TitleParameter Drift Detection in Multidimensional Computerized Adaptive Testing Based on Informational Distance/Divergence Measures
Publication TypeJournal Article
Year of Publication2016
AuthorsKang, H-A, Chang, H-H
JournalApplied Psychological Measurement
AbstractAn informational distance/divergence-based approach is proposed to detect the presence of parameter drift in multidimensional computerized adaptive testing (MCAT). The study presents significance testing procedures for identifying changes in multidimensional item response functions (MIRFs) over time based on informational distance/divergence measures that capture the discrepancy between two probability functions. To approximate the MIRFs from the observed response data, the k-nearest neighbors algorithm is used with the random search method. A simulation study suggests that the distance/divergence-based drift measures perform effectively in identifying the instances of parameter drift in MCAT. They showed moderate power with small samples of 500 examinees and excellent power when the sample size was as large as 1,000. The proposed drift measures also adequately controlled for Type I error at the nominal level under the null hypothesis.