Export 2016 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
computerized adaptive testing
McLeod, L. D. (1999). Alternative methods for the detection of item preknowledge in computerized adaptive testing. Dissertation Abstracts International: Section B: the Sciences & Engineering, 59, 3765.
Patsula, L. N. (2000). A comparison of computerized adaptive testing and multistage testing. Dissertation Abstracts International: Section B: the Sciences & Engineering, 60, 5829.
Jiao, H., Wang, S., & Lau, C. A.. (2004). An investigation of two combination procedures of SPRT for three-category classification decisions in computerized classification test. annual meeting of the American Educational Research Association. presented at the 04/2004, San Antonio, Texas.
PDF icon ji04-01.pdf (648.87 KB)
Reckase, M. D. (2024). The Influence of Computerized Adaptive Testing on Psychometric Theory and Practice. Journal of Computerized Adaptive Testing, 11(1). doi:10.7333/2403-1101001
Kingsbury, G. G. (2002). An empirical comparison of achievement level estimates from adaptive tests and paper-and-pencil tests. In annual meeting of the American Educational Research Association. New Orleans, LA. USA.
Segall, D. O. (2002). An item response model for characterizing test compromise. Journal of Educational and Behavioral Statistics, 27, 163-179.
Tseng, F. - L. (2001). Multidimensional adaptive testing using the weighted likelihood estimation. Dissertation Abstracts International Section A: Humanities & Social Sciences, 61, 4746.
Coyle, J. (2001). Final answer?. American School Board Journal, 188, 24-26.
van der Linden, W. J., & Veldkamp, B. P.. (2004). Constraining item exposure in computerized adaptive testing with shadow tests. Journal of Educational and Behavioral Statistics, 29, 273-291.
Fan, M. (1995). Assessment of scaled score consistency in adaptive testing from a multidimensional item response theory perspective. Dissertation Abstracts International: Section B: the Sciences & Engineering, 55, 5598.
Rizavi, S. M. (2002). The effect of test characteristics on aberrant response patterns in computer adaptive testing. Dissertation Abstracts International Section A: Humanities & Social Sciences, 62, 3363.
Bergstrom, B. A., & Lunz, M. E.. (1999). CAT for certification and licensure. In Innovations in computerized assessment (pp. 67-91). Mahwah, N.J.: Lawrence Erlbaum Associates.
Almond, R. G., & Mislevy, R. J.. (1999). Graphical models and computerized adaptive testing. Applied Psychological Measurement, 23, 223-37.
Tang, K. L. (1996). A comparison of the traditional maximum information method and the global information method in CAT item selection. In annual meeting of the National Council on Measurement in Education. New York, NY USA.
McBride, J. R. (1997). Research antecedents of applied adaptive testing. In B. K. Waters & McBride, J. R., Computerized adaptive testing: From inquiry to practice (xviii., pp. 47-57). Washington D.C. USA: American Psychological Association.
Barrada, J. R., Olea, J., & Ponsoda, V.. (2007). Methods for restricting maximum exposure rate in computerized adaptative testing. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 3, 14-23.
PDF icon ba07014.pdf (398.44 KB)
Glas, C. A. W., & van der Linden, W. J.. (2003). Computerized adaptive testing with item cloning. Applied Psychological Measurement, 27, 247-261.
Tai, M. Him, Cooperman, A. W., DeWeese, J. N., & Weiss, D. J.. (2023). How Do Trait Change Patterns Affect the Performance of Adaptive Measurement of Change?. Journal of Computerized Adaptive Testing, 10(3), 32-58. doi:10.7333/2307-1003032
Schoonman, W. (1989). An applied study on computerized adaptive testing. Faculty of Behavioural and Social Sciences. University of Groingen, Groningen, The Netherlands.
Tonidandel, S. (2002). Computer adaptive testing: The impact of test characteristics on perceived performance and test takers' reactions. Dissertation Abstracts International: Section B: the Sciences & Engineering, 62, 3410.
Reckase, M. D. (1989). Adaptive testing: The evolution of a good idea. Educational Measurement: Issues and Practice, 8, 11-15.
Bergstrom, B. A., & Lunz, M. E.. (1994). The equivalence of Rasch item calibrations and ability estimates across modes of administration. In Objective measurement: Theory into practice (Vol. 2, pp. 122-128). Norwood, N.J. USA: Ablex Publishing Co.
Finkelman, M. D., Weiss, D. J., & Kim-Kang, G.. (2010). Item Selection and Hypothesis Testing for the Adaptive Measurement of Change. Applied Psychological Measurement, 34(4), 238-254. doi:10.1177/0146621609344844
van der Linden, W. J. (2008). Some new developments in adaptive testing technology. Zeitschrift für Psychologie, 216, 3-11.
PDF icon Some New Developments in Adaptive Testing.pdf (544.66 KB)
Gershon, R. C. (1996). The effect of individual differences variables on the assessment of ability for Computerized Adaptive Testing. Dissertation Abstracts International: Section B: the Sciences & Engineering, 57, 4085.
DeMars, C. E. (2022). The (non)Impact of Misfitting Items in Computerized Adaptive Testing. Journal of Computerized Adaptive Testing, 9(2). doi:10.7333/2211-0902008
Kim, H. - O. (1994). Monte Carlo simulation comparison of two-stage testing and computerized adaptive testing. Dissertation Abstracts International Section A: Humanities & Social Sciences, 54, 2548.
Sands, W. A., Waters, B. K., & McBride, J. R.. (1997). Computerized adaptive testing: From inquiry to operation. Washington, D.C., USA: American Psychological Association.
Buyske, S. G. (1999). Optimal design for item calibration in computerized adaptive testing. Dissertation Abstracts International: Section B: the Sciences & Engineering, 59, 4220.
Thompson, N. A., & Ro, S.. (2007). Computerized classification testing with composite hypotheses. GMAC Conference on Computerized Adaptive Testing. St. Paul, MN: Graduate Management Admissions Council.
Conejo, R., Guzmán, E., Millán, E., Trella, M., Pérez-De-La-Cruz, J. L., & Ríos, A.. (2004). Siette: a web-based tool for adaptive testing. International Journal of Artificial Intelligence in Education, 14, 29-61.

Pages