in the expected directions. UCAT was associated with smaller bias for the discor-

dant u-score group. In that group, the u vectors contained values that are dissimilar. The prior

used in the MCAT conditions will pull the u estimates of the different dimensions closer

together; whereas that was not a desirable effect for these types of score patterns. Conversely,

MCAT was found to result in more accurate u estimates for the concordant u-score groups,

especially for smaller sub-bank sizes. Here, the u vectors contained values that were rather simi-

lar, and borrowing information across the dimensions had a positive effect on measurement

accuracy; the incremental value of borrowing information across dimensions was most pro-

nounced for the ill-targeted concordant high u-score group.

Efficiency of the CAT administration procedure: Total test length. An efficient fixed-precision CAT

would need to administer only a small number of items to reach the SE stopping criterion. For

the well-functioning CATs under the EDDI scenario, median total test length ranged from 31 to

89 (Table 3). For HEDI, test length was substantially shorter for well-functioning CATs: six to

12. However, CAT was not feasible for the majority of HEDI cells, so the comparison is

severely hampered. For HEPO, the shortest median test length was found: three to nine items.

These results show that CATs were clearly substantially shorter for the scenarios with high dis-

crimination parameters.

As item banks grow larger and more high-quality items are available to choose from, test

efficiency can be expected to increase. The results were indeed in line with this expectation:

Overall, for the well-functioning CATs, test length diminished as item bank size increased

(Table 3). The main focus in this article is on comparing MCAT with UCAT. The results

showed that MCAT still had a substantial impact on test efficiency over and above the size of

sub-banks and discrimination parameters. Figure 6 displays the relative efficiency of MCAT as

compared with UCAT for each design cell (based on median test length). For feasible CATs in

Figure 6. Relative efficiency gain associated with MCAT.
Note. Positive and negative values indicate gain and loss percentages in efficiency on the UCAT test length scale,

respectively. MCAT = multidimensional CAT; UCAT = unidimensional CAT.
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the EDDI scenario, MCAT was, on average, 11% shorter than UCATs for the r = .56 popula-

tion and 35% shorter for the r = .80 population. For feasible CATs in the HEPO scenario,

MCAT was 17% shorter than UCATs for the r = .56 population and 38% shorter for the r = .80

population. In short, the test length reduction associated with MCAT was substantial in many

cases, for dichotomous and polytomous conditions alike. As could be expected, this reduction

was larger for r = .80 than for r = .56.

Since polytomous items are typically richer in information than dichotomous items, the

added benefit of using MCAT rather than separate UCATs may be smaller for polytomous

items than for dichotomous ones. The results did not support this conjecture. For HEDI, a rela-

tive gain of MCAT over UCAT was only found for the r = .80 population and at levels similar

to those observed for HEPO (and EDDI). This again underlines that it is not the item discrimi-

nation factor that was decisive for the MCAT efficiency gains in the HEPO scenario, but rather

the wider u-range coverage associated with well-functioning polytomous items (as compared

with the narrower coverage by the dichotomous but equally discriminating items in the HEDI

scenario).

Discussion

This study shows that the benefits associated with fixed-precision MCAT hold under a wide

variety of circumstances. Overall, MCATs resulted in more frequent successful SE termination

and shorter test length as compared with using separate UCATs per dimension. This trend was

found for both educational testing and health measurement, medium and high correlations,

dichotomous and polytomous items, across different item bank sizes, and for four types of u-

score patterns.

The first studies comparing MCAT with UCAT performance focused on measuring ability;

these studies showed that fixed-length MCATs were 25% to 33% shorter and resulted in more

accurate ability estimates (Li & Schafer, 2005; Luecht, 1996; Segall, 1996). A recent study

comparing MCAT with UCAT in the context of health measurement showed that MCATs

were, on average, 20% to 25% shorter compared with using separate UCATs (Paap, Kroeze,

Glas, et al., 2017). Although it may be tempting, it is difficult to compare these figures across

studies directly. In this study, we explicitly chose to evaluate fixed-precision MCAT perfor-

mance under various circumstances, to facilitate direct comparisons across conditions and to be

able to paint a more detailed picture regarding the potential benefits of MCAT. We were cur-

ious to see whether the incremental value of MCAT found for item banks typical for educa-

tional testing would generalize to item banks typical for health measurement.

Although the main trend was comparable across conditions, some differences emerged. First

of all, CAT was not feasible for short (30 items per dimension) educational banks. This was not

entirely surprising, given the dichotomous nature of the items. When it comes to polytomous

items, previous studies have shown that item banks as small as 20 to 30 items per dimension

may be adequate in supporting CAT when exposure control is not an issue (Boyd, Dodd, &

Choi, 2010; Dodd, De Ayala, & Koch, 1995; Paap, Kroeze, Terwee, van der Palen, &

Veldkamp, 2017). Overall, this study showed support for these findings, but it also allowed for

refinement: Feasibility in the HEPO scenario was dependent on the observed u-score pattern

(for banks with 30 items or fewer per dimension). CAT was feasible for three out of four u-

score groups for banks with as few as 30 items per dimension. Although the number of u-score

groups that could be adequately measured with CAT decreased as the item bank size dimin-

ished, the well-targeted u-score group could still be measured well with a CAT based on an

item bank containing only five items per dimension. For four design cells, only MCAT resulted

in acceptable frequencies of successful SE termination. Three of these cells concerned the

Paap et al. 13



health (HEDI or HEPO)/high correlation/discordant u-score group combination. Some authors

have speculated that MCAT may have little to add if polytomous items are used, because poly-

tomous items are generally considerably richer in information than dichotomous items (e.g.,

Paap, Kroeze, Glas, et al., 2017). Our results did not support this conjecture: Although UCATs

based on polytomous items were already very short, MCATs were shorter still. It should be

noted, however, that measurement efficiency and/or successful SE termination may come at the

expense of accuracy for persons with u-score combinations that have a low probability of

occurring given the prior correlation matrix. In such instances, the prior will pull the u esti-

mates of the different dimensions closer together, which may not be a desirable effect for these

types of score patterns.

On the basis of our results, we recommend that item bank developers using polytomous

items in the field of health measurement evaluate whether the polytomous items perform as

they should (adequate coverage in each category, well spread out thresholds) and explicitly

check whether targeting is adequate in the u range of interest, before settling on a small item

bank. They could further consider using MCAT rather than separate UCATs, because using

MCAT may result in a higher percentage of successfully terminated CATs as well as increased

test efficiency.

Although we went to great lengths to design as comprehensive a comparative study as possi-

ble, more research is needed to ascertain to what degree the findings presented here can be gen-

eralized beyond the included design factors; for example, a different number of dimensions,

other scenarios, content balancing, or using different item selection methods and stopping cri-

teria (possibly in combination with exposure control methods).
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