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Abstract

This paper demonstrates the performance of two possible CAT selection strategies

for cognitive diagnosis. One is based on Shannon entropy and the other is based on

Kullback-Leibler information. The performances of these two test construction meth-

ods are compared with random item selection. The cognitive diagnosis model used

in this study is a simplified version of the Fusion model. Item banks are constructed

for the purpose of simulation. The major result is that the Shannon entropy proce-

dure outperforms the procedure based on Kullback-Leibler information in terms of

correct classification rates. However, Kullback-Leibler has slightly smaller item expo-

sure rates than the Shannon entropy procedure. This study shows that the Shannon

entropy procedure is a promising CAT criterion, but modification might be required

to control the exposure rate.



1 Introduction

1.1 Cognitive Diagnosis Models

Cognitive diagnosis models can be used to detect the presence or absence of specific

skills required for educational exams. Unlike item response models that summarize

the examinee’s skill with a single broadly defined latent trait, cognitive diagnosis

models utilize a high-dimensional latent vector with components that specify the

presence or absence of specific skills or abilities. For instance, consider an algebra

test. Under the IRT scheme, the objective is to measure the general ability of algebra.

However, in cognitive diagnosis the aim might be to assess a multitude of cognitive

skills, such as factoring, laws of exponents and manipulating fractions.

To date, at least fourteen distinct cognitive diagnosis models have appeared in the

literature (Hartz, 2002; Roussos, 1994). In this paper we introduce two of them, the

NIDA model and the Fusion model, and use the Fusion model in the simulation.

To describe these models, consider an item loading matrix with N items and M

attributes. This matrix is called a Q matrix and was first introduced by K. Tatsouka

(1984). Q = {Qjk}, j = 1, ..., N, k = 1, ...,M , with Qjk = 1 if item j requires attribute

k to perform the task, with Qjk = 0 otherwise. Each row of Q is a list of the cognitive

attributes that an examinee needs to have mastered in order to give a correct response

to the item. Table 1 gives an illustration of a Q matrix for an algebra assessment.

This exam consists of 10 items, with each item requiring up to 3 attributes of the

specified attributes.
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Table 1: The Q matrix for a hypothetical algebra assessment

item - skill factoring laws of exponents manipulating fractions
1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 1
5 1 0 1
6 1 1 0
7 0 1 1
8 0 0 1
9 1 0 1
10 0 1 1

For instance, item 1 loads on all three attributes, while item 8 only loads on skill

3, i.e., ’manipulating fractions’.

In both models, the latent variable is a vector of 0’s and 1’s, indicating the presence

and absence of cognitive skills. We denote it as α
′

i = (αi1, αi2, ..., αiM). Let Xij be a

matrix of 0’s and 1’s, representing the observed performance of examinee i on item j.

The objective is to make inferences about the latent variable αik, or make inferences

about the relationship between these attributes and test items.

The NIDA Model

The Noisy Inputs, Deterministic ’And’ gate model (NIDA) was recently discussed by

Maris (1999). The notation of Junker and Sijtsma (2001) for the NIDA model will

be used in the following introduction. In this model, the latent response variable

ηijk = 1 or 0 is defined, indicating whether examinee i correctly applies the required

attribute k to item j. The latent response variables are connected to αi through the
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following two probabilities:

sk = P (ηijk = 0|αik = 1, Qjk = 1)

and

gk = P (ηijk = 1|αik = 0, Qjk = 1)

and P (ηijk = 1|Qjk = 0) = 1 by definition. We refer to sk and gk as ’slip’ and ’guess’

probabilities, respectively. Observed item responses are deterministically related to

the latent response variables through the conjunctive model Xij =
∏

k(ηijk)
Qjk . Thus,

assuming local independence of the latent responses within an item, the IRF for item

j is:

P (Xij = 1|αi, s, g) =
∏

k

P (ηijk = 1|αik, Qjk, sk, gk)

=
∏

k

[(1 − sk)
αikg1−αik

k ]Qjk

= Pj(αi)

Assuming local independence among items as well as independence among examinees,

the joint likelihood of NIDA model is:

L(s, g; α) =
∏

i

∏
j

Pj(αi)
xij(1 − Pj(αi)

1−xij)

=
∏

i

∏
j

{
∏

k

[(1 − sk)
αikg1−αik

k ]Qjk}xij{1 −
∏

k

[(1 − sk)
αikg1−αik

k ]Qjk}1−xij
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The Fusion Model

The Fusion model is an extension of the NIDA model in the way that it takes the

incompleteness of the specified attributes of the Q matrix into account, as well as the

way it lets attribute guessing and slipping parameters be item specific. Let ηijk be as

defined in the NIDA model, denoting whether examinee i correctly applies a required

attribute k to item j. Parameters πjk and rjk are defined in a similar way as sk and

gk, respectively, but allow variation across the items:

πjk = P (ηijk = 1|αik = 1)

and

rjk = P (ηijk = 1|αik = 0)

This useful generalization creates a source of non-identifiability that is rectified by a

more parsimonious reparameterization (Hartz,2002). Let

π∗j =
∏

k

π
Qjk

jk

and

r∗jk = P (ηijk = 1|αik = 0)/P (ηijk = 1|αik = 1) = rjk/πjk

Another difference between the NIDA model and the Fusion models relates to the

’completeness’ of Q. In the Fusion model, a completeness index for item j is denoted

by cj. Then the IRF for a single item is:

P (Xij|α, π∗j , r
∗
jk, cj, θ) = π∗j

∏
k

(r
∗(1−αik)Qjk

jk )Pcj
(θi)
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where Pcj
(θi) is a Rasch IRF with difficulty parameter cj. The latent variable θi

essentially serves as a random effect, and represents attributes needed for the test

but not accounted for in Q. In this study, we dropped the completeness part of the

Fusion model and assumed that the Q matrix is complete. This simplified form of

the Fusion model is the model used for our simulation study.

1.2 Computerized Adaptive Testing(CAT)

Maximizing Fisher information is a major criterion for item selection in computer

adaptive testing. This criterion, however, can no longer be used in cognitive diag-

nosis because of mathematical restrictions. As we know, Fisher information is the

expectation of the second derivative of log-likelihood equation with respect to the

latent trait. In cognitive diagnosis models, the attribute vector α consists of 0’s and

1’s. The derivatives with respect to α are not defined, so that we cannot use Fisher

information. Nevertheless, the idea of ’maximizing information’ is still a primary con-

cern. In this paper, two other appropriately defined information functions are used:

Kullback-Leibler information and Shannon entropy.
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2 METHODS

2.1 Kullback-Leibler information

Let K(f, g) represent Kullback-Leibler (K-L) information for distinguishing between

probability density functions f and g when f is true. It is defined as:

K(f, g) =

∫
log(

f(x)

g(x)
)f(x)µ(dx)

In this notation, µ is a dominating measure for densities f and g, and hence the

integral sign above is replaced with a summation sign when X is a discrete variable,

as in the case of item response variables. Generally, Kullback-Leibler information is

a measure of the ’distance’ between the two likelihoods. The larger this information,

the easier to differentiate the two likelihoods (Lehmann and Casella, 1998). Kullback-

Leibler information has been used as a criterion for item selection in IRT (Chang and

Ying, 1996) to deal with the problem of large item parameter estimation error that

can occur in the beginning of the test.

In our context, we use it as a criterion to select the next item that gives the largest

K-L distance between our current estimate of α
′

and other competing values of α.

Let α
′

i = (αi1, αi2, ..., αiM) denote the latent attribute vector, consisting of 0’s and

1’s, with respect to M cognitive attributes. Suppose at the present stage n-1 items

have been selected, and denote this set of items as Sn−1. Let W represent the whole

item bank; then define Rn = W\Sn−1, the remaining items in the item bank. The

Kullback-Leibler index for the jth item given the current estimate α̂ is defined as the
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sum of the Kullback-Leibler distances between α̂ and possible candidate attribute

vectors αc generated by the jth item.

Kj(α̂) =
2M∑
c=1

[
1∑

x=0

log(
P (Xj = x|α̂)

P (Xj = x|αc)
)P (Xj = x|α̂)].

The inner sum represents the K-L information for the distribution of j − th item

depending on attribute vectors α̂ and αc when α̂ is regarded as a true value. Then

our criterion for selecting the nth item in the test is to select jεRn such that Kj(α̂)

is maximized. For a thorough theoretical treatment of Kullback-Leibler information

in item selection see Tatsouka and Ferguson (2003).

2.2 Shannon entropy procedure

Shannon entropy

The other method we consider for item selection is based on Shannon entropy (Cover,

and Thomas, 1991). We begin with the properties of Shannon entropy. Let Ω denote

the sample space of a random variable Y. For simplicity, it is assumed that Ω contains

K possible values, y1, y2, . . . , yK . Let π = (π1, ..., πK) be the probability vector of

these K values, such that πi > 0, i = 1, ..., K, and
∑K

i=1 πi = 1. Thus,

P (Y = yi) = πi for i = 1, . . . , K

. Denote the Shannon entropy of π by

Sh(π) =
K∑

i=1

πi log(1/πi).
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The Shannon entropy Sh(π) is thus a function of a random variable’s probability

distributions. It has the following properties:

1). Shannon entropy is a nonnegative, concave function that reaches its maximum

when π1 = π2 = ... = πK = 1/K. For instance, suppose there are only two

points y1, y2 in Ω, with probabilities p and q = 1 − p. The Shannon entropy is

Sh(p) = −p log p − (1 − p) log(1 − p), 0 < p < 1. The relationship between Sh(p)

and p can be seen clearly from Figure 1. When p = 1/2, Sh(p) reaches its maximum.

When p = 0 or 1, Sh(p) = 0.

2). Another property is that the more concentrated the distribution is, the lower the

Shannon entropy. For example, suppose that there are five points in Ω, and their

corresponding probabilities are π1, π2, π3, π4, π5, with
∑5

i=1 πi = 1. By a simple cal-

culation, we have

Sh(π) =


0 if π1 = 1
0.693 if π1 = π2 = 1

2

1.098 if π1 = π2 = π3 = 1
3

1.386 if π1 = π2 = π3 = π4 = 1
4

1.609 if π1 = π2 = π3 = π4 = π5 = 1
5

We observe that the Shannon entropy of π is smaller when a few points account

for most of the probability. In our example, the distribution that loads entirely on

one point has much smaller Shannon entropy than the distribution that allocates

probability equally to five points. This notion underlies the Shannon entropy pro-

cedure for item selection. Suppose we are fitting a cognitive diagnosis model in a

Bayesian context in which a prior distribution for the attribute vector α is specified.
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Let π be the posterior distribution of the attribute vector α after administering n

items. By further selecting items that minimize the Shannon entropy of π , then we

arrive at a posterior distribution that places all of its mass at the true attribute vector.

Shannon entropy procedure

In this section we present a formal description of the Shannon entropy procedure for

item selection. More technical details about the Shannon entropy in general can be

found in DeGroot (1962) and Tatsouka (2002). The aim of CAT in the context of

cognitive diagnosis is to make the posterior probability of the true attribute pattern

α quickly approach 1 by sequentially selecting items, which have calibrated item

parameters, that minimize the expected Shannon entropy of the posterior distribution

of the attribute vector. Assume that there are M attributes, resulting in 2M attribute

patterns. Denote the prior probabilities of the 2M patterns by π0(αc), c = 1, ..., 2M ,

and
∑2M

c=1 π0(αc) = 1. The posterior distribution of a candidate pattern αc after n-1

items have been administered is, using Bayes formula

πn−1(αc) ∝ π0(αc)
n−1∏
j=1

P
xj

j (αc)[1 − Pj(αc)]
(1−xj),

where Pj(αc) denotes the IRF of item response Xj given attribute pattern αc. Then

the Shannon entropy of the posterior distribution of the attribute pattern is:

En−1(πn−1) =
2M∑
c=1

πn−1(αc) log(1/πn−1(αc)).

Once again, let W represent the whole item bank, and define Rn = W\Sn−1, the
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remaining items in the item bank. For item Xj in Rn, the expected Shannon entropy

after administering Xj, where the expectation is computed under the current posterior

distribution πn−1 is

Sh(πn, Xj) =
1∑

x=0

En(πn|Xj = x)P [Xj = x|πn−1]

=
1∑

x=0

{En(πn|Xj = x)(
2M∑
c=1

P x
j (αc)[1 − Pj(αc)]

1−xπn−1(αc))}

Then our criterion for the n-th item is to select jεRn such that Sh(πn, Xj) is maxi-

mized. Optimality properties of this procedure have been studied by DeGroot (1962)

and Tatsouka and Ferguson (2003).

3 Simulation study design

3.1 item bank construction

Parameters for simulation were selected based on several criteria. First, we wanted

to consider a wide range of Fusion model parameters to enhance the generalizability

of the results. Second, we required that the chosen parameters result in data sets

yielding classical item statistics in a realistic range. Finally, the number of attributes

measure per item was chosen to have a distribution capable of providing adequate

measurement for each attribute. Two item banks were constructed for the purpose of

simulation. In item bank 1, the Q matrix was generated to have varying complexity

across the items, which can be seen in Figure 2. The elements of the r∗ matrix were
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generated from a uniform (0.3,0.8) distribution. If Qjk = 0, then r∗jk = 1 was set

equal to 1. The π∗s were generated from a uniform (0.3,0.8) distribution. In order

to make the r∗ matrix and the π∗ matrix realistic, the items were calibrated using

BILOG. Only the items having realistic IRT item parameters were kept in the item

bank. Here we required that guessing parameters be smaller than 0.4, discrimination

parameters ranging from 0.3 to 1.5, and difficulty parameters ranging from -2.5 to 2.5.

By these criteria, nearly 20% of the items were deleted from the item bank. Finally,

item bank 1 ended up with 400 items, requiring up to 5 attributes. In item bank

2, the Q matrix was generated in such a way that the proportion of the attributes

loading on each item is shown as in Figure 3. The r∗ matrix was also generated from

a uniform (0.3,0.8) distribution, but the π∗s were generated from a uniform (0.3,1)

distribution. Following the same BILOG calibration procedure as that in constructing

item bank 1, item bank 2 ended up with 420 items, measuring up to 8 attributes.

The distribution of r∗ for each attribute in these two item banks are shown in Figure

4 and Figure 5, respectively.

3.2 simulation design of CAT

Two different test lengths, 30 items and 50 items, were examined in both item banks.

Under each testing environment, 2500 examinees were generated uniformly from the

space of possible attribute patterns. For example, for item bank 1, examinees were

generated from patterns 1 to 32 with equal probability, while for item bank 2, ex-
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aminees were generated from patterns 1 to 256 with equal probability. This uniform

distribution on the attribute patterns was chosen to minimize any benefit that an

informative prior distribution on the attribute patterns would have on correct classi-

fication rates. In that regard, the results given here can be viewed as conservative.

Within each testing environment, each examinee started from the same fixed set of

5 items that were randomly chosen from the item bank, and then the next item

was selected according to different selection rules, K-L information, Shannon entropy

procedure or random selection (as a baseline). The starting items may differ across

examinees, but they were the same across the three different methods with the same

examinee. The performances of these three methods were compared in terms of in-

dividual attribute classification rates, whole attribute pattern recognition, and item

exposure rates.

4 Results

The correct classification rates are shown in Tables 2 to 5. Table 2 and Table 3

show the classification rates for five individual attributes and for the whole pattern.

Table 4 and Table 5 show the classification rates for eight individual attributes and

for the whole pattern. The last two columns of Table 2 through Table 5 display the

comparison to random selection and K-L, respectively, in terms of the whole pattern

recognition rate. For example, the numbers in the last column of Table 2 represent

the proportion correctly classified relative to K-L classification. Specifically, 0.739
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means that random selection is 26.1% less accurate than KL, while 1.536 means the

Shannon entropy procedure is 53.6% more accurate than KL.

Table 2: Correct classification rates for 30-item-5-attribute test (2500 trials)

whole pattern whole pattern
1 2 3 4 5 whole ratio to ratio to

pattern ’random’ ’K-L’
random 0.782 0.750 0.750 0.781 0.744 0.291 1.000 0.739
Shannon 0.918 0.909 0.839 0.898 0.870 0.605 2.079 1.536

K-L 0.879 0.832 0.758 0.840 0.792 0.394 1.354 1.000

Notice that both K-L information and Shannon entropy procedures perform

markedly better than random selection in terms of individual attribute and whole

attribute pattern classification. Even in the worst case within this simulation study,

the K-L information is 32% more accurate than random selection with respect to

whole pattern recognition (see Table 3). From Tables 2 to 5, it is clear that the

Shannon entropy procedure markedly outperforms the procedure based on K-L in-

formation in both aspects. In recognition of the whole pattern the Shannon entropy

Table 3: Correct classification rates for 50-item-5-attribute test (2500 trials)

whole pattern whole pattern
1 2 3 4 5 whole ratio to ratio to

pattern ’random’ ’K-L’
random 0.840 0.803 0.806 0.833 0.809 0.418 1.000 0.757
Shannon 0.949 0.943 0.902 0.942 0.926 0.750 1.794 1.359

K-L 0.928 0.891 0.824 0.901 0.854 0.552 1.320 1.000

13



Table 4: Correct classification rates for 30-item-8-attribute test (2500 trials)

whole whole
pattern pattern

1 2 3 4 5 6 7 8 whole ratio ratio
pattern to to

’rand’ ’K-L’
random 0.764 0.782 0.732 0.772 0.745 0.763 0.754 0.763 0.167 1.000 0.485
Shannon 0.911 0.935 0.910 0.966 0.910 0.959 0.920 0.941 0.653 3.910 1.900

K-L 0.914 0.874 0.732 0.949 0.808 0.926 0.824 0.888 0.344 2.060 1.000

Table 5: Correct classification rates for 50-item-8-attribute test (2500 trials)

whole whole
pattern pattern

1 2 3 4 5 6 7 8 whole ratio ratio
pattern to to

’rand’ ’K-L’
random 0.801 0.836 0.801 0.831 0.805 0.832 0.801 0.832 0.243 1.000 0.443
Shannon 0.975 0.981 0.962 0.989 0.962 0.982 0.967 0.976 0.833 3.427 1.520

K-L 0.938 0.932 0.861 0.970 0.867 0.969 0.865 0.940 0.548 2.255 1.000

procedure outperforms the K-L procedure by 36% to 90%(see Table 3 and Table 4).

We observed that the 8-attribute item bank results in higher classification rates than

under the 5-attribute item bank.

The averages of individual attribute classification rates under different selection rules

in four testing contexts are listed in Table 6. It can be seen that the Shannon en-

tropy procedure has higher classification accuracy than KL, which in turn has higher

classification accuracy than random selection. Table 7 shows the distributions of ex-
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Table 6: Correct classification rates averaged over attributes (2500 trials)

random K-L Shannon
30-item,5-attribute 0.761 0.82 0.887
50-item,5-attribute 0.818 0.880 0.932
30-item,8-attribute 0.759 0.864 0.932
50-item,8-attribute 0.817 0.918 0.974

posure rates of different methods in terms of the mean classification rate and various

quantiles of classification rates. For example, in the case of 30 items and 5 attributes,

we see that the exposure rate under random selection is uniform, as expected. The

exposure rate under K-L selection is right skewed, with the third quantile being much

smaller than the maximum. This implies that a large proportion of items in the item

bank have a very low chance to be used. In this respect, the Shannon entropy is even

worse than K-L selection. By the Shannon entropy procedure, the maximum item

exposure probability is 0.932, while the third quartile is only 0.03. This very skewed

distribution of item exposure rates under the Shannon entropy procedure and under

KL selection is also seen in the remaining three cases.

5 Discussion

Both procedures are promising in that they result in very high correct classification

rates for individual attributes and whole attribute patterns. However, they both

have very high item exposure rates for certain items. This problem is of critical
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Table 7: summary statistics of item exposure rates using Shannon or KL (proportion
of exams in which item appears)

1st 3rd
Min Quartile Median Mean Quartile Max

30-item- Random 0.050 0.060 0.062 0.063 0.066 0.080
5-attribute K-L 0.000 0.000 0.007 0.063 0.041 0.823

Shannon 0.000 0.000 0.000 0.063 0.030 0.932

50-item- Random 0.094 0.109 0.112 0.112 0.116 0.138
5-attribute K-L 0.000 0.000 0.031 0.112 0.118 0.919

Shannon 0.000 0.001 0.018 0.112 0.121 0.943

30-item- Random 0.045 0.056 0.059 0.059 0.062 0.072
8-attribute K-L 0.000 0.000 0.001 0.059 0.045 0.921

Shannon 0.000 0.000 0.001 0.059 0.031 0.973

50-item- Random 0.091 0.103 0.107 0.107 0.111 0.126
8-attribute K-L 0.000 0.000 0.026 0.107 0.098 0.968

Shannon 0.000 0.001 0.020 0.107 0.128 0.981

16



importance in CAT. For over a decade, many psychometricians have worked to develop

methodology to control exposure rates without greatly reducing the efficiency of item

selection procedures (Stocking and Lewis, 2000; Chang and Ying, 1996). The fact

that the exposure rates under the Shannon entropy procedure can be as high as 0.97,

meaning some items were used for as many as 97% of the examinees, and nearly

60% of items in the item bank were left unused in the entire simulation warns us

to apply Shannon entropy with great care in real situations. An efficient procedure

that controls exposure rates has to be developed before CAT is practical in cognitive

diagnosis.

In our study, we also studied two additional methods to select items for CAT. They

both basically select the next item by maximizing the weighted posterior of the current

attribute pattern estimate. It turned out that these two methods did not perform well,

and they are not included in this paper. An important direction of future research is

to find a way to use the Shannon entropy procedure and/or K-L information that can

result in more balanced item exposure. The current study indicates that the Shannon

entropy procedure is superior and modifications that allow a greater distribution of

item exposure are desirable.
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          Figure 1: the Shannon entropy vs. p for Bernoulli variable
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         Figure 2: The distribution of attributes measured per item (item bank 1)
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         Figure 3: The distribution of attributes measured per item (item bank 2)
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Figure 4 The distribution of r* in item bank 1 for each attribute
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Figure 5 the distribution of r* in item bank 2 for each attribute 
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