TitleStochastic Curtailment of Questionnaires for Three-Level Classification: Shortening the CES-D for Assessing Low, Moderate, and High Risk of Depression
Publication TypeJournal Article
Year of Publication2016
AuthorsSmits, N, Finkelman, MD, Kelderman, H
JournalApplied Psychological Measurement
AbstractIn clinical assessment, efficient screeners are needed to ensure low respondent burden. In this article, Stochastic Curtailment (SC), a method for efficient computerized testing for classification into two classes for observable outcomes, was extended to three classes. In a post hoc simulation study using the item scores on the Center for Epidemiologic Studies–Depression Scale (CES-D) of a large sample, three versions of SC, SC via Empirical Proportions (SC-EP), SC via Simple Ordinal Regression (SC-SOR), and SC via Multiple Ordinal Regression (SC-MOR) were compared at both respondent burden and classification accuracy. All methods were applied under the regular item order of the CES-D and under an ordering that was optimal in terms of the predictive power of the items. Under the regular item ordering, the three methods were equally accurate, but SC-SOR and SC-MOR needed less items. Under the optimal ordering, additional gains in efficiency were found, but SC-MOR suffered from capitalization on chance substantially. It was concluded that SC-SOR is an efficient and accurate method for clinical screening. Strengths and weaknesses of the methods are discussed.