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The Robustness of the Unidimensional 3PL IRT Model 

When Applied to Two-dimensional Data in Computerized Adaptive Testing 

 

A revolutionary development in educational and psychological measurement in the past 
several decades has been the rise of item response theory (IRT). As an important application of 
this test theory, computerized adaptive testing (CAT) has received considerable attention from 
the measurement community. Built upon the unidimensional 3-parameter logistic (3PL) IRT 
model, CAT achieves enhanced measurement precision and reduced test length by presenting 
items adapted to an examinee’s ability level, based on an on-going evaluation of the individual’s 
performance during the process of testing (Wainer, 1990).  

IRT models are dependent upon a set of stringent assumptions about the data to which the 
models will be applied. With respect to CAT, a particularly formidable assumption to meet is the 
one of unidimensionality, which states in essence that all the items in a test measure only one 
ability (Hambleton, Swaminathan, & Rogers, 1991). Although most tests nowadays are 
developed to measure a single ability (Weiss & Yoes, 1991), the unidimensionality assumption 
may prove problematic to testing practitioners simply because content and format differences in 
a test and various extraneous factors can easily increase the number of latent traits being assessed 
(Hulin, Drasgow, & Parsons, 1983; Traub, 1983). Given the practical difficulties in meeting this 
assumption, and a lack of appropriate CAT software to process multidimensional data, an inquiry 
into the robustness of the unidimensional 3PL IRT model is apparently in order. It will be 
especially helpful if researchers can find out how sufficiently "dominant" (Hambleton, 
Swaminathan, & Rogers, 1991, p. 9) a major underlying ability needs to be while the currently 
available CAT algorithms can still be applied without serious consequences. 

Adopting a Monte Carlo approach, the measurement community began to investigate the 
robustness of the unidimensional 3PL IRT model to the violation of its unidimensionality 
assumption in the late 1970s. Using simulated multidimensional data as the true item and ability 
parameters, many researchers focused their attention on the effects of multidimensionality on 
parameter estimation by comparing the simulated parameters with their unidimensional 
counterparts obtained with LOGIST (Wood, Wingersky, & Lord, 1976) under systematically 
manipulated conditions.  

Reckase (1979) generated data to fit a linear factor-analytic model for the simulation part 
of his study. It was reported that when there were several equally potent factors, the ability 
estimates were highly correlated with the factor scores for just one of such factors; when there 
was a dominant first factor, the ability estimates were highly correlated with the factor scores for 
that first factor. 

Drasgow and Parsons (1983) employed a hierarchical factor-analytic model to generate 
multidimensional data in their study. They found that, whether guessing was involved in item 
responses or not, with first-order common factors correlated from .46 to .90, estimates of the 
item and ability parameters were closely related to the parameters associated with the second-
order general factor. When the potency of the second-order general factor decreased, these 
estimates became more closely related to the parameters associated with the most potent first-
order common factor instead. 
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Ansley and Forsyth (1985) adopted as their simulation model the two-dimensional 
version of Sympson’s (1978) noncompensatory multidimensional IRT (MIRT) model with the c  
value fixed at .2. They reported that, regardless of the sample size and the test length, the 
estimates of ability parameters (

i

2) seemed best considered the average of the true θ  and θ  
values. However, a substantial disparity always existed between the magnitudes of the statistics 
derived from the two-dimensional data and those derived from the unidimensional data. 

1θ

ˆ
θ

 Doody (1985) studied the IRT model robustness issue in a vertical equating context, 
using the two-dimensional version of Doody-Bogan and Yen’s (1983) compensatory MIRT 
model. With a cross-validation component incorporated in her design, the researcher found that 
the use of the unidimensional 3PL IRT model in parameter estimation was as good for 
multidimensional data as it was for unidimensional data in most of the test conditions simulated 
in her study. Yet, she warned in test equating terms that the poorest item parameter estimates 
would occur when one test was unidimensional and one test was multidimensional. 

 Way, Ansley, and Forsyth’s (1988) study involved the use of the two-dimensional 
version of both Sympson’s (1978) and Doody-Bogan and Yen’s (1983) MIRT models with c  
values fixed at .2. These researchers verified Ansley and Forsyth’s (1985) findings regarding the 
ability estimates, and further noticed that the relationship between θ  and the average of θ  and 

 varied differently with the relationship between θ  and θ  across MIRT models.    

i

1

2 1 2

Ackerman (1989) employed in his study the two-dimensional versions of McKinley and 
Reckase’s (1982) compensatory and Sympson’s (1978) noncompensatory MIRT models with c  
values fixed at 0. He found that the 

i

2θ
r

 values were about equally correlated with the θ  and θ  
values across all levels for both models. Ackerman also examined the differences between 
LOGIST (Wingersky et al., 1982) and BILOG (Mislevy & Bock, 1982) in his study. 

1

θ θ1 2

The measurement community did not begin to assess the robustness of the 
unidimensional 3PL IRT model in various CAT settings until the early 1980s. In this new 
research endeavor, simulated examinees (simulees) with known multidimensional abilities were 
adaptively tested based on a unidimensional 3PL IRT model, and their unidimensionally derived 
ability estimates were then compared with their true multidimensional ability levels. 

. Weiss and Suhadolnik (1982) co-authored an early study in which multidimensional data 
were generated based on the factor structures of the ASVAB General Science subtest, and the 
ability estimates were obtained with Birnbaum’s (1968) maximum likelihood estimation method. 
They found that, with the increase of multidimensionality in the generated item responses, the θ  
values departed further from the true first factor θ  values across all the  levels evaluated. 
However, the effects of multidimensionality could be overcome by increasing the test length in 
many cases. 

 Folk and Green (1989) included a partial replication component in their study and used 
the two-dimensional version of Hattie’s (1981) compensatory MIRT model to generate data. The 
item parameters were calibrated with a modified maximum likelihood estimation method, and 
the ability estimates were obtained through a combination of Owen’s (1975) Bayesian sequential 
estimation method and Samejima’s (1969) Bayesian modal estimation method. Folk and Green 
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reported that, with the item set containing mutually exclusive subsets of items that each measure 
one ability only, the  values tended to be close to either θ  or θ  value as the  level 

decreased.  With the item set measuring differing amounts of each ability across items, the 
1 2

θ θ1 2

rθ θ1 2

θ
r

c

ˆ

 
values were equally related to the θ  and θ  values regardless of the  levels. 1 2

θ

De Ayala (1992) generated data for his study using the two-dimensional version of 
Doody-Bogan and Yen’s (1983) compensatory MIRT model with the  value set to .20. Based 
on a unidimensional item pool, each simulated CAT session in his study estimated the simulee’s 
ability level using Owen’s (1975) Bayesian sequential estimation method. De Ayala found that 
the increased association of difficulty parameters improved the accuracy of ability estimation 
slightly. The correlation between θ  and the average of θ  and θ  values increased as the 
associations between interdimensional abilities became stronger.  In all situations, 

i

1 2

r  became 
greater when the a and  values in the item pool had been sorted in opposite directions. 

θθ

1 a2

A review of the literature on the robustness of the unidimensional 3PL IRT model shows 
that all researchers noticed the effects of multidimensionality on ability estimation. However, 
they differed as to the characteristics of the unidimensional estimates of the multidimensional 
abilities. The purpose of this Monte Carlo study was to investigate the robustness of the 
unidimensional 3PL IRT model to the violation of its unidimensionality assumption in CAT 
applications. Through a replication and extension of previous research in this area, the current 
study was designed to address the following research questions: 

1. Do different correlations between the two item difficulty dimensions ( ) affect 
CAT results? 

ρb b1 2
s

2. Do different correlations between the two ability dimensions ( ) affect CAT 
results? 

ρθ θ1 2
s

3. Do different ability estimation methods (METHOD) affect CAT results? 

4. Do the above three factors interact to affect CAT results? 

5. How do CAT results differ when they are based on unidimensional and two-
dimensional item response data respectively? 

 

Method 

Computer Programs 

Several computer programs were employed to facilitate this Monte Carlo study.  They 
included (a) IRMG (Item Response Matrix Generator) for producing all the required data sets, 
(b) NOHARM87 (a more recent version of NOHARM, Fraser & McDonald, 1988) for verifying 
the dimensionality of the generated item response data sets, (c) ASCAL (Vale & Gialluca, 1985) 
for estimating item parameters in every item bank, and (d) SimuCAT for CAT simulation. 
ASCAL was a component of the MicroCAT Testing System Version 3.0 (1993) (henceforth 
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referred to as MicroCAT), and IRMG and SimuCAT were developed by the first author of this 
study in SAS Interactive Matrix Language (SAS/IML) (SAS Institute, 1990). SimuCAT modeled 
on MicroCAT in testing algorithm and ability estimation methods. 

 

 

Simulation Models 

A modified version of Birnbaum’s (1968) 3PL IRT model was selected for item and 
ability estimations in this study.  This version can be expressed as 
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where is the probability that a randomly chosen examinee with ability  answers item i 
correctly, 

Pi ( )θ

ai  is the discrimination parameter for item i, 

bi   is the difficulty parameter for item i,  

c  is a constant across items as the pseudo-chance-level parameter, and 

n is the number of items in the test. 

To generate multidimensional item response matrices, the two-dimensional versions of 
two different MIRT models were used. These models included Doody-Bogan and Yen’s (1983) 
compensatory model: 

∑
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where  is the probability of a correct response to item i by examinee j whose location in an 
m-dimensional latent space is described by the ability vector θ , 

Pij jk(θ )

jk

                  a  is the discrimination parameter for item i on dimension k,  ik

                 b   is the difficulty parameter for item i on dimension k,  ik

 N   is the number of examinees who respond to item i, and  

all other parameters are as defined previously,  

and Sympson's (1978) noncompensatory model: 
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where all parameters have already been defined. 
 

 

 

Basic Research Design 

Item Response Data  

Item parameters. Five two-dimensional item pools with 246 items each were created for 
this study. The a  values were randomly sampled from a uniform distribution in the range [0.5, 
2.0]. To simulate a standardized achievement test that primarily tapped the ability on the first 
dimension, the a  values were randomly sampled from a uniform distribution in the range [0.25, 
1.0] such that the  values would be twice as large as the values on average.  These two a 
vectors were then used in the entire five item pools.   

1

2

a a

2 0= − .
b 19= − . b

ρ 1=   .45,  .63,. , .77,  a 1×

1 2

The  values of every item pool were evenly distributed at 41 points in the range [-2.0, 
2.0] with every six items sharing the same point, so that for the first six items b , for the 
second six items , and so on. To make the b  and  values correlated differently 
across the five item pools ( ), a 246  vector u was created for 
every item pool to fit a uniform distribution in the range [0, 1]. The initial values of the  vector 
were then computed by using Hoffman’s (1959) equation: 

b1

1

b2

1 1

nd .89
2

b b1 2

 b b
ub b b

b b u
2 1

21
1 2 1

1 2

= +
− ρ σ

ρ σ
,                           (4) 

where is the standard deviation of the b  vector,  σb1 1

σu  is the standard deviation of the u vector, and  

all other parameters are as defined previously.  

To emphasize the primary status of the abilities on the first dimension and to keep the  values 
within the desired range, the initial b  values were linearly transformed, so that their mean was 1 
less than the mean of their corresponding b  values, and their standard deviation was at 0.4. In 
every item pool, the c  values were fixed at .2. 

b2

2

1

i

Some characteristics of the item parameters need explanation.  The pool size was set at 
246 because the distribution of the  values required it to be a multiple of 6, and the maximum b1
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processing capacity of the item calibration program ASCAL (Vale & Gialluca, 1985) was 250 
items. The distribution of the a  and b  values and the use of Hoffman’s (1959) method to 
generate the  values were adapted from De Ayala (1992). The range of the  values came 
from Ansley and Forsyth (1985), Doody (1985), and Way et al. (1988). The range of the b  
values was due to Ansley and Forsyth, Folk and Green (1989), and Way et al.  The c value was 
obtained from Drasgow and Parsons (1983), Ansley and Forsyth, and De Ayala. The correlations 
between the b  and  values were selected to cover a series of evenly spread linear 
relationships between the b vectors  

assuming that squared correlation is a generally accepted measure of linear 
predictability in terms of the variance accounted for. Finally, the desired correlation of .1 was 
chosen to approximate the correlation of 0, which is not defined in Hoffman’s method. 

1 1

(

pij

b a

b
2222

2

 .63,  .77, nd .89

×

2

1

 .45,

×

246

1

.77  

pij

1

and
2

 a

×

  .6,.4,.63  .2,.45  .00,.01.1  i.e., ===≈=

ρb b1 2
ρθ θ1 2

,.8).89 =

ρθ θ1 2
=  0,

Z AX=

2× ,

21bbρ

2 000,

2

 Simulees. Five two-dimensional 2,000-simulee samples (subsequently referred to as 
Simulee Set A) were generated for item calibration. As specified by Ansley and Forsyth (1985), 
Doody (1985), Way et al. (1988), Folk and Green (1989), and Ackerman (1989), the  vectors 
for each sample were produced to approximate a bivariate normal distribution with zero mean 
and unit variance for each dimension. Different correlations between the  vectors 
( ) were obtained across the five samples by using the bivariate 
version of Moonan’s (1957) formula 

,                             (5) 

where A is a lower triangular 2  matrix that results from a Choleski factorization of the matrix M, 
which depicts the desired correlation between the  vectors, 

2

          X is the initial 2  matrix of independent pseudo-random normal deviates with expected zero 
mean and unit variance for rows, and 

000,

          Z is a 2  matrix of linearly transformed pseudo-random normal deviates with expected zero 
mean and unit variance for rows, and the desired correlation between the  vectors. 

000

Like , the  chosen here were intended to represent a number of evenly distributed 
linear relationships between the  vectors that could be used to facilitate linear prediction. 

ρθ θ1 2
s

Simulee Set B, which included five two-dimensional 1,000-simulee samples, was drawn 
in the same manner with a different seed value for CAT simulations. 

 Item response matrices. Combinations of  (.1, .45, .63, .77, and .89),  (0, .45, 
.63, .77, and .89), and MIRT model (compensatory and noncompensatory) produced a total of 
fifty  matrices of probabilities of a correct response with elements . To introduce 
a random error component into every matrix, a random number r was drawn from a uniform 
distribution in the range [0, 1] for every  value. By applying the rule 
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p r

p rij

ij

ij
=

≥

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  (a correct answer) if   
  (an incorrect answer) if  <  
1
0   ,                                   (6) 

fifty (0, 1) matrices with elements  were created. Based on Simulee Set A, these dichotomous 
item response data sets were used for item calibration. 

xij

Based on Simulee Set B, 50 additional (0, 1) matrices with elements  were generated 
in the same manner.  Involving 1,000 simulees each, these data sets were used as simulee 
responses when adaptive testing was simulated. 

xij

Item Banks 

Item calibrations using the 50 Simulee Set A-based item response matrices were 
completed according to Vale and Gialluca’s (1985) pseudo-Bayesian method:  

L P Q f a f cij
v

i

n

j

N

ij
v

j i i
ij ij* ( ) ( , . , . , . , . ) [ . , . , . , ( . / )],= −

==

−∏∏
11

1 30 30 0 3 2 6 50 50 0 05 0 05 2Φ θ K+

±

2

            (7) 

where              L* is the pseudo-likelihood function for omitted item responses, 

               is the probability of an incorrect response to item i  by examinee j ,  Qij

                is the standard normal cumulative density function,  )(⋅Φ

                       v
K

ij =









1
0
1

 if examinee 's response to item  is correct,
 if examinee 's response to item  is incorrect,

 otherwise,  where K is the number of alternatives,  and

j i
j i

/

          is the Bayesian prior for parameter x ( a or ), with upper and lower bounds u 
and l, and beta function parameters r and s. (Bounded by , b  has no prior distribution.), and  

f x r s l u( , , , , ) i

30.
ci

i

all other parameters are as defined previously.  

This led to the creation of 50 item banks with unidimensional item parameter estimates: 25 
compensatory, and 25 noncompensatory. To ensure a high quality of the test items for CAT 
simulations, these item banks were subsequently cleaned by deleting items whose parameter 
estimates failed to converge to their true values. As recommended by Assessment Systems 
Corporation’ (1994), items were also removed if their  lack-of-fit statistics were about four 
times as large as those of the other items in the same bank. 

χ

 
CAT Simulations  

The maximum information item selection strategy was adopted in all CAT simulations. 
To expedite the process of simulated test administration, an information lookup table was created 
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for each of the 50 item banks at each of the 81 equally distributed ability levels in the range       
[-4.0, 4.0]. These tables were based on Birnbaum’s (1968) item information function: 

2

2

)]}(7.1exp[1)]}{(7.1exp[{
)1(89.2
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ii
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θ ,                                           (8)  

where  is the information provided by item i at θ, and  )(θiI

all other parameters are as defined previously. 

All the simulees from Simulee Set B were adaptively tested against their corresponding 
item banks. Four ability estimation methods were used. They included Birnbaum’s (1968) 
maximum likelihood estimation:  

,
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where   t   is the iteration index,  

L is the likelihood function , ii u

i

u

i

n

i
QPL

−

=
∏=

1

1

ui  is the response of a randomly selected examinee to item i, coded 1 for a correct 
response and coded 0 for an incorrect response, and 

all other parameters are as defined previously, 

Owen’s (1975) Bayesian sequential estimation: 

E( | )
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where  is the posterior mean  given a correct response (1) or an incorrect )0|E( /)1|E( θθ

 response (0), 

    µ  and σ   are the mean and standard deviation of the prior  distribution, 
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                        φ   is the standard normal probability density function, )(⋅

Samejima’s (1969) Bayesian modal estimation: 
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where σ  is the variance of the prior θ distribution, and  2

all other parameters are as defined previously, 

and Bock and Aitken’s (1981) Bayes EAP estimation: 
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) ( )

) ( )
( ) ( | )

(

(
,θ θ= = =

=

∑

∑
u

u

u

L X A X X

L X A X

k

q

k

q

|

|

k k

k k

1

1

k

X

)

                                                                  (12) 

where  is the log-likelihood of the observed response pattern u , given  
the kth Gauss-Hermite node , and 

)|( kXL u ( , , ..., )u u un1 2   

k

              is the weight of . A X( k X k

A simulee’s unidimensional ability estimate θ
×

 was fixed at 0 at the beginning of each of 
the 200,000 simulated CAT sessions (50 item banks 4 ability estimation methods × 1,000 
simulees). After an item with the highest level of information at θ  was selected from the 
information lookup table and administered, the simulee’s new θ  was calculated based on his/her 
item response retrieved from the corresponding item response matrix. This estimation process 
would continue until either a maximum of 30 items was administered, or a standard error of no 
more than 0.05 was obtained after the administration of a minimum of 20 items. 

During the CAT simulations, most of the ability estimation methods functioned under 
certain specifications. For maximum likelihood and Bayesian modal estimation, which entail 
iterations of the Newton-Raphson procedure, the absolute increment to a θ  was restricted to 0.5. 
As suggested by Baker (1992), the iterations were terminated when either an iterative cycle of 20 
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was completed or the absolute increment to a  became less than 0.001. Regarding Bayesian 
sequential and Bayesian modal estimation, a normal prior distribution of  was chosen that has 
zero mean and unit variance. 

θ

b
( , )N = 2 000

( , )N = 1 000

Figure 1 presents the basic structure of a two-dimensional data-based CAT simulation as 
a system flowchart. It should be pointed out that despite the use of unidimensional item 
parameter estimates for item selection and ability estimation in the CAT simulations, simulee 
responses were always created from a two-dimensional model. 

 

Unidimensional Data-based Simulations 

Unidimensional data-based CAT simulations were carried out to establish a frame of 
reference for detecting errors associated with the ability estimation methods when the results of 
the two-dimensional data-based CAT simulations were analyzed. 

Five unidimensional item pools with 246 items each were generated for the planned CAT 
simulations based on Birnbaum’s (1968) 3PL IRT model. For every item pool, the a, b, and c 
values were generated in the same manner as the a , , and c values in the two-dimensional 
item pools, and the two corresponding simulee samples for item calibration  and 
CAT simulation were each drawn from a normal distribution with zero mean and 
unit variance. All the simulation procedures remained basically the same as those used in the 
two-dimensional data-based simulations except that the MIRT models were replaced by the 
unidimensional IRT model. 

1 1

Two different seed values were employed for each of the five unidimensional data-based 
CAT simulations. One was used to generate the a and  values for item calibration, and the 
other the  values for CAT simulation.  

To obtain more stable results from this Monte Carlo study, the basic research design 
described above was replicated five times.  
 

Data Analysis 

Adequacy of Certain Computer Programs 

The data analysis began with a validation of the SAS/IML programs IRMG and 
SimuCAT. The validity of the generated a, b, and  values was evaluated by comparing the 
differences between the expected and the observed values of their means, standard deviations, 
ranges, and correlations where applicable. The dimensionality of the item response matrices was 
verified by computing the root mean square of residuals (RMSR) for a number of representative 
matrices with NOHARM87. The accuracy of the CAT simulations was determined by finding 
the differences between SimuCAT and MicroCAT in terms of the ability estimates and their 
variances based on a sample item response matrix. 

Robustness of Unidimensional 3PL IRT Model in CAT  
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A number of statistical indices were calculated at the simulee sample level to evaluate the 
CAT simulation results under various test conditions.   

The fidelity indices included Pearson product-moment and Spearman rho correlations 
between  and θ  ( r and ), between θ 1 θθ1

rs
θθ1

θ  and  ( r and ), and between θ2 θθ2
rs

θθ2
θ  and the 

average of θ  and θ  (1 2 r
θθ

and rs ).  
θθ

The bias index can be expressed as 

Bias
Nk

j jk
j

N

=
−∑

=
( )θ θ

1    (k = 1, 2, 3),                                 (13) 

where θ  becomes the average of θ  and θ  for examinee j when k = 3, and  jk 1 2

  all other parameters are as defined previously. 

 The error indices included root mean square error (RMSE) and average standard 
error of estimation (ASE). They were computed as follows: 

RMSE
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(k = 1, 2, 3),                                (14) 

where all parameters are as defined previously. 
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where  is the standard error of estimation associated with θ  when a testing 
session was terminated, and N is as defined previously. Depending on the ability estimation 
method,  can be obtained by 
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        (Bayes EAP estimation), 

  where all parameters have already been defined. 

 The test efficiency index was defined as the average number of items 
administered in a testing session: 

,1

N

NI
ANI

N

j
j∑

==
                                    

(20) 

where  is the number of items used when testing session j is terminated, and  jNI

              N  is as defined previously. 

Magnitudes of Factorial Effects 

12 



This Monte Carlo study was based on three simulation factors:   and 
METHOD. The magnitudes of the effects of these simulation factors were assessed using 
analysis of variance (ANOVA) with planned comparisons.  was selected as the 
dependent variable for the analysis. This was not only because RMSE, in general, was sensitive 
to changes in treatment conditions in an experimental design, but also because , as will 
be shown later, could capture the characteristics of the unidimensionally estimated two-
dimensional  better than  and . The logarithm of  ( LRM ) was 
taken to improve the model-data fit and help normalize the residuals. 

ρb b1 2
,

RMSE

ρθ θ1 2
,

3

SE3

RMSE

θs RMSE RMSE RMSE

ρ ρ

ρ ρ

3

1 2 3

In this three-way ANOVA, the linear and quadratic trends related to  and , the 
main effect of METHOD, as well as all the relevant interactions were each explored by creating 
a system of contrast coding. These coding systems included two vectors of orthogonal 
polynomial coefficients for both  and  

ρb b1 2
ρθ θ1 2

b b1 2 θ θ1 2

[2 1 0 -1 -2] (Linear) 

[2 -1 -2 -1   2] (Quadratic), 

three vectors of orthogonal polynomial coefficients (Helmert contrasts) for METHOD 
[3 -1 -1 -1]     (Maximum likelihood vs. all Bayesian estimation methods) 

[0 2 -1 -1]     (Bayesian sequential vs. other Bayesian estimation methods) 

[0 0 1 -1]     (Bayesian modal vs. Bayes EAP estimation methods), 

and 28 vectors of derived orthogonal coefficients corresponding to the interactions, which 
were constructed by cross-multiplying the appropriate , , and METHOD vectors. A 
measure of the magnitude of the effect of a simulation factor was obtained by computing the 
squared Pearson product-moment correlation coefficient between the dependent variable and 
each relevant vector of orthogonal coefficients. In all cases, ANOVA with planned comparisons 
was used as a descriptive method to quantify effects of the simulation factors. Because a 
“significant” trend or main effect could well be the artifact of the number of replications 
arbitrarily chosen for such a Monte Carlo study, an inferential use of the ANOVA technique was 
not warranted in this situation. 

b b1 2 θ θ1 2

Results 

Adequacy of Certain Computer Programs 

Quality of Generated Data 

Validity in terms of item and ability characteristics. The summary statistics for the 
generated item and ability parameters in Tables 1 and 2 were averaged across the basic research 
design and the five subsequent replications. These statistics show that the generated data fulfilled 
all the criteria previously specified.  

 Validity in Terms of Item Response Matrix Dimensionality. To assess the dimensionality 
of the item response matrices based on the generated two-dimensional item and ability 
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parameters, six representative matrices were selected for nonlinear factor analysis. Because of 
the processing capacity limitations of NOHARM87, only a random sample of 123 items were 
retained in each selected matrix when its dimensionality was examined. Table 3 contains the 
RMSR values generated by HOHARM87 after conducting exploratory analyses of the relevant 
matrices with the convergence criterion set to the default value of 0.000001. For matrices 
r1nc1000, r2co4545, and r4co7777, the percentages of RMSR value reduction (i.e., the 
percentages of improvement in model-data fit) are notably greater between the 1-factor and the 
2-factor solutions (19%, 24%, and 26%) than between the 2-factor and the 3-factor solutions 
(3%, 5%, and 2%). This can be regarded as a sign that a 2-factor solution can better capture the 
dimensionalities of the item response matrices in question. For the other three matrices cited in 
Table 3, however, their dimensionalities are not so clear. Although the relatively small 
percentage reduction (8%) between the 1-factor and the 2-factor solutions with the matrix 
r5nc8989 might result from a high correlation between the θ  and θ  vectors (.89), the 
percentage reductions between the 1-factor and the 2-factor solutions with the matrix r3nc6363 
(6%), and between the 2-factor and the 3-factor solutions with the matrix baco1000 (17%) were 
apparently out of their respective expected ranges in such a context. 

1 2

 

Quality of CAT Simulations 

 The adequacy of SimuCAT is established if SimuCAT can be found virtually identical to 
MicroCAT in terms of the ability estimates and the related variances the two of them produced.  
A random sample of 50 items and 100 simulees associated with the first unidimensional item 
response matrix for the basic research design was selected for a comparative study of SimuCAT 
and MicroCAT. All the CAT simulation procedures specified for this research were followed in 
the study except the stopping rule. To accelerate the simulation speed, the maximum and the 
minimum numbers of items to be administered per CAT session, as well as the maximum 
variance allowed when a CAT session was terminated were reduced to 25, 15, and 0.1 
respectively. For the MicroCAT run, a simulee’s item response was manually entered at every 
interactive CAT session. Table 4 displays the differences between the results of the SimuCAT 
and MicroCAT runs. The SAS/IML program and the commercial software package appeared to 
be in perfect agreement on Bayesian sequential and Bayes EAP estimation results. Yet, they 
differed, to some extent, in estimation results involving the maximum likelihood and the 
Bayesian modal estimation methods. These differences could be traced back to the fact that 
SimuCAT could not utilize the copyright-protected ad hoc decision rules and special estimation 
techniques incorporated in MicroCAT for the implementation of these estimation methods. 
Given the relatively small size of these differences, SimuCAT can be deemed adequate for CAT 
simulation purposes. 

 

Robustness of Unidimensional 3PL IRT Model in CAT 

The results of the CAT simulations across MIRT and IRT models presented in this 
subsection were based on item banks that were cleaned according to the statistical criteria 
previously specified. On average, 2.7 items were eliminated from each compensatory item pool, 
11.8 items from each noncompensatory item pool, and 7.5 items from each unidimensional item 
pool. Regarding the CAT simulations, the item usage rates reached approximately 67%, 65%, 
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and 73% per item bank for compensatory, noncompensatory, and unidimensional data 
respectively.  

In the data tables presented in this subsection, an evaluative index associated with each 
level of a simulation factor was averaged across all combinations of the individual levels of the 
other two simulation factors in the basic research design and the five subsequent replications. 
Possible interactions between every two simulation factors were investigated by examining the 
evaluative indices averaged across all levels of a third simulation factor. 
 

21bbρ  Effect 

The evaluative indices in Table 5 reflect the CAT simulation results associated with the 
various levels of . Across MIRT models, the 

21bbρ  values were highly correlated with the θ  

and 
1

θ  values. The observed Pearson product-moment correlation coefficients , , and r
θθ1

r
θθ2

r
θθ

 

remained virtually unchanged over the decreasing . Although r  was apparently larger than 

, 
21bbρ θθ1

r
θθ2

r
θθ

always exceeded r  to some extent. As special measures of bivariate rank order 

association, the observed Spearman rho correlation coefficients , , and 
θθ1

rs rs
θθ1 θθ2

rs

2

RMSE

θθ

3

 turned out 

to be very similar to their Pearson product-moment counterparts. An inspection of the values of 
 through  shows that the CAT simulation results basically represented a negligible 

overestimate of the true ability on every dimension. This type of bias changed little with the 
decrease of . Of the three bias measures,  was the smallest, and  the largest. With 
a few exceptions with the noncompensatory data only, the RMSEs and ASE experienced a 
systematic yet inconsequential increase with the decrease of , and the RMSEs moved 
upward somewhat noticeably when  dropped from .45 to .1.  and  were each 
about half as large as , and  appeared to be consistently smaller than . 
The increase in ANI was small as b  and b  became increasingly uncorrelated. Except for the 
correlation coefficients, evaluative indices associated with  appeared larger with the 
noncompensatory data than with the compensatory data. 

Bias1 Bias3

2b1bρ Bias Bias

ρ
RMSE RM

ρ

1

21bbρ

RM

21bb

21bb

RMSE
1

SE1

2 3

2

SE1

ρ

θ

 

21θθ
ρ  Effect  

Table 6 displays the evaluative indices of the CAT simulation results across all levels of 
. For both compensatory and noncompensatory MIRT models, there was a close relationship 

between the 
θ θ1 2

θ  and θ  values and between the 1 θ  and θ  values. The observed Pearson product-
moment correlation coefficients diminished as  decreased. This change was more 
pronounced when  fell from .45 to 0. Except when θ  and θ  were uncorrelated with the 
compensatory data, 

ρθ θ1 2

ρθ θ1 2 1 2

r  showed a tendency to be larger than  and , and the gap between 
θθ

r r
θθ1 θθ2

r
θθ

 and  began to widen as  approached the lower end of its scale. Across MIRT models, r ρ
θθ1

θ θ1 2
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r ρ
θθ2

 decreased conspicuously when  changed from .45 to 0. As alternative measures of the 

interdimensional ability association, the observed Spearman rho correlation coefficients revealed 
similar numerical characteristics. On the whole, the 

θ θ1 2

θ
θ

 values could be thought of as an 
overestimate of the θ , , and 1 2 θ  values to varying degrees. With the compensatory data, this 
type of bias fluctuated in magnitude across different levels of . With the noncompensatory 
data, the bias grew with the decrease of , and the growth rate was somewhat noteworthy 
when  dropped from .45 to 0. In most cases,  was the smallest, and  the largest. 
The RMSEs rose more rapidly than ASE as  decreased, and the increment of every error 
measure was more appreciable when ρ  decreased from .45 to 0.  and  were 
each markedly smaller than , and  was the smallest of the three except when ρ  
equaled 0 with the compensatory data. As  decreased, more visible increase of ANI occurred 
with the noncompensatory data than with the compensatory data. This upward movement was 
noticeable with the noncompensatory data when  changed from .45 to 0. Except for the 
correlation coefficients, evaluative indices associated with  appeared larger with the 
noncompensatory data than with the compensatory data. 

ρ
ρ

ρ Bias Bias

RMSE RMSE
RMSE

θ θ1 2

ρθ θ1 2

θ θ1 2

ρ

RMSE
ρθ θ1 2

θ θ1 2 1

ρθ θ1 2

2

θ θ1 2

3

θ θ1 2 1

1

3

2 θ θ1 2

r
θθ2

Bias Bias3

1 θ2

Bias1

RMSE3

Bias2

RMSE2 RMSE

 

METHOD Effect 

Table 7 provides evaluative indices to assess the CAT simulation results as a function of 
METHOD. In general, the  values were highly correlated with the θ  and θ  values. Although 
the observed Pearson product-moment correlation coefficients favored the Bayesian estimation 
methods slightly with the noncompensatory data, they increased almost negligibly as METHOD 
changed from maximum likelihood to Bayes EAP across MIRT models. With every ability 
estimation method, 

θθ
 always remained the largest, and r  the smallest. The observed 

Spearman rho correlation coefficients did not exactly match their Pearson product-moment 
counterparts. However, the fidelity pattern was basically retained. With the compensatory data, 
there was some indication that the bias of the CAT simulation results changed its direction from 
the positive to the negative as METHOD switched from maximum likelihood to Bayes EAP. No 
bias measures seemed to be a cause for particular concern. The maximum likelihood and the 
Bayes EAP estimation methods stood at each extreme of the bias scale, whereas the Bayesian 
modal estimation method produced the least amount of  and  in absolute value. With 
the noncompensatory data, the CAT simulation results overestimated θ , , and 

1

θ  to some 
degree. The bias measures decreased as METHOD switched from maximum likelihood to 
Bayesian sequential. These measures reached their highest levels with Bayesian modal and 
lowest levels with Bayes EAP. Across ability estimation methods for both MIRT models,  
invariably remained the smallest, and  the largest. The RMSEs and ASE decreased when 
Bayesian sequential superseded maximum likelihood as the ability estimation method. These two 
evaluative indices tended to fluctuate with the subsequent use of the other Bayesian estimation 
methods. Generally speaking,  was twice as large as  and , and  
was the smallest of the three. The Bayesian modal estimation method produced the lowest ASE. 
ANI varied across ability estimation methods and MIRT models. With the compensatory data, 

1 RMSE3

θ
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the Bayesian sequential estimation method achieved the highest test efficiency, whereas the 
maximum likelihood estimation method exhibited the lowest. With the noncompensatory data, 
the Bayesian sequential estimation method lagged behind the other estimation methods in test 
efficiency, and the Bayesian modal estimation method was noted for its smallest ANI values. 
Except for the correlation coefficients, evaluative indices associated with METHOD appeared 
larger with the noncompensatory data than with the compensatory data. 
 

Interaction Effect 

As most of the two-dimensional evaluative indices showed that θ  is the type of ability 
estimate CAT can best produce, measures associated with θ  and θ  are excluded from this 
subsection to provide focus for the presentation. 

1 2

Figures 2 and 3 depict an interaction between  and METHOD with  as the 
dependent variable for both compensatory and noncompensatory MIRT models. As it can be 
seen, the maximum likelihood estimation method generally yields more root mean square error 
than the Bayesian estimation methods so far as the difference between 

ρθ θ1 2
RMSE3

θ  and θ

ρ

ρ

ρ

ρ

ρ ρ RMSE

ρ

ρ

ρ

 is concerned. 
However, a lack of parallelism between their respective lines shows two distinct patterns of 
disparity between the two types of estimation methods across MIRT models: the disparity is less 
appreciable with the lower ρ levels than with the higher  levels based on the 
compensatory data (see Figure 2), and vice versa when the noncompensatory data are involved 
(see Figure 3). Figures 4 and 5 illustrate other forms of the -METHOD interaction. Based on 
the compensatory model, Figure 4 delineates some noticeable difference between the maximum 
likelihood estimation method and every Bayesian estimation method in ASE at higher  
levels. This difference tapers off almost to a point when  approaches 0. Based on the 
noncompensatory model, Figure 5 shows an increase of ANI as  decreases. There is a sizable 
disparity between the Bayesian sequential and the Bayesian modal estimation methods when θ  
and θ  are highly correlated. However, this disparity virtually vanishes as reaches the lower 
end of its scale. 

θ θ1 2 θ θ1 2

θ θ1 2

ρ
θ θ1 2

1

θ θ1 2

ρθ θ1 2

2 θ θ1 2

 As a follow-up of the investigation of the first-order interaction, second-order interactions 
among , METHOD, and  were explored with , ASE (for the compensatory data) 
and ANI (for the noncompensatory data) as the dependent variable respectively. With the 
compensatory data, the -METHOD interaction behaved similarly across different levels of 

 in both cases; with the noncompensatory data, the -METHOD interaction had no 
differential effect across all levels of in each situation. 

θ θ1 2 21bb 3

ρθ θ

θ θ1 2

21bb 1 2

21bb

 

Magnitudes of Factorial Effects  

Table 8 contains measures of the magnitudes of the effects of the simulation factors across 
MIRT models. T1, T2, M1, and T1M1 are the four factorial effects associated with relatively 
large squared Pearson product-moment correlation coefficients based on the compensatory data. 
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Representing the linear and the quadratic trends, T1 ( = .6952) and T2 ( r = .0562) altogether 
accounted for 75% of the variance in . Their concurrent presence at  is highlighted 
in Figure 6, where the systematic increase of  as  decreases indicates the linear 
trend, and the modest acceleration of this increase at the  level of .45 indicates the quadratic 
trend. Contrasting the maximum likelihood estimation method with all Bayesian estimation 
methods, M1 ( = .1839) was related to 18% of the variance in . Figure 7 displays this 
distinction in  between the two types of estimation methods. Finally, T1M1 ( r = 
.0236) stands for the interaction between T1 and M1, and only explained 2% of the variance in 

. Largely a replica of Figure 2, the figure associated with this factorial effect is omitted 
for the sake of brevity. 

r

SE3

2 2

LRMSE ρ
LRM ρ

ρ

2

2
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LRMSE
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ρ

2
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METHOD
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3 θ θ1 2

θ θ1 2

θ θ1 2

r
LRM

LRMSE3

SE3
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The aforementioned factorial effects warrant our special attention in that they accounted 
for 96% of the variance in  based on the compensatory MIRT model. Despite the 
presence of the  interaction, it is legitimate to discuss main effects in this 

situation for three reasons. First, the interaction was quantitatively small . Second, 
the main effects were obvious in that regardless of the observed interaction, higher  
values were consistently attributable to lower ρ  levels and the maximum likelihood estimation 
method. Third, the main effects and their interaction were independent of one another as they 
were coded in orthogonal contrasts. 

3

THODθ θ1 2

)0236.( =r
3

θ θ1 2

The factorial effects T1, T2, and M1 are associated with relatively large squared Pearson 
product-moment correlation coefficients based on the noncompensatory data.. A combination of 
the linear trend T1 ( r = . 6006) and the quadratic trend T2 ( r = . 0301) explained 63% of the 
variance in . Their dual effect on  can be seen in Figure 8, where the continuous 
increase of  over the decreasing  indicates the linear trend, and the gradual 
acceleration of this increase at the  level of .45 indicates the quadratic trend. By directly 
comparing the maximum likelihood estimation method with all Bayesian estimation methods, 
M1 ( = .3360) accounted for 34% of the variance in . Figure 9 illustrates this 
distinction in  between the two types of estimation methods.   

3

E3

E3

θ θ1 2

ρθ θLRMS

LRMS

1 2

θ θ1 2

r LRMSE3

 

As the aforementioned factorial effects were associated with 97% of the variance in 
, they are of major importance to the CAT simulation results based on the 

noncompensatory MIRT model. Figures 3 and 5 have provided some evidence of the presence of 
a  interaction. However, this effect turned out to be trivial because T1M1, 
T1M3, and T2M1, the only representations of the ρ  interaction in Table 8 that 

carries a nonzero r  value, explained only 0.3% of the variance in the dependent variable. 

3

ρθ θ1 2
−

θ θ1 2

2

18 



Unidimensional versus Two-dimensional Data 

Table 9 reports the average evaluative indices of CAT simulation results across different 
ability estimation methods when the item response matrices were based on the unidimensional 
IRT model and the two-dimensional compensatory and noncompensatory MIRT models 
respectively. The equally weighted average of θ  and θ  was treated as the true ability when the 
average evaluative indices based on the two-dimensional MIRT model were computed. 

1 2

CAT simulations involving the unidimensional data brought slightly better evaluative 
indices than those involving the two-dimensional compensatory data did in many respects. They 
were associated with more desirable evaluative indices than those involving the two-dimensional 
noncompensatory data across all ability estimation methods. Such differences were consistent in 
fidelity measures, and less stable with bias measures. RMSE showed a more substantial 
improvement when the unidimensional item response matrices replaced their two-dimensional 
counterparts for CAT simulations, and this change was especially conspicuous with the 
maximum likelihood estimation method. It was interesting that the smallest ASE values were 
related to the two-dimensional compensatory data except when the maximum likelihood 
estimation method was employed. On average, CAT simulations based on the unidimensional 
data required more items per testing session than those based on the two-dimensional 
compensatory data did by 3%. These unidimensional data-based CAT simulations, in turn, 
required much fewer items per testing session than those based on the two-dimensional 
noncompensatory data did by 32%.  

 The differences between the unidimensional and the two-dimensional compensatory data 
with respect to the CAT simulation results manifested themselves somewhat differently if the 
correlation between θ  and θ  was taken into consideration as well. Table 10 presents such 
differences with the  value set at .89. It is clear that CAT simulation results based on the 
two-dimensional compensatory data could be more accurate than those based on the 
unidimensional data so long as (a) the Bayesian estimation methods were applied, (b) the θ  and 

 values were highly correlated, and (c) 

1

ρ
2

θ θ1 2

1

θ2 θ  was taken as the true ability. Bias was the only 
evaluative index that failed to follow this pattern when Bayesian sequential or Bayes EAP was 
chosen as the ability estimation method.  
 

Discussion 

This Monte Carlo study investigated the robustness of the unidimensional 3PL IRT 
model to the violation of its unidimensionality assumption in CAT applications. The correlation 
coefficients and RMSEs derived from the study indicated that, for both compensatory and 
noncompensatory MIRT models, the unidimensionally derived CAT ability estimates 
approximate the average of the true two-dimensional abilities. This finding is consistent with 
what Ansley and Forsyth (1985), Way et al. (1988), and De Ayala (1992) discovered in their 
respective studies concerning the relationship between the unidimensional IRT-based ability 
estimates and the average of the true two-dimensional abilities.  

The results of this study also provided answers to the research questions previously 
specified: 
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1. The decrease in the interdimensional item difficulty correlation has little effect on CAT 
simulation results despite some slightly unfavorable changes it brings to the evaluative measures 
of the ability estimates. De Ayala also noticed this phenomenon in his 1992 study regarding the 
influence of dimensionality on CAT ability estimation. 

2. Except when the bias measures derived from the compensatory data are involved, the 
decrease in the interdimensional ability correlation is associated with increasingly undesirable 
evaluative measures of the CAT simulation results. This is especially so when  falls from .45 
to 0.  

ρ

ρ

LRMSE

ρ

θ θ1 2

3. The application of different ability estimation methods affects the CAT simulation 
results differently, and the Bayesian estimation methods almost always produce more accurate 
ability estimates than does the maximum likelihood estimation method. With the compensatory 
data, the Bayesian modal estimation method suffers the least bias and error, and the Bayesian 
sequential estimation method proves most test-efficient. With the noncompensatory data, on the 
other hand, the Bayes EAP estimation method produces the least bias, the Bayesian sequential 
estimation method yields the smallest RMSE, and the Bayesian modal estimation method 
provides the most acceptable ASE and ANI measures. It should be noted that across the MIRT 
models the differences between the Bayesian modal and the Bayes EAP estimation methods are 
no greater than 0.04 in fidelity, bias, and error measures. 

4. The interaction between the interdimensional ability correlation and the ability 
estimation method slightly affects the CAT simulation results based on the compensatory data. 
As  decreases, the differences in error measures tend to diminish between the maximum 
likelihood estimation method and every Bayesian estimation method. A slightly different 
interaction can be found with the CAT simulation results associated with the noncompensatory 
data. However, this effect turns out to be inconsequential. 

θ θ1 2

The interdimensional ability correlation and the ability estimation method have large 
effects on the CAT simulation results because of the considerable amount of variance in the 
dependent variable  they can account for. With the compensatory and the 
noncompensatory data alike, the effects of these two simulation factors are mainly reflected in 
the linear and the quadratic trends associated with , and the differences between the 
maximum likelihood estimation method and every Bayesian estimation method. 

3

θ θ1 2

5. Except when ASE and ANI are related to the compensatory data, CAT simulations 
based on unidimensional data usually produce more desirable results than those based on two-
dimensional data, assuming that θ  can be the treated as the true ability underlying the two-
dimensional data. This phenomenon is especially conspicuous with the noncompensatory data-
based CAT simulations. However, CAT simulations associated with the two-dimensional 
compensatory data can outperform those associated with the unidimensional data on most 
evaluative indices when θ  and θ  are highly correlated, and the Bayesian estimation methods 
are applied. 

1 2

Although it is difficult to draw definitive conclusions about the robustness of the 
unidimensional 3PL IRT model in CAT applications based on the results of a single Monte Carlo 
study, tentative explanations can be made regarding some of the findings summarized above. 
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First, it is possible that the close association between the unidimensionally derived ability 
estimate and the average of θ  and θ  is merely a function of the MIRT model employed for data 
generation. An inspection of the two-dimensional version of the compensatory and the 
noncompensatory MIRT models indicates that no matter how dominant θ  is, these models weigh 

 and θ  equally when the probability of a correct item response is computed. As a result, when 
the model-based two-dimensional ability parameters are unidimensionally estimated in the CAT 
simulation process, the observed estimate may carry an equal amount of information about both 

 and θ . It is not clear whether the unidimensional calibration of the two-dimensional item 
parameters prior to a CAT simulation plays a role here as well. Second, the reason why the 
interdimensional item difficulty correlation has little effect on CAT simulation results may be 
found in the testing procedure itself. A given  level is a measure of the association between 
the  and b  values of an item pool. Although the numerical change of this index may affect the 
difficulty of a test (Ansley & Forsyth, 1985), it cannot alter the ability estimate in a CAT setting 
if the item pool covers the whole difficulty continuum adequately, and the test is of reasonable 
length. Third, the positive effect of the high interdimensional ability correlation on CAT 
simulation results may stem from a dimensional change of the corresponding item response data 
set. It is true that even when the  vectors are perfectly correlated, an MIRT model is different 
from a unidimensional IRT model (Ansley & Forsyth, 1985). Yet, a high  level can enhance 
the model-data fit by rendering the data set nearly unidimensional, and eventually improve the 
ability estimation. 

1 2

1

θ

ρ
b

ρ

1

θ1

2

2

21bb

1 2

θ θ1 2

This Monte Carlo study was limited in several respects. First, because the study only 
employed the two-dimensional version of the compensatory and the noncompensatory MIRT 
models for data generation with the item and ability parameters manipulated to exhibit specific 
characteristics, its results were not universally generalizable. Second, the CAT simulation 
procedure adopted in the study included neither content constraints nor item exposure control. As 
a result, the simulated CAT sessions might not truthfully reflect the reality. Third, the simulees’ 
abilities in the study were generated to approximate a bivariate normal distribution with zero 
mean and unit variance for each ability dimension. Consequently, valid conditional evaluative 
indices were difficult to obtain at both extremes of the ability continuum to determine if 
multidimensionality affected CAT simulations equally across the whole range of abilities. 

Despite its limitations, this Monte Carlo study has some implications for testing 
practitioners. First, when planning to use unidimensional IRT-based CAT, it is advisable to 
exercise caution if the unidimensionality assumption is likely to be violated. In an ideal world, an 
accurate ability estimate derived from multidimensional data should reflect the relative potency 
of individual ability dimensions. Yet this is probably unobtainable considering the results of this 
and other Monte Carlo studies. In the final analysis, it may not be practical after all to expect 
every  dimension to be proportionally represented in a unidimensional ability estimate, because 
the unidimensional IRT model itself has no built-in mechanism to reconstruct the dimensional 
pattern of the multidimensional input data. What may be practical instead is to identify the real 
world circumstances under which a composite score of a linear combination of the  dimensions 
is acceptable to the test user, and a slight departure from unidimensionality will not compromise 
the utility of CAT results. De Ayala (1992) found that, in a classroom test setting, the instructor 
may be only interested in rank ordering the students on their subject-related overall ability rather 
than on the separate dimensions of this ability. However, given that the unidimensional 3PL IRT 
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model is robust to the violation of its unidimensionality assumption only under limited 
conditions, preparatory work must be done prior to a CAT application so as to ensure that the 
abilities to be tested are highly correlated in the target examinee population, that compensation 
involving unbalanced ability levels on different dimensions can occur, and that a Bayesian 
estimation method will be employed to score the test.  

Second, when unidimensional IRT-based CAT has been deemed suitable for an examinee 
population in a given testing situation, it would be beneficial to find out which ability estimation 
method can provide the most accurate scores possible. Because the increase in interdimensional 
item difficulty correlation hardly improves the measurement quality, the selection of an 
appropriate scoring method becomes one of the few decisions testing practitioners can make to 
ensure the quality of a CAT administration. Of the four ability estimation methods examined in 
this Monte Carlo study, the maximum likelihood estimation method may not be preferred due to 
its relatively poor performance. Among the Bayesian estimation methods, Bayesian sequential 
may also need to be ruled out because its assumption of a normal posterior distribution before 
each update is considered invalid, and its ability estimate fluctuates as a function of the 
presentation order of the items (Bock & Mislevy, 1982; Thissen & Mislevy, 1990). It may be a 
little difficult to choose between the Bayesian modal and the Bayes EAP estimation methods. 
Although the former is computationally less efficient than the latter, each has its own merits. 
Therefore, considering the fact that the differences between the two Bayesian estimation 
methods are minor in many instances, testing practitioners can select either of them depending 
on the type of evaluative indices they are interested in. Wang and Vispoel (1998) found the 
Bayes EAP estimation method superior to other Bayesian estimation methods with 
unidimensional data. This superiority was not substantiated in this Monte Carlo study. 

A number of directions for future research can be proposed based on the results of this 
CAT-related model robustness study. First, the number of dimensions needs to be increased 
when MIRT models are used for data generation, because live-testing situations may involve 
more  dimensions. Second, more realistic item parameters need to be incorporated into the 
simulation process. Considering the fact that most of the standardized tests are developed 
according to very detailed test specifications, researchers should embed characteristics of such 
tests in their simulated item pools just as Ansley and Forsyth (1985), Davey, Nering, and 
Thompson (1997); and Wang and Vispoel (1998) did. Third, a greater variety of test conditions 
need to be modeled in CAT simulations. Improved understanding of the CAT procedures will be 
gained when researchers begin to manipulate more factors in the testing algorithm. 

Yoes (1993) suggested that a set of standard test conditions (e.g., sample size,  
dimension, and test length) need to be incorporated into future IRT-based Monte Carlo studies so 
that research findings can become more comparable. The measurement community will benefit 
from following his suggestion. 
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Figure 1 
Basic Structure of a Two-dimensional Data-based CAT simulation  

Data generation Data generation 

Two-dimensional  
ability parameters 

MIRT modelc 

Two-dimensional  
item parameters 

Two-dimensional  
ability parametersb 

Two-dimensional  
item response 
matrix 

Unidimensional 
ability estimatesb 

Unidimensional CAT simulation             
with four ability estimation methods 

Unidimensional item 
calibration 

Unidimensional item   
parameter estimates 

Two-dimensional  
item response 
matrix 

Ability specifications 
with seed 1a 

Ability specifications 
with seed 2a 

Item specifications 
with seed 1 

MIRT modelc 

Note: aAlthough seed values were different, ability specifications in the simulation remained 
the same. 
bThe disparities between the two-dimensional ability parameters and their unidimensional 
estimates are the focus of this dissertation study. 
cBoth compensatory and noncompensatory MIRT models were used. 
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Table 1 
Summary Statistics for the Generated Two-dimensional and Unidimensional  
Item Discrimination and Difficulty Parameters 
 

 Parameter      M       SD        Min.        Max.  

 Two-dimensionala  
 a1  1.23  0.44  0.51  2.00  

 a2  0.63  0.21  0.25  1.00  

 Unidimensional  
 a 1.25  0.43  0.51  1.99  
 Two-dimensional 
  b)07(.  .10

21
=bbr

 

 b1  0.00  1.19  -2.00  2.00  

 b2  -1.00  0.40  -1.74  -0.31  

  )43(.  .45
21
=bbr  

 b1  0.00  1.19  -2.00  2.00  

 b2  -1.00  0.40  -1.86  -0.17  

  )62(.  .63
21
=bbr  

 b1  0.00  1.19  -2.00  2.00  

 b2  -1.00  0.40  -1.90  -0.12  

  )76(.  .77
21
=bbr  

 b1  0.00  1.19  -2.00  2.00  

 b2  -1.00  0.40  -1.90  -0.11  

  )89(.  .89
21
=bbr  

 b1  0.00  1.19  -2.00  2.00  

 b2  -1.00  0.40  -1.87  -0.14  

 Unidimensional  
 b 0.00  1.19  -2.00  2.00  

 
Note.  
a 02.

21
−=aar ; . 97.1: 21 =aa

bThe value in parentheses is the observed . 
21bbr
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Table 2 
Summary Statistics for the Generated Two-dimensional and Unidimensional Ability  
Parameters for Item Calibration and CAT Simulations 
 

 Item calibration  CAT simulations  
Parameter M  SD  Min.  Max.  M  SD  Min.  Max.  
 Two-dimensional  

 )03.  ,01(.  00.
21
=θθr   

θ1  0.01  0.99  -3.35  3.18  0.01  1.00  -3.07  3.21  

θ2  0.01  1.00  -3.33  3.41  0.00  1.00  -3.10  3.60  

 )47.  ,45(.  .45
21
=θθr   

θ1  0.01  0.99  -3.35  3.18  0.01  1.00  -3.07  3.21  

θ2  0.02  1.00  -3.28  3.48  0.00  1.01  -3.23  3.77  

 )64.  ,63(.  63.
21
=θθr   

θ1  0.01  0.99  -3.35  3.18  0.01  1.00  -3.07  3.21  

θ2  0.01  1.00  -3.33  3.40  0.01  1.01  -3.39  3.69  

 )78.  ,77(.  77.
21
=θθr   

θ1  0.01  0.99  -3.35  3.18  0.01  1.00  -3.07  3.21  

θ2  0.01  1.00  -3.38  3.31  0.01  1.02  -3.45  3.66  

 ).89  ,89(.  .89
21
=θθr   

θ1  0.01  0.99  -3.35  3.18  0.01  1.00  -3.07  3.21  

θ2  0.01  0.99  -3.30  3.27  0.01  1.02  -3.41  3.60  

 Unidimensional 
θ  0.01  1.00  -3.28  3.40  0.00  1.00  -3.25  3.18  
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Table 3 
Nonlinear Factor Analysis of Representative Item Response Matrices Based on the  
Generated Two-dimensional Item and Ability Parameters 
 

Item response matrix Factor solution RMSR RMSR reduction (%) 
 1-factor 0.0047  
baco1000 (  , )2 000 123× 2-factor 0.0036 23%   

 3-factor 0.0030 17% 
 1-factor 0.0054  

r1nc1000  ( , )2 000 123× 2-factor 0.0044 19% 

 3-factor 0.0043 3% 
 1-factor 0.0041  

r2co4545  ( , )2 000 123× 2-factor 0.0031 24% 

 3-factor 0.0029 5% 
 1-factor 0.0063  

r3nc6363  ( , )1 000 123× 2-factor 0.0059 6% 

 3-factor 0.0058 2% 
 1-factor 0.0060  

r4co7777  ( , )1 000 123× 2-factor 0.0044 26% 

 3-factor 0.0043 2% 
 1-factor 0.0062  

r5nc8989  ( , )1 000 123× 2-factor 0.0057 8% 

 3-factor 0.0056 2% 
 
Note. The names of the item response matrices contain the following information (with  
the decimal points excluded for clarity of presentation where applicable): 

1. Research design: basic research design (ba) or replication (r1-r5). 
2. Simulation model: co (compensatory) or nc (noncompensatory). 
3. ρ  01, 45, 63, 77, or 89. b b1 2

:
4. ρ  00, 45, 63, 77, or 89. θ θ1 2

:
The first three matrices were generated for item calibration, whereas the remaining three  
for CAT simulations. 
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Table 4 
Differences Between the SimuCAT and the MicroCAT Simulation Results 
  

Maximum 
likelihood 

 Bayesian 
sequential 

 Bayesian 
modal 

 Bayes 
EAP 

 

Simulee 
θ̂

DIF  DIF
SDθ

2   
θ̂

DIF  DIF
SDθ

2   
θ̂

DIF  DIF
SDθ

2   
θ̂

DIF  DIF
SDθ

2  

2 -0.12 -0.02          
17 0.06           
19 0.03           
40 0.20 0.01          
42       0.05     
57       0.06     
65 -0.08 0.02          
69 -0.08           
72       -0.10     
78 -0.06           
85 -0.02           
88 -0.07           
93 -0.06 0.01          

 

Note.  and  are the SimuCAT and MicroCAT differences in terms of DIF
θ

DIF
SDθ

2 sθ  and  

SD
θ

2s . This table excludes simulees with absolute difference values less than 0.005 in  
both  and  across the four ability estimation methods. With the simulees   DIF

θ
DIF

SDθ
2

listed in the table, absolute difference values less than 0.005 in  or  are not 

presented for clarity.

DIF
θ

DIF
SDθ

2
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Table 5 
Average Evaluative Indices of CAT Simulation Results by  and 

21bbρ
MIRT Model 
 

Evaluative  21bbρ  
index .10 .45 .63 .77 .89 

Fidelity 
0.941 0.942 0.942 0.943 0.943      r  

θθ1 (0.900) (0.902) (0.902) (0.902) (0.901) 
0.732 0.732 0.733 0.733 0.733      r  

θθ2 (0.724) (0.724) (0.725) (0.726) (0.728) 
0.949 0.949 0.950 0.950 0.950      r  

θθ
(0.919) (0.921) (0.921) (0.922) (0.922) 
0.942 0.943 0.943 0.943 0.943      rs  

θθ1 (0.903) (0.904) (0.904) (0.903) (0.903) 
0.721 0.720 0.720 0.719 0.719      rs  

θθ2 (0.713) (0.713) (0.713) (0.714) (0.715) 
0.951 0.950 0.950 0.949 0.949      rs  

θθ
(0.923) (0.923) (0.923) (0.923) (0.923) 

Bias 
0.004 0.001 0.001 0.000 -0.001       Bias1

(0.022) (0.021) (0.020) (0.018) (0.017) 
0.011 0.008 0.008 0.007 0.006       Bias2

(0.029) (0.028) (0.027) (0.025) (0.024) 
0.007 0.005 0.005 0.003 0.003       Bias3

(0.025) (0.025) (0.023) (0.021) (0.021) 
Error 

0.346 0.343 0.342 0.340 0.338       RMSE1
(0.447) (0.442) (0.441) (0.441) (0.443) 
0.703 0.700 0.700 0.699 0.698          RMSE2

(0.728) (0.726) (0.725) (0.723) (0.721) 
0.331 0.327 0.326 0.325 0.323       RMSE3

(0.406) (0.402) (0.400) (0.398) (0.398) 
0.202 0.200 0.199 0.198 0.197      ASE 

(0.278) (0.274) (0.272) (0.271) (0.270) 
Test efficiency 

20.846 20.799 20.782 20.772 20.758      ANI 
(28.458) (28.426) (28.404) (28.380) (28.356) 

 
Note. 
Evaluative indices based on the compensatory data are not parenthesized;  
evaluative indices based on the noncompensatory data are parenthesized. 
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Table 6 
Average Evaluative Indices of CAT Simulation Results by  and ρθ θ1 2

MIRT Model 
 

Evaluative  ρθ θ1 2
 

index .00 .45 .63 .77 .89 
Fidelity 

0.905 0.933 0.947 0.958 0.968      r  
θθ1 (0.794) (0.893) (0.923) (0.942) (0.954) 

0.385 0.693 0.794 0.866 0.924      r  
θθ2 (0.426) (0.679) (0.772) (0.844) (0.907) 

0.901 0.948 0.960 0.967 0.972      r  
θθ

(0.851) (0.917) (0.934) (0.947) (0.956) 
0.900 0.932 0.948 0.961 0.973      rs  

θθ1 (0.793) (0.894) (0.925) (0.945) (0.960) 
0.359 0.674 0.782 0.860 0.925      rs  

θθ2 (0.404) (0.662) (0.760) (0.837) (0.906) 
0.892 0.947 0.962 0.971 0.978      rs  

θθ
(0.850) (0.918) (0.937) (0.950) (0.961) 

Bias 
-0.002 -0.003 0.001 0.003 0.006       Bias1
(0.029) (0.023) (0.019) (0.015) (0.011) 
0.012 0.006 0.007 0.007 0.008       Bias2

(0.043) (0.032) (0.026) (0.019) (0.013) 
0.005 0.002 0.004 0.005 0.007       Bias3

(0.036) (0.028) (0.023) (0.017) (0.012) 
Error 

0.439 0.371 0.334 0.300 0.265       RMSE1
(0.657) (0.478) (0.408) (0.355) (0.315) 
1.114 0.796 0.656 0.533 0.403         RMSE2

(1.085) (0.822) (0.694) (0.575) (0.447) 
0.477 0.341 0.297 0.270 0.247       RMSE3

(0.558) (0.424) (0.375) (0.338) (0.308) 
0.211 0.197 0.195 0.196 0.196      ASE 

(0.306) (0.277) (0.268) (0.261) (0.255) 
Test efficiency 

21.052 20.737 20.726 20.725 20.717      ANI 
(29.713) (28.902) (28.367) (27.844) (27.198) 

 
Note. 
Evaluative indices based on the compensatory data are not parenthesized;  
evaluative indices based on the noncompensatory data are parenthesized. 
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Table 7 
Average Evaluative Indices of CAT Simulation Results by METHOD and  
MIRT Model 
 

 METHOD 

Evaluative 
index  

Maximum 
likelihood 

Bayesian  
sequential 

Bayesian 
modal 

Bayes  
EAP 

Fidelity 
0.936 0.942 0.945 0.947      r  

θθ1 (0.892) (0.905) (0.905) (0.903) 
0.728 0.731 0.734 0.736      r  

θθ2 (0.713) (0.728) (0.727) (0.734) 
0.944 0.948 0.952 0.954      r  

θθ
(0.908) (0.925) (0.924) (0.927) 
0.941 0.942 0.944 0.944      rs  

θθ1 (0.902) (0.904) (0.905) (0.902) 
0.719 0.718 0.721 0.721      rs  

θθ2 (0.706) (0.717) (0.712) (0.720) 
0.949 0.949 0.951 0.951      rs  

θθ
(0.918) (0.925) (0.923) (0.926) 

Bias 
0.013 0.003 0.000 -0.012       Bias1

(0.018) (0.015) (0.038) (0.006) 
0.020 0.010 0.007 -0.005       Bias2

(0.025) (0.022) (0.045) (0.013) 
0.016 0.006 0.003 -0.008       Bias3

(0.022) (0.019) (0.042) (0.010) 
Error 

0.388 0.334 0.323 0.322       RMSE1
(0.519) (0.415) (0.416) (0.421) 
0.741 0.688 0.684 0.688            RMSE2

(0.810) (0.696) (0.698) (0.694) 
0.390 0.311 0.300 0.304       RMSE3

(0.515) (0.361) (0.364) (0.363) 
0.227 0.193 0.182 0.194      ASE 

(0.302) (0.264) (0.258) (0.269) 
Test efficiency 

21.002 20.569 20.667 20.927      ANI 
(28.267) (29.371) (27.466) (28.514) 

 
Note. 
Evaluative indices based on the compensatory data are not parenthesized;  
evaluative indices based on the noncompensatory data are parenthesized. 
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Figure 2
Effect of ρθ1θ2-METHOD Interaction on RMSE 3  Based on the 
Compensatory MIRT Model 
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Figure 3
Effect of ρθ1θ2-METHOD Interaction on RMSE 3  Based on the 
Noncompensatory MIRT Model 
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Figure 4
Effect of ρθ1θ2−METHOD Interaction on ASE  Based on the 
Compensatory MIRT Model
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Figure 5
Effectct of ρθ1θ2−METHOD Interaction on ANI  Based on the 
Noncompensatory MIRT Model
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Table 8 
Magnitudes of the Effects of the Simulation Factors by MIRT Model 
 

Effect r r 2   Effect r r 2  

B1 0.0299 0.0009  T1M2 -0.0472 0.0022 
 (0.0305) (0.0009)   (-0.0064) (0.0000) 

B2 0.0065 0.0000  T1M3 -0.0171 0.0003 
 (0.0121) (0.0001)   (-0.0125) (0.0002) 

T1 0.8338 0.6952  T2M1 -0.0125 0.0002 
 (0.7750) (0.6006)   (0.0171) (0.0003) 

T2 0.2371 0.0562  T2M2 -0.0007 0.0000 
 (0.1736) (0.0301)   (-0.0022) (0.0000) 

M1 0.4288 0.1839  T2M3 0.0113 0.0001 
 (0.5796) (0.3360)   (0.0015) (0.0000) 

M2 0.0554 0.0031  B1T1M1 -0.0107 0.0001 
 (-0.0081) (0.0001)   (0.0031) (0.0000) 

M3 -0.0140 0.0002  B1T2M1 -0.0100 0.0001 
 (0.0048) (0.0000)   (0.0022) (0.0000) 

B1T1 -0.0176 0.0003  B1T1M2 -0.0048 0.0000 
 (-0.0067) (0.0000)   (0.0002) (0.0000) 

B1T2 -0.0099 0.0001  B1T2M2 -0.0006 0.0000 
 (0.0008) (0.0000)   (0.0030) (0.0000) 

B2T1 -0.0003 0.0000  B1T1M3 0.0001 0.0000 
 (-0.0079) (0.0001)   (0.0005) (0.0000) 

B2T2 -0.0056 0.0000  B1T2M3 -0.0005 0.0000 
 (-0.0044) (0.0000)   (-0.0001) (0.0000) 

B1M1 0.0372 0.0014  B2T1M1 0.0018 0.0000 
 (-0.0010) (0.0000)   (-0.0043) (0.0000) 

B1M2 0.0050 0.0000  B2T2M1 -0.0028 0.0000 
 (0.0026) (0.0000)   (-0.0050) (0.0000) 

B1M3 -0.0025 0.0000  B2T1M2 -0.0008 0.0000 
 (-0.0006) (0.0000)   (-0.0003) (0.0000) 

B2M1 0.0039 0.0000  B2T2M2 0.0015 0.0000 
 (0.0028) (0.0000)   (0.0008) (0.0000) 

B2M2 0.0012 0.0000  B2T1M3 0.0044 0.0000 
 (0.0037) (0.0000)   (-0.0005) (0.0000) 

B2M3 -0.0031 0.0000  B2T2M3 -0.0042 0.0000 
 (0.0007 (0.0000)   (-0.0002) (0.0000) 

T1M1 -0.1535 0.0236     
 (0.0532 (0.0028)     
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Note.  
This table contains the Pearson product-moment correlation coefficient (r)  
between the dependent variable  and each vector of orthogonal coefficients  LRMSE3

for ANOVA with planned comparisons.  Also presented is the corresponding .   r 2

The effects listed include  
B1 (linear trend associated with ), B2 (quadratic trend associated with ), 

21bbρ 21bbρ
T1 (linear trend associated with ), T2 (quadratic trend associated with ), ρθ θ1 2

ρθ θ1 2

M1 (Maximum likelihood vs. all Bayesian estimation methods), 
M2 (Bayesian sequential vs. other Bayesian estimation methods), 
M3 (Bayesian modal vs. Bayes EAP estimation methods), and their various  
interactions. 
For the compensatory data, , , . SSeffect = 0 9680. SSerror = 0 0320. 0000.1SStotal =
For the noncompensatory data, , , . SSeffect = 0 9714. SSerror = 0 0286. SStotal = 10000.
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Figure 6
Trends Across ρθ1θ2 Levels as Reflected in LRMSE 3  Based 
on the Compensatory MIRT Model
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Figure 7
Differential Effect of METHOD on LRMSE 3  Based on the 
Compensatory MIRT Model
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Figure 8
Trends Across ρθ1θ2 Levels as Reflected in LRMSE 3  Based on 
the Noncompensatory MIRT Model
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Figure 9
Differential Effect of METHOD on LRMSE 3  Based on the 
Noncompensatory MIRT Model
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Table 9 
Average Evaluative Indices of CAT Simulation Results by METHOD and Simulation Model 
 

Item response Evaluative index 
matrix r rs Bias RMSE ASE ANI 

Maximum likelihood estimation 
Unidimensional 0.970 0.972 0.011 0.256 0.222 21.892 
Two-dimensional       

Compensatory 0.944 0.949 0.016 0.390 0.227 21.002 
Noncompensatory 0.908 0.918 0.022 0.515 0.302 28.267 

Bayesian sequential estimation 
Unidimensional 0.971 0.974 0.005 0.238 0.211 21.444 
Two-dimensional       

Compensatory 0.948 0.949 0.006 0.311 0.193 20.569 
Noncompensatory 0.925 0.925 0.019 0.361 0.264 29.371 

Bayesian Modal estimation 
Unidimensional 0.974 0.975 0.009 0.226 0.201 21.000 
Two-dimensional       

Compensatory 0.952 0.951 0.003 0.300 0.182 20.667 
Noncompensatory 0.924 0.923 0.042 0.364 0.258 27.466 

Bayes EAP estimation 
Unidimensional 0.976 0.975 -0.005 0.220 0.211 21.487 
Two-dimensional      

Compensatory 0.954 0.951 -0.008 0.304 0.194 20.927 
Noncompensatory 0.927 0.926 0.010 0.363 0.269 28.514 
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Table 10 
Average Evaluative Indices of CAT Simulation Results Based on the Unidimensional IRT  
Model and the Two-dimensional Compensatory MIRT Model by METHOD with  Set  ρθ θ1 2

At .89 
 

Item response Evaluative index 
matrix r rs Bias RMSE ASE ANI 

Maximum likelihood estimation 

Unidimensional 0.970 0.972 0.011 0.256 0.222 21.892 
Two-dimensional 0.963 0.977 0.021 0.327 0.244 20.905 

Bayesian sequential estimation 
Unidimensional 0.971 0.974 0.005 0.238 0.211 21.444 
Two-dimensional 0.972 0.977 0.008 0.233 0.183  20.445 

Bayesian Modal estimation 
Unidimensional 0.974 0.975 0.009 0.226 0.201 21.000 
Two-dimensional 0.976 0.978 0.005 0.217 0.173 20.644 

Bayes EAP estimation 
Unidimensional 0.976 0.975 -0.005 0.220 0.211 21.487 
Two-dimensional 0.978 0.979 -0.007 0.213 0.186 20.875 
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