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INTRODUCTION

David J. Weiss . . . . . . . . . . ... ... . . University of Minnesota

The research program which generated the ideas and findings reported in
the four main papers in this symposium has been supported since early 1972 by
the Personnel and Training Research Programs, Office of Naval Research,
Washington, D.C. The continuing support of that office and the encouragement
and guidance received from its Director, Dr. Marshall J. Farr, and its Assistant
Director, Dr. Joseph L. Young have made it possible to develop a sustained
research effort designed to answer very basic questions about the psychometric
and practical utility of computerized adaptive testing. Prior to the ONR
support, this research effort was supported for two years by grants from the
General Research Fund of the Graduate School at the University of Minnesota.
Special thanks are due to our project programmer, Louis J. DeWitt, who has
worked on this research since 1970. Without his persistence in re-programming
our testing system for four different computers, during the last five years,
much of our research would have been impossible.

The focus of our research to date on computerized adaptive measurement
has been in the area of ability testing. However, our methods and findings
should be applicable, in general, to the measurement of any homogeneous trait.
We have also based much of our research on the latent trait model. But latent
trait theory is only one way of conceptualizing trait measurement, although a
very useful one. There are alternative ways of approaching trait measurement
which might be equally useful in adaptive testing, and which are used in the
measurement of other psychological variables. Thus, the methods of adaptive-
testing should prove useful in the measurement of personality variables,
interest traits, values, and in other aspects of human functioning which can
be conceptualized as homogeneous traits.

We have approached research in adaptive testing in two complementary
ways--live-testing and computer simulations. In the last three years we have
administered over 7,500 tests to real testees by interactive computers. In
addition, based on the latent trait model, we have simulated the responses of
hundreds of thousands of testees on a wide variety of testing strategies.
These simulations augment the findings from live-testing studies in very
important ways, and provide further hypotheses for research using live
computerized testing.

The four papers that follow will describe three major problems we have
faced in our research on adaptive testing, and some of the prospects for
improving testing that derive from computerized adaptive testing. The first
problem that we faced is how to adapt a test to individual differences in
trait level, during the process of testing. Mr. Vale, in the first paper,
will describe what an adaptive test is, how various strategies of adaptive
testing function, and will present some data comparing adaptive testing
strategies.



The second major problem we faced was that of scoring adaptive tests.
In adaptive testing, different testees answer different test items. Thus,
since each test is unique to the individual, traditional scoring methods are
inappropriate. Mr. McBride, in the second paper, will describe some of our
research on scoring methods, and present some data comparing the character-
istics of several scoring methods.

For over fifty years the paper and pencil test has been the predominant
mode of testing. But now that computerized adaptive testing is a possibility,
we have an alternative. Thus, there is a need, that was not evident in former
years, to evaluate the characteristics of different testing strategies. Mr.
Sympson, in the third paper, will discuss some of the problems we have faced -
in comparing different testing procedures, and suggest a systematic approach
to the problem.

Computerized adaptive testing is not all problems, however. In addition
to the problems we have faced in our research, we have become aware of the
potential of this mode of testing for improving psychological measurement in
other ways, beyond the purely psychometric benefits resulting from the adaptive
process. In the fourth paper, Ms. Betz will describe some of these new pros-
pects, and present data derived from live testing concerning some valuable new
kinds of information resulting from computerized testing, and data on the
potential psychological benefits of this mode of testing.

The four papers will describe only some of the problems we have faced
in our research program, and some of the potential advantages of computerized
adaptive trait measurement. The discussants will, we hope, help us to find
some solutions to the myriad problems that we face in this new field of
research, suggest other ways of approaching these problems, or suggest other
kinds of research which might extend our findings.

Qur first discussant, Robert L. Linn of the University of Il1linois, was
a pioneer researcher in adaptive testing. His research in the mid-1960's
pioneered one important methodological approach to research in adaptive testing,
and produced initial findings supporting the utility of adaptive or sequential
testing. Our second discussant, R. Darrell Bock of the University of Chicago,
is an internationally known authority on latent trait theory, the theoretical
approach used in most adaptive testing research. His important theoretical
and methodological developments in this area have permitted adaptive testing
research to move forward efficiently. We appreciate Dr. Linn's and Dr. Bock's
contributions to this symposium, and their helpful comments.

ii



PROBLEM:
STRATEGIES OF BRANCHING THROUGH AN ITEM POOL

C. David Vale
University of Minnesota

The problem I am addressing has been the focus of much of the research in
adaptive or tailored testing and provides, in fact, the major motivation for
administering tests adaptively. The problem is: given a large pool of test
items and a constraint to administer a relatively small number of them, what is
the best way of selecting that small number of items? In this presentation, I
am going to show some strategies that have been used for selecting items in
the framework of their evolution from the simple conventional test to complex
adaptive or tailored testing models. To clarify the distinctions between some
of the models we will follow the progress of a hypothetical, Tow ability sub-
Ject, Dennis Dull, through a test administered under each strategy and note how
his items are selected. We will further examine differences between strategies
in terms of the amount of information about ability which each strategy provides.

Assumptions

In order to make possible the analyses done for this presentation, some
simplifying assumptions were made. First, it was assumed that a large pool of
equally good items (i.e., items with equivalent discriminating power) was
available to choose from. Second, it was assumed that these were free-response
items and, hence, guessing was not possible. Third, it was assumed that all
items were scored by a common technique, in this case, a Bayesian scoring pro-
cedure. Finally, to make comparisons between some strategies meaningful, it
was assumed that a prior estimate of ability, correlating .5 with ability, was
available.

Figure 1 shows schematically the item pool that will be used for testing
with the various strategies. On the horizontal dimension are seventeen
columns, each containing four items, ranging from very easy items at the Teft
to very difficult items at the right. The vertical dimension represents repli-
cations of items at each difficulty level; all items in a column are equally
difficult.

I will illustrate the various item selection strategies using eight items
from this pool of 68. While an eight-item test is convenient for illustration,
eight items are too few to allow some of the adaptive strategies to function
well. Therefore, for evaluation of the strategies a 24-item test was used.

Items for the 24-item tests were chosen in a manner analogous to the way items
were chosen for the illustrated eight-item test. The results I'11 present

are from computer simulations (see Appendix for details of the simulation method;
numerical results are in Appendix Table A-1).
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Figure 1

Schematic Representation of the Item Pool Showing
Dennis' Ability (ed) in Relation to the Ttem Difficulties
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Testing Strategies

Rectangular conventional test. One way to compose a test is to select
a fixed set of items having a wide range of difficulties. Figure 2 shows
such a rectangular conventional test. In this case, eight items equally
spaced on the difficulty continuum were chosen from alternate columns ranging
from the next to easiest to the next to most difficult columns. Dennis Dull,
our low ability subject, produced the response record shown in Figure 2 with
those items he answered correctly marked by a plus (+) and those he answered
incorrectly marked by a minus (-). The items in this test could have been

administered in any order but for clarity of presentation, we started at the
left and worked toward the right.

The first item Dennis encountered was beneath his ability level and,
knowing the answer, he responded correctly. The second item was a bit more
difficult for Dennis but he still answered it correctly. The third item,
being a bit above his ability level, was too difficult for Dennis and he
answered it incorrectly. Similarly, the fourth through eighth items were
even more difficult and he answered all of them incorrectly.
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Figure 2
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Figure 3
Information Curve for the Rectangular Conventional Test
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Figure 3 shows an information curve produced by the rectangular conven-
tional test. Information can be thought of as related to the precision of
measurement produced by a test at a given level of ability, or as how well a
test can discriminate between two contiguous ability levels (see Lord, 1970,
for a discussion of information curves). A good test produces an information
curve that is high (i.e., provides precise measurementg and is flat (i.e.,
provides this high level of precision for all testees at all ability levels).
Although not apparent from Figure 3, it will become obvious from comparisons
with Tater information curves that the rectangular conventional test produces
an information curve that is fairly flat but somewhat low. It can be seen,
however, that even this information curve tapers off at the extremes indica-

ting poorer measurement for testees where ability level is distant from the
mean. ’

Peaked conventional test. Instead of choosing items with a wide range
of difficulty, we could instead choose items peaked at the center of the
ability range and administer them to all testees. Figure 4 shows such peaked
conventional test. The four items from the median difficulty column and two
from each of the adjacent columns were chosen for this test. Again, these

items could have been administered in any order but we will begin at the top
for clarity.

Figure 4
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These items were intended for average ability testees and were all too
difficult for Dennis. He answered incorrectly the first item, the second item,
and most of the rest of the items. In fact, the only item he answered correctly
asked for the definition of "Oedipal", a term he had picked up from his analyst.




The information curve for the peaked conventional test (Figure 5) shows
graphically what Dennis felt as he took the test; the peaked conventional test
provides good measurement for some testees but very poor measurement for others.
As Figure 5 shows, the peaked conventional test produces precise measurement
for individuals with abilities in the middle range but Tittle information for
extreme ability subjects. The peaked conventional test provides more informa-
tion about ability than does the rectangular conventional test within the
range of *1.5 standard deviations of the ability range for which it was peaked
but less outside of this range.

Figure 5

Information Curve for the Peaked Conventional Test
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It seems that with a fixed set of items (i.e., a conventional test) we
can please some of:the people all of the time or all of the people some of the
time, but we can't :please all of the people all of the time. If, however, we
could figure out:a way to move a peaked ability test to the ability level of .
each person being tested, we could please all of the people-all-of the time -
and provide a‘high Yevel of information-at all ability:levels. If a testee's
ability were known before testing, we would construct a test made up of those-
items with difficulties closest to his ability level (i.e., items which he/she
would be expected to answer correctly 50% of the time). But if we knew his
ability beforehand, we would have no reason:to administer the test at all. .



Multi-level conventional tests. In practice we have, at best, a
fallible prior estimate of the testee's ability level and may want to admin-
ister items more or less rectangularly distributed in a narrow range around
that estimated ability level. Some achievement tests use a prior ability
estimate, such as grade in school, to determine which section of a test a
testee should take. Figure 6 shows such a test. Knowing that Dennis ranked
at the 27th percentile in his grade school graduating class, if this were a
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high school freshman achievement test, we might use this prior information to
start Dennis at the easiest entry point (E,). Or, if we had a testee with all
A's in grade school, we might start him at the high entry point. Given a
prior ability estimate, therefore, it is possible to adapt the test to the
individual within the framework of a conventional test. But if prior informa-
tion is not available, we have to use a test that tailors item difficulty in
its absence. One possible strategy for doing this is the two-stage testing
strategy (Angoff & Huddleston, 1958; Betz & Weiss, 1973, 1974) which is 1ike
the previous test but generates its own prior ability estimate.

Two-stage tests. In a two-stage test, a testee is first administered a
short routing test and, on the basis of his score on that test, is branched to
a measurement test of more appropriate difficulty. Figure 7 shows a two-stage




test. A testee takes a three-item routing test and one of three five-item
measurement tests. Dennis answered all three of the routing test items in-
correctly as they were too difficult for him. Since this suggested that his

Figure 7
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ability was low, he was branched to the easiest measurement test where he
answered three out of the five items correctly.

As Figure 8 shows, this two-stage test yields an information curve that
js at all points higher than that of the rectangular conventional test and
higher than the information curve of the peaked conventional test except in
the center. Thus, this two-stage test provides more precise measurement than
the rectangular conventional test at all ability levels, and more precise
measurement than the peaked conventional test at most ability levels.

One problem with the two-stage testing strategy is that if a testee's
ability is between the difficulties of two adjacent measurement tests, there
is no measurement test of appropriate difficulty. A solution to this problem



Figure 8

‘Information Curve for the Two-Stage Test
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is available in the form of the continuous second stage two-stage test

(Sympson, 1975), a variant of the previous two-stage test, shown in Figure 9.

As in the standard two-stage test, the testee is first administered the three-
item routing test. Then, on the basis of the score on that test, he is branched’
to a five-item measurement test. But instead of using one of three pre-
structured measurement tests, a measurement test consisting of the most appro-
priate item and two adjacent items on each side is individually composed for
the testee. Given our restricted circumstances, the information curve of the
continuous two-stage test would be very similar to that of the standard two-
stage test and will not be shown here.

Another problem inherent in the two-stage procedure is that of mis-
routing. The measurement test decision is based on a short and fallible
routing test and thus may be incorrect. For example, had the word "Oedipal"
occurred in the two-stage routing test, Dennis would have answered one out of
the three items correctly and might have been branched to the middle measure-
ment test containing items that were too difficult for him.

Flexilevel test. There are two solutions to the misrouting problem: One
is to route more; the other is to route less (i.e., not at all). An example
of the Tatter strategy is the flexilevel test (Lord, 1971) shown in Figure 10.
For this test the potential item set is the same as the potential measure-
ment test item set of the continuous two-stage test. But rather than taking
a routing test, each testee starts with the median difficulty item of the
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Figure 9

CONTINUOUS TWO-STAGE

---------------------------------------

------------------------------------------------

Figure 10

------------------------------------------------
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item set, and following each correct response is branched to the next more
difficult unadministered item. Following an incorrect response, he is branched
to the next less difficult unadministered item.

In Dennis' case, he answered incorrectly the first three items and was
branched appropriately downward until he reached the third item below the
median, an item slightly above his ability level. Knowing the answer, he
answered that item correctly and was branched to the first item above the median
which he answered incorrectly. He was branched to the fourth item below the
median and continued oscillating between easy and difficult items until he had
answered eight items.

Figure 11
Information Curve for the Flexilevel Test
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The information curve for the flexilevel test is shown in Figure 11.
Although the flexilevel test solves the problem of misrouting, the information
it provides is always less than that provided by the two-stage test.

Three-stage test. Figure 12 shows an example of the other solution to the
problem of misrouting, the three-stage test (sometimes referred to as the
double-routing two-stage). In this strategy, an individual takes one routing
test which routes him to a second routing test which routes him to a measure-
ment test. Errors resulting from the first routing can be ameliorated by the
second routing.
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Pyramidal test. Carrying the idea of multiple routing to its logical
extreme (i.e., using one {tem per stage) results, in this case, in the eight-
stage test or, in the general case, the pyramidal test (Krathwohl & Huyser,
1956; Larkin & Weiss, 1974, 1975). As shown by Figure 13, in this strategy
a testee starts with a median difficulty item and is branched after each item
to a less difficult item following an incorrect response or to a more diffi-
cult item following a correct response.

The information curve for this test, shown in Figure 14, shows it to pro-
vide more information than any of the strategies discussed thus far except in
the middle ability range where it is slightly surpassed by the peaked conven-
tional test. It should be noted, however, that the information curve is far
from flat. Less than half of the amount of information provided at the middle
range of ability is provided at the extremes of this information curve, three
standard deviations from the mean. :

Figure 14

Information Curve for the Pyramidal Test
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Pyramipar

Stratified-adaptive test. The previously discussed adaptive tests have
been developed for the situatfon in which prior ability information was not
available and are not capable of using it when it is available. Now that we
have reached the top of the pyramid, so to speak, we can make use of prior
information by extending the pyramidal structure to allow entry at several
points.
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A direct extension is unable to handle branching for some extreme ability
testees, however, so a modified extension of the pyramidal structure is used
by the stratified-adaptive (stradaptive) testing strategy (Weiss, 1973) shown
in Figure 15. Two changes beyond a direct extension are observed: 1) items
are grouped into strata consisting of items of possibly slightly different
difficulties; and 2) branching is between strata, with the item selected being
the first unadministered item in a stratum.

Figure 15
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Dennis started at the fourth entry point. He did not correctly answer
the first item in stratum four, was branched to the first item in stratum
three, answered this item correctly, and alternated between these two strata
until his fifth item. He correctly answered the fifth item, which was in the
fourth stratum, and was branched to the first item in the fifth stratum. He
did not know the correct answer to either this or the next item, and finished
with his eighth item in the third stratum.

Branching to the first item in a stratum is of 1ittle value in a situa-
tion where all items are equally discriminating, but is useful when using a
real item pool because all items will not be equally discriminating. This
feature allows the most discriminating items to be put where they have the
highest probability of being administered; at the top of the stratum. The
information curve for the stradaptive test, shown in Figure 16, is almost
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flat indicating that the stradaptive test provides yery equiprecise measure-
ment. Its level is surpassed by several other strategies in the center,
however.

Figure 16

Information Curve for the Stradaptive Test
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The previous adaptive strategies are all among the fixed branching
strategies. The branching has been a function solely of the testee's per-
formance at the immediately preceeding stage. The variable branching pro-
cedures calculate an ability estimate after each item and select as the next
item the item best suited for an individual of that ability.

A Bayesian strategy. An example of the variable branching procedures
is the Bayesian strategy (Owen, 1969), which is illustrated in Figure 17.
On the basis of a prior ability estimate, which may be simply the mean ability
of the population of testees, a first item is selected. On the basis of the
response to that item and a prior ability distribution, which may consist
simply of population parameters, a score is calculated and on the basis of
that score, another item is selected. This procedure is repeated, each time
selecting the one item in the pool which is closest in difficulty to the
last ability estimate.
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Figure 17
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Information Curve for the Bayesian Test
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The Bayesian test's information curve is shown in Figure 18. It is
slightly higher than the stradaptive test's information curve and nearly
as flat, although it drops more in the tails. The peaked conventional
test and the pyramidal test still provide more information in the center
of the ability distribution.

Limitations of the Results

In this presentation, I've attempted to give an idea why adaptive
testing is needed, what some strategies of implementing adaptive testing
are, and how these strategies compare in terms of the information they pro-
vide. If evaluation of adaptive testing were as simple as this presentation,
however, our research would be unnecessary. This evaluation was very limited
in a number of ways:

1. The information curves were calculated using a response model which
may not accurately portray response tendencies of real subjects.

2. An unrealistic item pool containing equidiscriminating items was
used. This would never be found in the real world.

3. Numbers of items per stage and peakedness of subtests were chosen
arbitrarily and may not be optimal.

4, A common scbring technique was used which may not be optimal for
all strategies. Mr. McBride will outline some of the alternative
scoring procedures.

5. As you will see in Mr. Sympson's presentation, information curves
are not the only way to evaluate the goodness of a testing
strategy.

6. Strategies and scoring methods determined to be "best" in some
situations may not be best in others.

The questions involved in adaptive testing are multifaceted and complex.
The purpose of research in adaptive testing is to answer the questions neces-
sary to decide when and how to use which kind of adaptive testing strategy.
The illustrations provided here were designed simply to introduce the field
and are, at best, limited in their generalizability.



PROBLEM:
SCORING ADAPTIVE TESTS

James R. McBride
University of Minnesota

The purpose of administering mental tests to people is usually to compare
each person with some criterion, or to compare each person with others with
regard to test scores. On a conventional test, where all examinees take a
common set of test items, the test score is typically the number of items
answered correctly, or some transformation of the number correct.

When all the items of a test are equivalent, having equal difficulty and
equal intercorrelations, the number-correct score is a sufficient statistic
for estimating ability level (Lord, 1953). It contains all the information
in the pattern or vector of individual item scores. When the items in a test
are not all equivalent, however, the simple number-correct score fails to
convey all the information in the pattern of item responses. Instead a
weighted linear composite of the item scores is needed (Solomon, 1961), where
the weights are proportional to the item discriminating power. When guessing
is a factor, the problem becomes even more complex.

In general, the number-correct score uses less than all of the informa-
tion available in the test item responses. Further, the number-correct score
provides only one more score category than the number of items in the test.
For example, only twenty-one unique scores are available from a 20-item test.
The shorter the test, the smaller the number of discriminations among persons
which can be made. Still a third shortcoming of number-correct scores is the
Tack of comparability of scores from different tests of the same trait or
construct, unless the tests are strictly equivalent.

In scoring adaptive tests, the comparability problem becomes even more
pronounced. An adaptive testing strategy combines both an item selection
procedure and a scoring method. Different persons in effect take different
tests, and the different tests are intentionally non-equivalent across indivi-
duals. The sets of adaptive test items administered to any two persons may
differ in difficulty and in item discrimination, as Mr. Vale has illustrated.
Some adaptive testing strategies, such as the stradaptive and Bayesian ones,
permit test length to vary as well. The number-correct score, and the weighted
Tinear combination of the item scores, are both inadequate for scoring adaptive
tests, except for certain special cases.

What is needed in adaptive testing is a general scoring method which will
take account of the pattern of item responses, and of the difficulty and dis-
crimination of the items administered, and which will yield scores which are
directly comparable despite non-equivalence of the item sets. The scaling
methods made possible by item characteristic curve properties in latent trait
theory provide a class of solutions to the problem of adaptive test scoring.

I will mention two of these methods. But first, a hasty introduction to
latent trait theory.
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Latent Trait Theory

For certain kinds of psychological variables, such as those measured by
most ability tests, the construct or trait being measured is monotonically
related to test score. At the dichotomous item level, this is tantamount to
saying that the probability of a correct response increases with trait level.
Trait level is assumed to vary continuously, but the metric for describing it
is arbitrary.

An-item characteristic curve describes the probability of a correct
response P(u_=1) to a specific test item g as a function of level on the under-
lying trait.9 The curve can be described as a function in several parameters,
usually trait level (o), item difficulty (») and item discriminating power (a).
Thus for a single item g, the probability of correct response, P_(o), can be
expressed in terms of the three parameters: g

P(us=1/6) =P, (e)= F(0,b,3a,) [1]

Now if the forms and parameters of the item characteristic functions are
known and if the convenient property of local independence can be assumed (or
derived from other assumptions), then the probability of a pattern or string
of item scores can be expressed as a compound function of the item character-
istic functions. I.e.,
. k u, l—-u,
P(u,u,...u)=m P () [1-P, (0)] [2]

g=q1 9

Maximum likelihood scoring. For test scoring purposes, of course, we
are not interested in estimating the probability of a pattern of item scores,
but in estimating the trait level parameter o from the item scores. This
presumes that the item parameters bg, ag have been determined (or estimated)

already, so let us say that they have been. Then for any pattern or vector
of dichotomous item scores there is a likelihood function such as Equation 2.
We may use as our trait-level estimate--or test score--the value of 6 at which
the likelihood function is maximal. That is, given a pattern of item scores,
and the parameters of the items administered, trait level may be estimated by
means of maximum likelihood techniques. More important, as long as all the
item parameters are expressed with reference to a common metric and to a
common norm group, trait level estimates in a common metric may be obtained
from examinees' scores on different sets of items. For this reason, maximum
likelihood scoring is especially appropriate for use with adaptive tests.

Although maximum 1ikelihood scoring allows us to make direct comparisons
of persons who took different sets of test items, the method is not without
its shortcomings. For instance, the solution is indeterminate when an examinee
answers every item correctly or every item incorrectly, in which cases the
estimation procedure converges on plus or minus infinity. When items can be
answered correctly by guessing, the same problem may occur with other item
score patterns as well. Although adaptive tests, by virtue of their item
selection processes, are less subject than conyentional tests to item response
patterns yielding infinite maximum 1ikelihood score estimates, there is no
guarantee that such patterns will not occur.
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Bayesian scoring. A Bayesian sequential scoring method proposed by
Owen {7969] avoids the problem of infinite estimates, yet proyides comparable
scores from different sets of test items, in the same kind of metric the
maximum 1ikelihood procedure employs. The Bayesian method is likewise a
consequence of latent trait theory, based again on the properties of {tem
characteristic curves. For simplicity let the item characteristic curves all
be normal ogives, so that

Py (0) = P(ug:1|0>=¢[agco—bg>] (3]

Again we do not know the value of o, but we observed the item scores (1 or 0),
and have previously estimated the parameters a_ and b_ of each item g. If we

began by estimating that an examinee's trait level © was equal to the mean u
of a normal distribution, and that the variance of that distribution is

og, Bayes' theorem permits us to calculate the mean and variance of © posterior

to observing his score on a single item. That is, using Bayes' Theorem and the
parameters of the prior distribution we may proceed from P(ug=]l®) to

P(e|u9=1) and from P(u_=0|0) to P(e|u_=0) which in turn permit us to evaluate
expressions for E(@[ug) and var(elug), the expected value and variance of the
posterior distribution of o, conditional on item score.

As proposed by Owen in the context of an adaptive testing strategy, the
Bayesian estimation procedure never yields the troublesome infinite estimates.
It is dependent, however, on the order in which the item scores are evaluated,
since it involves updating the trait level estimate one item at a time. Several
factors are capable of limiting the accuracy and validity of the resulting
"final score" estimates. Guessing can introduce marked bias. Additionally,
the Bayesian approach depends heavily on its "priors". An inappropriate choice
of parameters for the initial prior distribution can result both in severe bias
and some loss of validity (McBride, 1975) in the scores.

Choosing Among Scoring Methods

So, where does that Teave us? We have a variety of scoring procedures
available for adaptive tests. Two of these have been described above. Others
are described by Lord (1970). Some are appealing by virtue of their simplicity,
but either fail to provide adequate differentiation among examinees, or to rank
examinees on a scale that permits comparing scores obtained on different tests,
or both. Others are appealing because of their mathematical elegance, but are
subject to distortions such as bias, or to absurdities such as infinite scores,
or to invalidity due to inappropriate prior assumptions. Given that we are to
use an adaptive test in some applied setting, how are we to choose among alter-
native scoring methods?

The answer is that there is no simple answer. The choice will depend on
the test itself, on the setting in which the test is used, on the purpose to
which the test scores are to be applied, on practical constraints such as
scoring costs, and perhaps on other considerations as well. Using psychometric
criteria, scoring methods can be evaluated in terms of a number of criteria,
including information and bias.
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Information. Suppose that trait level is distributed continuously, and
measured in real numbers. We can talk of the regression of test scores on trait
level, that is, a curve depicting the mean test score at any level of the trait.
If the regression is linear, we know that its slope is constant, so that for any
unit increase in trait level, there is a corresponding constant increase in mean
test score. If the regression is non-linear, the increment in mean test score
may or may not be linearly related to trait level.

Similarly, we may talk of the precision of measurement at any trait level
in terms of the inverse of the standard deviation of test scores at that level.
Like the slope, the precision may or may not be constant across trait levels.
The "information" at any level of the trait is defined as the squared ratio of
the slope at that level to the standard deviation of scores at that level. In-
formation may be constant across trait levels, or may vary. If the information
is constant, the test scores are making equivalent discriminations at all levels
of the trait. If it is not constant, the test scores discriminate better at
some levels of the trait than at others, and perhaps discriminate best at some
one point (see Appendix for a further discussion of "information").

Bias. Just as precision and information are discussed in terms of trait
level, we may speak of bias at any given trait level. Bias here is defined as

follows:
bias = E(X) 6| — o

[4]

where X is the test score. Bias, then, is the algebraic difference between the
expected value of the test scores X at a given trait level o and o itself. As
I mentioned earlier, the metric for o is arbitrary. So is the test score
metric X. Since both are arbitrary, we should be more concerned about the form
of the relation of bias to © than to the numerical values. Constant bias, or
bias linear in ©, is not usually a problem in psychological measurement. Non-
linear bias, however, may be a problem in some applied settings.

Comparison of Maximum Likelihood and Bayesian Scoring

In choosing a scoring method for an adaptive test, it would be prudent to
evaluate the information and bias characteristics of the resulting scores
against the criteria dictated by the purpose of testing. These evaluations may
be conducted by analytic methods for certain kinds of tests (e.g., Lord, 1970),
but where real item pools are involved, Monte Carlo computer simulation methods
may be necessary. An example of such a simulation follows (see Appendix for
details of the simulation method; numerical results are in Appendix Tables A-2
through A-4).

This simulation study used the Bayesian sequential adaptive testing
strategy designed by Owen (1969). Rather than accepting Owen's method for
scoring the resulting patterns of item responses, however, we wanted to evaluate
it in comparison with two alternative scoring procedures: 1) the maximum 1ike-
Tihood estimation procedure described above and 2) the number correct score.

In order to generate data from which to compare the three scoring methods,
we simulated administering a 20-item Bayesian sequential adaptive test to 3200
examinees of known ability--100 examinees at each of 32 trait levels (o) in
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the interval [-3.2505+43.0] . These trait level values can be thought of as
standard deviation units. A pattern of 20 simulated item scores (1 or 0) was
generated for each simulated examinee. Every such pattern was scored using
each of the three scoring methods. For each scoring method, the mean and
standard deviation of the 100 scores at each trait level © were calculated.

Regression of scores on ability. The means are plotted against trait
level © in Figures 19 and 20. Figure 19 contains the mean scores for the

Figure 19

REGRESSION CURVES FOR BAYESIAN AND MAXIMUM LIKELIHOOD SCORING
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Bayesian scoring method. Note that the estimated regression of Bayesian scores
on © is slightly non-linear. Its slope varies from one leyel to another, which
has implications for the information in the scores. Figure 19 also contains the
means for the maximum Tikelihood scoring technique. Note that the regression

of these scores on © appears almost linear. Figure 20 shows the mean number-
correct score as a function of 0. For these scores the regression is somewhat
non-linear.
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Figure 20

REGRESSION CURVE FOR NUMBER CORRECT SCORE
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Figure 21

BIAS CURVES FOR BAYESIAN AND MAXINUMW LIKELIHOOD SCORING

1.0
s | .8
\\\~BAYESIAN S
: -
| .2
‘\&*»h*q-b*d*i~ F‘-ﬂQs;tkz::::::uk*-%whr‘K,# L 0 BIAS
NAXINUN LIKELIHOOD -"‘m\\u,\\/.. -2
[ -4
L -6
[ -8
- 1.0

r L v A Ld ' LS L] v T " T T T v ]’ T T L Al T T L L , L L) L] Al '
3 2 -1 0 +1 +2 +3
Low ABILITY HIGH



-23-

Bias. Figure 21 contains bias plots for the Bayesian and maximum 1ike-
lihood scores. Figure 22 i{s the bias plot for the number correct scores. In
the trait interval shown, the maximum 1ikelihood scores appear to be nearly
unbiased estimators of trait level. The Bayesian scores are not so favorable
in this regard. The bias is severe in the extremes of trait level, and is
noticeably non-linear. The bias in the number correct scores follows a trend
similar to that of the Bayesian scores.

Figure 22

BIAS CURVE FOR NUMBER CORRECT SCORE
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Information. So far we have looked at the regression of test scores on
0, and found that only for the maximum 1ikelihood scores was the regression
approximately linear. Similarly, the maximum likelihood scores appear far
superior to the other two in terms of bias. Now let us look at the estimates
of the information curves for the three methods. Figure 23 shows these for
all three scoring methods. Both the Bayesian and the maximum 1ikel{hood
curves are convex, rising from near zero at 0=-3 to a peak of 13 in the mid-
range, then declining somewhat in the upper trait levels. The shapes of the
curves are so similar, and their differences so small that it would be diffi-
cult to call either method superior in information in the o range from -1 to
+3. The number-correct information curve, on the other hand, is concave,
and is clearly inferior to the other two except at the very low trait levels.
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Figure 23
INFORMATION CURVES FOR THREE SCORING METHODS
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Limitations of the Scoring Methods

Given the three scoring methods, then, which one should we select for use?
The number correct score is obviously inappropriate except for ranking persons
in the extreme low end of the trait level range. The similarity of the infor-
mation curves for the two latent trait estimation techniques suggests that
they are virtually interchangeable for ordering persons, other things being
equal.

But of course other things are not equal. The maximum 1ikelihood estima-
tion method is about three times more expensive than the Bayesian one. On the
other hand, the Bayesian method of scoring is subject to non-linear bias. If
unbiased measurement were a goal of the test, the expense of the maximum 1ike-
Tihood procedure might be justified. If simple ordering of persons with respect
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to trait level were all the tester required, the Bayesian scores seem prefer-
ablel. Other than that, no simple prescription is advisable.

I have mentioned only two true latent trait scoring methods. Numerous
other scoring methods are available (e.g., Larkin & Weiss, 1974; Weiss, 1973),
most of which Tack the mathematical elegance of the Bayesian and maximum 1ike-
lihood methods, yet may approach both in terms of information. A1l of these
methods provide a sufficient range of scores to permit maximal discrimination
among persons (if test length is sufficiently long), and many of them use all
the information in the pattern of item responses. The two that I have illus-
trated above also permit comparisons of scores obtained on different tests of
the same trait, although the bias in the Bayesian scores may make such compar-
isons hazardous. The point of this discussion has not been to prescribe an
all-occasion scoring method, but rather to show that there is a choice, and
to suggest computer simulation as a tool to facilitate a rational choice among
alternatives in the face of shifting decision parameters.

1Test scores are usually used only to order persons relative to one another, or
to classify them into two or more discrete categories. Technically, both Owen's
scoring method and the maximum likelihood one are statistical estimation pro-
cedures. As such they are useful for actually estimating parameters CR charac-

terizing persons <, on the basis of responses to a set of test items. For
applied purposes requiring only the ranking or classification of persons, the
test score information curves are of paramount interest. But there may be
certain applications in which actual parameter estimates are important. For
these app?ications the small-sample (where sampling is over items) bias charac-
teristics of the estimation procedure have important implications for the
utility of the resulting estimates.



PROBLEM:
EVALUATING THE RESULTS OF COMPUTERIZED ADAPTIVE TESTING

James B. Sympson
University of Minnesota

The problem of evaluating a testing procedure is not unique to adaptive
testing. Thus, many of the comments I will make are applicable in a broader
context than the one we are dealing with today. On the other hand, several
considerations will be mentioned in connection with adaptive testing that do
not exist under other circumstances. Before discussing methods of evaluation,
we should first be more precise about what it is we wish to evaluate.

Elements of a Testing Procedure

A testing procedure can be conceived of as a composite process that has
six component elements. These elements are: a theory of the trait being
measured, a strategy of item selection, a medium for item administration, a
medium for responding, a mode of item response, and a scoring procedure.

By "theory of the trait" I mean the entire network of hypotheses and
deductions associated with the construct we are attempting to measure. This
would include statements about the nature of the trait, its relationships
with other traits, and its relationships with a variety of observable variables.
The most fundamental theoretical hypotheses in current latent trait theories
are hypotheses regarding the form of the item characteristic curve.

By "strategy of item selection" I mean the rule, or set of rules, that
determines which items in a Targe item pool will be administered to a given
testee. In non-adaptive testing procedures all testees are administered the
same set of items. As Mr. Vale has illustrated, in adaptive testing the set
of items administered to a testee depends on his/her responses at the time of
testing.

By "medium for item administration" I refer to the method by which the
test stimuli are delivered. Examples include: verbal medium, as in indivi-
dual clinical testing; printed medium, as in paper and pencil testing; and
electronic medium, as in computer-controlled testing via cathode-ray-tube
terminals (CRTs).

By "medium for responding" I refer to the method by which the testee
indicates his/her response. This includes vocal responses, written responses,
and responses typed in at a teletype or CRT keyboard.

By "mode of item response" I refer to the type of response required from
the testee. In many cases the testee either indicates which of several response
alternatives is correct or agrees or disagrees with a statement. Other possi-
bilities include free-recall responding and confidence weighting schemes.

By "scoring procedure" I refer to the rule, or set of rules, by which the
testee's responses are converted to a summary statement (usually quantitative)
about the testee's status on the trait dimension of interest.
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This analysis of a testing procedure into component elements leads me to
reject the idea of evaluating any such procedure as an undifferentiated com-
posite. Rather, we should attempt to evaluate the individual effects of each
element. Evaluation of these elements can best be achieved by comparing two
testing procedures that differ in only one element. If one testing procedure
is found superior to the other, we may attribute this superiority to the one
element in which the procedures differ.

Unfortunately, this approach to evaluating the elements of a testing
procedure is not always possible. Some item selection strategies cannot be
implemented in any other medium than computer administration. Similarly,
some scoring methods presume that items have been selected in a certain way
during the testing process. Thus, it is not possible to implement every con-
ceivable combination of testing procedure elements. This means that in some
instances one must compare testing procedures which differ in two (or possibly
more) elements. Under such circumstances the effects of the elements which
differ will be confounded. Research in adaptive testing will progress best,
however, when efforts are made to evaluate these elements of a testing proce-
dure in terms of their unconfounded effects.

Classes of Evaluative Criteria

Many characteristics of a testing procedure can be subjected to evaluative
scrutiny. Most of these characteristics can be considered as belonging to one
of four classes of evaluative criteria. These classes are: validating criteria,
theoretical criteria, psycho-social criteria, and cost criteria.

Validating criteria and theoretical criteria have one principal feature
in common. They are based on the characteristics of scores generated by a
testing procedure. This may be contrasted with psycho-social criteria, which
involve consideration of the psychological and social effects of a testing
procedure, and cost criteria, which involve consideration of economic costs and
benefits. Validating and theoretical criteria differ in that the former serve
to establish the construct validity of a measurement procedure (Cronbach &
Meehl, 1955) while the latter do not. They also differ with regard to the type
of research they are based upon. Validating criteria require empirical re-
search while theoretical criteria are examined via either mathematical deriva-
tions or computer simulations.

Validating criteria. Most important for the evaluation of testing proce-
dures is the role that theory plays in telling the researcher what to expect
from an adequate measure of the trait. Given a theory of the trait to be
measured, conclusions regarding the "proper" characteristics of measures of that
trait may be derived. Evaluation in terms of validating criteria proceeds by
determining the extent to which a testing procedure generates scores that
possess these characteristics.

Validating criteria include: stability coefficients, internal consistency
coefficients, alternate form correlations, correlations with other tests, corre-
lations with non-test variables, characteristics of score distributions in
specified subject groups, differences between score distributions generated by
different subject groups, and statistical or graphical methods for assessing
goodness-of-fit. '
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A theory of the trait to be measured should indicate how much stability
over time to expect in assessing the trait. Testing procedures that generate
scores with the expected degree of stability from test to retest should be
evaluated more highly than procedures giving scores that do not conform to
expectation.

On the presumption that all the items in a test tap the same latent dimen-
sion, one expects high reliability for tests of sufficient length. With non-
adaptive testing procedures, coefficient alpha (Cronbach, 1951? or related
indices provide a suitable index for estimating this test characteristic.
However, in adaptive testing different subjects are administered different
items and the calculation of such indices is not possible. This forces the
researcher to rely on alternate form correlations to estimate the reliability
of scores from adaptive test procedures. It should be noted that in latent
trait theory measurement error is seen to vary as a function of status on the
latent dimension. Thus, overall reliability indices are generally not as impor-
tant in latent trait theory as they are in classical measurement theory.

An adequate theory of the trait will imply a pattern of correlations
between scores generated by a valid testing procedure and scores on other
tests. Similarly, an expected pattern of correlations with various non-test
variables (e.g., age, grade average, etc.) will be specifiable. In evaluating
a testing procedure, one should determine whether the anticipated correlational
patterns emerge.

In some situations one can specify how the scores of one or more selected
subject groups should be distributed. The testing procedure that generates
score distributions with the anticipated characteristics is to be considered
superior to one that does not.

Finally, if the theory of the trait includes hypotheses or deductions
about the form of the relationships among certain variables, statistical and
graphical approaches to assessing the goodness-of-fit of empirical data to a
theoretical model can be utilized (see, for example, Bock & Lieberman, 1970).

Theoretical criteria. Theoretical criteria, while also based on the
characteristics of scores from a testing procedure, cannot establish the con-
struct validity of the procedure. These criteria assume the validity of certain
critical theoretical hypotheses. They do not provide a method for testing
these hypotheses. Thus, theoretical criteria can only be used to establish
the superiority of one testing procedure over another if the two procedures
have equal prior claim to construct validity.

Theoretical criteria include: distributions of latent trait estimates,
correlations with latent trait scores, information curves, relative efficiency
curves, bias curves, standard error of measurement (SEM) curves. and various
types of "robustness".

In general, the use of these theoretical criteria requires that some
particular form of item characteristic curve be assumed and that true item
parameters be specified. Once these requirements are met, the various theo-
retical criteria can be obtained through either mathematical derivations or
computer Monte Carlo runs. These criteria cannot be used in Tive-testing
studies where the testee's status on the latent trait is unknown.
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Given a particular form for the item characteristic curve and the para-
meter values for an item pool, it is possible to conduct a computer simulation
in which simulated subjects with known Tatent trait scores are administered
items under various item selection strategies and scoring methods. Following
simulated testing, the researcher can compare the frequency distribution of
the latent trait estimates to the distribution of known latent trait scores
and can correlate the two sets of values.

It might seem that the testing procedure which generates estimates corre-
lating most highly with latent trait standing should be preferred to other
procedures. However, the correlation between latent trait estimates and Tatent
trait scores is a joint function of the distribution of the testee population
and the measurement properties of the testing procedure. In many cases a
change in the distribution of the input population can lead to a different
ordering of the testing procedures. Criteria that reflect the measurement
properties of a testing procedure, but are not dependent on assumptions about.
the population of testees, are desirable. The remaining theoretical criteria
have this property.

The "information" available from a testing procedure at some particular
level of the latent trait was defined by Mr. McBride as the squared ratio of
the slope of the test characteristic curve to the standard deviation of test
scores at that level. If we plot the amount of information available from a
testing procedure as a function of status on the latent trait, we generate the
information curve (Birnbaum, 1968, pp. 460-468) for the procedure. Both Mr.
Vale and Mr. McBride have shown examples of such curves. Testing procedures
with uniformly higher levels of information over the latent trait continuum
will be evaluated most highly.

If, at a given latent trait level, we divide the information value for one
testing procedure by the information value for another procedure, we have cal-
culated the "relative efficiency" of the two procedures at that level. A plot
of such values as a function of latent trait level is referred to as a relative
efficiency curve. A desirable property of such curves is that while a monotone
transformation applied to the latent trait continuum will alter the shape of
each individual procedure's information curve, the relative efficiency curve
will be unchanged by any such transformation (Lord, 1974).

If the expected value of the estimator of a testee's latent trait level
is equal to its corresponding parametric value, the estimator is unbiased.
If the estimator is biased, it may be informative to plot a bias curve that
shows the direction and magnitude of the bias over latent trait levels. Mr.
McBride showed examples of such curves earlier.

Another characteristic of a testing procedure that can be used as an
evaluative criterion is the standard deyiation of the latent trait estimator
at each latent trait level. A plot of the values of these standard deyiations
as a function of latent trait level can be referred to as a standard error of
measurement (SEM) curve. If a testing procedure generates unbiased estimates
of latent trait scores, then SEM values for the procedure can be obtained by
taking the reciprocal square root of the procedure's information values along
the latent continuum. The main advantage of the SEM curve over an information
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curve is that the SEM values are expressed in the same units as the latent
continuum while information values are expressed in arbitrary units. For an
unbiased estimator, SEM yalues indicate the typical magnitude of measurement
errors at each level of the latent trait.

Testing procedures may also be evaluated in terms of their "robustness".
Several varieties of robustness can be considered. First, one can inyestigate
the effects, on different testing procedures, of errors in estimating item
parameters. Some procedures rely more heavily than others on the accuracy of
item parameter estimates. Since we never have exact parameter values, testing
procedures that are robust in the face of errors in the item parameter esti-
mates should be evaluated more highly than procedures which are not. Similarly,
testing procedures that are robust in the face of an error regarding the form
of the item characteristic curve should be preferred. Finally, some testing
procedures, such as Owen's Bayesian method (Owen, 1969), make assumptions
regarding the form of the testee population. The researcher should determine,
via either analytic derivations or Monte Carlo simulation, the robustness of
such procedures when the stated distribution assumptions are in error.

Psycho-social criteria. Since my time is limited, I will not comment at
Tength on evaluation in terms of psycho-social criteria. It will suffice for
now to illustrate the kinds of questions that arise when evaluating the psycho-
logical and/or social effects of computerized adaptive testing. First, one
might ask about the psychological effect on testee motivation of exposing the
testee to a series of items adapted to the testee's standing on some ability or
personality dimension. A testing method that maintains motivation at optimal-
levels should be evaluated more highly than methods which do not.

Another basis for comparison of testing procedures is their face validity
in applied testing situations. While psychologists have previously encountered
the problem of face validity with tests whose content did not "appear relevant"
to the criterion behaviors being predicted, adaptive testing presents a new
source of potential misunderstanding for the layman. Even when all the items
in an item pool appear relevant to the casual observer, the fact that in
adaptive testing different people answer different items may cause an observer
(say, for example, a testee who has been rejected in his bid for a job) to
wonder how different people can be fairly compared when they haven't been
exposed to the same test questions.

Cost criteria. Some of the cost criteria that should be considered when
evaluating testing procedures are: cost of the delivery system and/or materials
needed to implement the procedure, the cost of generating and norming an item
pool of the size required by the procedure, susceptibility to clerical errors
by the testee during test administration or by office personnel in test scoring,
susceptibility to time loss due to delivery system failure or misrouted docu-
mentation, and time and personnel costs associated with the administration,
scoring, and interpretation of the test. While this Tist is not exhaustive,
it does provide an indication of the variety of cost criteria to be considered.

The Problem of Multiple Criteria

At this point we have reviewed several varieties of evaluative crjterja.
The problem of how to integrate multiple, and possibly conflicting, criteria
into an overall judgement about a given testing procedure remains. I would
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1ike to be able to resolye this problem for you, but cannot. The decision as
to which criteria are most relevant will necessarily depend upon the particular
circumstances in which the procedure is to be applied.

The one generalization that I am inclined to make is that the researcher
should not rely exclusively on one criterion index, or class of criteria, to
reach his/her conclusions. A balanced evaluation that utilizes both empirical
and simulation studies is recommended.

Some Specific Recommendations:

I would 1ike to conclude with some specific recommendations regarding the
conduct of studies to evaluate adaptive test procedures. First, one must be
sure that the subject samples in empirical evaluation studies are representative
of the groups one wishes to test ultimately. It is especially important that
variability in the latent dimension not be artificially restricted. In both
live-testing and simulation studies the sample sizes should be large enough
to reduce sampling error to tolerable levels.

In live-testing studies it is essential that the test items have been
carefully normed in a large and representative norming group. Bad item
parameters can vitiate careful test construction efforts, especially with
adaptive tests.

If one wishes to compare two testing procedures, insure that the proce-
dures have access to items of equal quality. This means that item discrimina-
tion values in the two tests should be equated as closely as possible. Also,
test length should be the same for the two methods. However, some adaptive
testing procedures do not have a fixed test length and will require that this
recommendation be ignored. In this situation the researcher should attempt
to equalize the average test length for the two procedures.

In a study involving retesting on an adaptive test, some testees will
receive new items if they alter any of their responses from test to retest.
Thus, a comparison with any conventional non-adaptive test will require that
an equal number of new items be administered in the conventional test in order
to hold memory effects constant across the two test methods.

Finally, keep in mind that if you use correlation coefficienis as criterion
indices when comparing testing procedures (e.g., alternate form correlations,
external validity coefficients, or correlations with latent trait scores) the
comparison will be biased in favor of that procedure which measures best in
the region of the latent trait continuum from which most of the testees are
sampled. If one is interested in obtaining equally precise measurement at all
points along the latent trait continuum, regardless of the distribution of the
testee population, then the use of correlation coefficients as criterion
indices is not recommended.



PROSPECTS: NEW TYPES OF INFORMATION AND
PSYCHOLOGICAL IMPLICATIONS

Nancy E. Betz
University of Minnesota

Traditional psychometric theory and practice has largely failed to take
advantage of the full variety and extent of information obtainable from
responses to test items. Consequently, the most information usually extracted
from a testee's responses to a series of items is a total test number correct
score, or a score on some personality dimension or interest scale.

But patterns of test item responses are far richer in information and are
far more complex to interpret than single number correct scores would imply.
Computer-assisted testing procedures provide us with the capability of ex-
tracting much more and a greater variety of information about an individual
or about the meaning of his/her score than have conventional testing procedures.

New Types of Information

Individualized errors of measurement. Probably one of the most important
new types of information obtainabTe from computerized adaptive trait measure-
ment procedures is a value indicating the accuracy of a given individual's
score on a test--that is, a value indicating the degree of confidence we can
place in a particular individual's test score. The traditional psychometric
approach to this problem has involved the determination of a reliability co-
efficient characterizing a whole test--from that reliability coefficient we
derive a standard error of measurement which we use to estimate the amount of
probable error in a given individual's test score. However, this standard
error of measurement represents the average expected error over all individuals
in the group and, as Mr. Vale has shown, the error in a typical peaked conven-
tional test is much greater for individuals whose ability levels deviate from
the average. Consequently, the average expected error may be an overestimate
or an underestimate of the amount of error in any one score.

Several of the adaptive testing strategies provide individualized esti-
mates of score accuracy. For example, the Bayesian adaptive testing strategy
provides, along with an ability estimate following each item administered, a
value indicating the error of that estimate.

Figure 24 shows an example of ability estimates and errors obtained as
successive items are administered to an individual in a Bayesian adaptive test.
Note how the size of the error band around the ability estimate decreases as
responses to successive items provide us with more information and a more
stable estimate of ability.
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Figure 24
REPORT ON BAYESIAN TEST
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In Bayesian adaptive testing, we can either fix the number of items
administered, thus allowing the error of the ability estimate to vary across
individuals, or we can administer different numbers of items to different
individuals with the intention of terminating the test when an acceptably
small degree of measurement error has been achieved. Thus, the Bayesian
ability estimate is far more interpretable than are conventional test scores
because we can obtain an estimate of the amount of probable error in each
individual's score.

Response consistency. Another type of information obtainable from some
adaptive testing strategies is something that we have called the consistency
of an individual's response pattern. Consistency refers to how reliably or
consistently an individual is interacting with an item pool.

In personality assessment, response inconsistency is usually assessed
using various types of validity scores. The notion of inconsistency in, for
example, pair comparisons or forced choice formats, is operationalized as the
number of circular triads. If a person's response pattern contains too many
circular triads, we infer that something besides the trait of interest is
influencing the person's responses and declare his test protocol invalid.
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In ability measurement, we would expect that an individual should, in
general, respond correctly to items below, or easier than, his/her ability
level, and incorrectly to items above, or more difficult than, his/her ability
level. If a person answers most easy items correctly and most difficult items
incorrectly, we would say that he is responding consistently--that is, his
response pattern seems to be influenced primarily by his position on the under-
lying trait continuum. However, if a person answers many easy items incorrectly
and many difficult items correctly, he {s responding inconsistently, indicating
that something besides the trait of interest is influencing his responses.

In an ability test, response inconsistency may be caused by such extraneous
variables as guessing, partial knowledge, or adverse psychological conditions
such as test anxiety or lack of motivation to do one's best on the test. What-
ever its cause, response inconsistency may reduce the reliability and/or validity
of a given test score. And, knowing the degree of consistency of an individual's
response pattern may be important when we intend to use that score in making
practical decisions.

We have operationalized the notion of response consistency in the
stradaptive testing strategy. As you may recall from Mr. Vale's presentation
(see Figure 15), in the stradaptive test, items are organized into a series of
levels or strata according to their difficulty. A correct response to an item
in one stratum leads to the administration of the most discriminating item
remaining in the next more difficult stratum. An incorrect response leads to
the administration of the most discriminating item remaining in the next less
difficult stratum.

Figure 25 shows a relatively consistent response pattern on the stradaptive
test along with 10 ability scores and five consistency scores. This person
entered the stradaptive test at stratum 5, based on some prior information.
Stratum 5 items were too easy for him and he answered items correctly until, at
item 4, he had been branched to stratum 8, which contained very difficult items.
Notice that he consistently responded incorrectly to the stratum 8 items,
which were too difficult for him, and correctly to the stratum 6 items, which
were too easy for him. The items in stratum 7 seem most appropriate in diffi-
culty, and he answered about half of them correctly and the other half incorrectly.

The consistency of this individual's response pattern was reflected in
his relatively low consistency scores. Score 11, defined as the standard
deviation of the difficulties of the items encountered by this person, was .59.
Further, in the stradaptive test, items are administered until a termination
criterion is reached. The consistency of this individual's response pattern
enabled him to meet the termination criterion after only twenty items had been
administered.

Contrast the response pattern of this consistent examinee with the one
shown in Figure 26. The response pattern shown in Figure 26 was far less con-
sistent and ranged over a larger number of strata, and thus a Targer range of
item difficulty. For example, this person answered some relatively easy items
at stratum 5 incorrectly (e.g., items 8 and 26) and answered some difficult
items at stratum 8 correctly (e.g., items 1 and 17). By responding inconsis-
tently, it took many more items before the termination criterion was reached,
and the individual's consistency scores are higher, reflecting a less consistent
response pattern,
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Report on a Stradaptive Test for a Consistent Testee
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Figure 26

Report on a Stradaptive Test for an Inconsistent Testee
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Consistency and stability. We hypothesized that the ability test scores
of individuals who are responding consistently should be more reliable than
those of individuals who are responding inconsistently. To study this hypothe-
sis, we used test-retest stability as an indication of score reliability, and
divided a group of 200 subjects into five groups on the basis of their consis-
tency scores on the first stradaptive test administration in a test-retest
design. Within each group, we calculated the test-retest stability of the
obtained ability estimates. Table 1 shows the results obtained for the consis- -
tency score defined as the standard deviation of the difficulties of all items
encountered.

Table 1

STRADAPTIVE AND CONVENTIONAL TEST
TEST-RETEST CORRELATIONS AS A
FUNCTION OF CONSISTENCY SCORE 11
ON INITIAL TESTING

STATUS ON CONSISTENCY SCORE 11

VERY VERY
HIGH HIGH AVERAGE LOW LOW

MEAN CONSISTENCY SCORE 517 . 625 .706 .815 1.038
WUMBER OF TESTEES IN INTERVAL 27 30 41 b3 29
STRADAPTIVE ABILITY SCORE: 1 .9¢40 . 849 847 . 768 652

2 .875 721 799 778 751

3 .956 . 813 . 878 . 826 708

4 934 . 340 . 846 .731 664

5 ,896 722 793 756 741

6 .950 798 . 886 820 704

7 .970 844 .902 . 851 758

8§ .981 2927 915 . 853 . 869

9 .983 . 939 .907 . 899 . 889

10 .951 792 . 882 . 822 . 718

CONVENTIONAL TEST 979 . 890 . 918 . 826 , 878

As the table shows, the highest test-retest stability was found in the
most consistent group of examinees for all ten ability scores. The clearest
pattern is that for ability score 1, where the scores in the most consistent
group had a test-retest stability of .94, while the scores in the least con-
sistent group had a stability of .65. The stabilities in the intermediate
groups decreased with decreasing consistency. Note also that the stability for
the most consistent examinees on scores 8 and 9 was .98, indicating very high
stability of the obtained ability estimates. These results suggest that the
use of consistency scores as moderator variables may proyide us with additional
information concerning the accuracy of longitudinal predictions from test
scores. ~
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Thus, such indices as estimates of the degree of accuracy of a given
individual's test score or the consistency of a test response protocol add
greatly to our capacity to meaningfully interpret a test score, and to the
utility that the score will have in practical decision-making contexts.

Additional new kinds of information. Computerized trait measurement can
provide us with additional types of information. For example, the computer can.
provide precise control over a subject's usage of confidence weighting proce-
dures or probabilistic responding, which can be used to assess partial knowledge.
When confidence weighting has been used in a paper and pencil format, it has
frequently been found that some examinees fail to assign probabilities to the
response alternatives in accordance with the test instructions. In computer-
administration, however, the examinee is informed immediately when he has not
assigned probabilities according to the rule. Thus computerized test adminis-
tration can eliminate the problem of invalid test protocols.

Computerized testing also has the capability of providing us with exact
response latency data for each item administered. Response latency data have
a variety of potential uses. For example, it might be used in conjunction with
confidence weighting procedures to aid in the identification of guessing
behavior. In the area of personality assessment it could be useful in identi-
fying the presence of random responding or response sets. Finally, the measure-
ment of response latencies may lead to further understanding of the speed versus
power components of ability.

Perhaps the most potentially important and fruitful area of research using
computerized testing lies in the study of human problem-solving and reasoning
abilities. Traditionally, psychometricians have asked how many problems a
person could solve and have left it to the experimentalists to investigate the
nature or the "how" of the problem-solving process. But knowledge of the pro-
cess of problem-solving should be a part of our theories of human abilities
and could contribute substantially to the construct validity of such theories.

One approach to the study of problem-solving abilities using computerized
test administration would involve a within-problem branching sequence in which
a series of interdependent questions are organized into a problem-oriented
structure. For example, one response at a given point in the structure might
result in the testee's arriving at a correct solution by an entirely different
pathway than would a different response at that given point. We could study
the amount and type of information the testee needs to solve a problem, the
efficiency with which he goes about it, and the different problem-solving
systems or pathways utilized by different individuals.

The time now seems right, therefore, for using the computer to integrate
the measurement and the study of intelligent behavior. Limiting the information
we obtain from test-taking behavior to whether an item was answered correctly
or incorrectly is wasteful of much potentially significant and useful informa-
tion and is now no longer necessary, thanks to the availability of computer-
assisted testing procedures. ' '

Psychological Effects

In addition to the variety of new information obtainable from computer-
assisted testing procedures, it also has the potential to improve the psycho-
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logical environment of testing. In the past, psychometricians have paid
considerable attention to the characteristics of tests administered to groups,
for example, their reliability and validity. But we have forgotten that it is
an individual who takes a test, not a group. Highly valid and reliable tests
can be rendered useless for the measurement of an individual if, for one
reason or another, he is not performing to his fullest capacity. For example,
substantial amounts of error in the test score of an individual may result if
that person's performance is hindered by high levels of test anxiety or if he
is not motivated to do his best or to respond truthfully to test items.

Anxiety, motivation and frustration. In the area of ability measurement,
tests are typically geared to the ability level of the average member of a
group. Such tests will be a rather different experience for examinees of
differing ability levels. The low ability individual receives a series of
items which are too difficult for him or her and may react by becoming
threatened, anxious, or frustrated--the test may seem hopeless and he may
simply stop trying. The high ability individual, on the other hand, receives
items which are too easy for him--this person may find the task boring and
unchallenging and, in a fashion similar to that of the Tow ability examinee, may
simply stop trying to do his best. It is only for the average ability examinee
that the items are 1ikely to be sufficiently difficult to be challenging and
yet not so difficult as to seem hopeless.

Adaptive testing procedures, however, tend to maintain an appropriate
level of item difficulty for each individual. We don't yet know whether or
not difficulty levels appropriate to each individual's ability level are the
best ones for keeping motivation at high levels and anxiety and frustration
at low levels. But at least adaptive testing procedures should keep the rela-
tive degree of item difficulty constant across ability levels and should thus
have less tendency to arouse differential levels of motivation, anxiety, or
frustration in individuals of different ability levels.

Feedback. Computerized test administration also makes it very easy to
provide the examinee with feedback, immediately after each item response, as
to the correctness or incorrectness of that response. A number of writers
(e.g., Bayroff, 1964; Ferguson & Hsu, 1971; Zontine, Richards & Strang, 1972;
Strang & Rust, 1973) have suggested that immediate knowledge of results, or
feedback, may have positive motivating effects on some examinees and, therefore,
may increase the likelihood that they will perform to their fullest capacities.
Knowledge of results has long been considered important in the area of learning
and instruction and has been built into methods of programmed and computer-
assisted instruction. Further, the constructors of individually-administered
intelligence tests, for example, Binet, Terman & Wechsler, all stressed that
some form of encouragement by the examiner was essential in keeping the
examinee motivated and performing to his fullest capacity, although this
encouragement was not to include knowledge of results per se.

Since the effects of immediate feedback on performance on objective
tests of ability have been only rarely studied, we have 1ncorporated immediate
feedback into some of our research designs.
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Feedback and race.? In one study, both a conventional test and a pyra-
midal adaptive test were administered by computer to a group of inner-city
high school students. The group was racially mixed, consisting of both black
and white students. Tests were administered such that half the group received
the conventional test first, while the other half received the pyramidal test
first. Within each order of test presentation, half the group received feed-
back and the other half did not.

The results of the 3-way ANOVA for the conventional test scores are
shown in Table 2, using number correct as the dependent variable. The only
signiticant main effect was for race, with the overall performance of blacks
being significantly lower than that of whites.

Table 2

3-WAY ANALYSIS OF VARIANCE

SOURCE OF MEAN
VARIATION DF SQUARE F EST. P
ORDER 1 105.76 1,36 .25
RACE 1 2,013.26 25.84 00"
FEEDBACK 1 81.74 1.05 .31
RACE X ORDER 1 161.54 2.07 .15
ORDER X FEEDBACK 1 28.74 .37 .55
RACE X FEEDBACK 1 170,40 2.19 .y
ORDER X RACE X

FEEDBACK 1 599,40 7.69 L01°*
ERROR 82 77.92

However, the 3-way interaction among order, race, and feedback was
highly significant. Figure 27 shows the means for the 3-way interaction.
The 1eft side of the graph shows the group means under feedback conditions,
while the right side shows the means under no-feedback conditions. Note that
the performance of whites was uniformly better than that of blacks except
under feedback conditions when the conventional test was given first. In this
case, the performance of blacks was not significantly different from that of
whites.

Further analysis of this result suggested that it was due to motivational
effects. If it can be replicated it suggests the possibility that under opti-
mal conditions of test administration the performance differential between
racial groups might be substantially reduced.

Feedback, ability level and testing strategy. In a second study, either
a conventional test or a stradaptive test was administered with or without
feedback in two groups of subjects. One group was a "high ability" group
(College of Liberal Arts) and the other a relatively "low ability" group
(General College) based on average college admission test scores and high
school grades.

2These data were analyzed by Ms. Clara Deleon.
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Figure 27
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Table 3

MEAN NUMBER CORRECT ON 50-ITEM CONVENTIONAL

TEST FOR TWO SUBJECT GROUPS WITH AND
WITHOUT FEEDBACK

FEEDBACK NO FEEDBACK TOTAL

GROUP N MEAN N MEAN N MEAN
COLLEGE OF

LIBERAL ARTS 60 30.47 57 27.10 117 28,83
GENERAL

COLLEGE 28 22.54 28 20.71 56 21.62
TOTAL 38 27 .94 85 25.00 173 26.50

TWO-WAY ANALYSIS OF VARIANCE

SOURCE OF MEAN
VARIATION DF SQUARE F EST. P
GROUP 1 1945,29 21.67 .001°
FEEDBACK 1 354,28 3.95 .046"
GROUP X

FEEDBACK 1 22.45 025 . 999
ERROR 169 89.77
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Table 3 shows the mean number-correct scores on the conventional test
according to whether feedback was or was not-given. The analysis of variance
indicated a significant main effect for feedback, and analysis of the means
indicated that in both subject groups, the provision of feedback resulted in
significantly higher test scores. For example, in the College of Liberal Arts
group, the mean number correct under feedback conditions was over 30, while
that under no-feedback conditions was only 27. A difference of 3.5 score
points on a 50-item test could be highly influential in a practical decision
about an individual.

The results for the conventional test showed that feedback had a positive
effect on test performance, but when we looked at the stradaptive test, the
results were quite different. Table 4 shows maximum 1ikelihood scores on the
stradaptive test under- feedback and no feedback conditions. Note that there
is no significant effect for feedback.

Table 4

ABILITY ESTIMATES FOR STRADAPTIVE TEST FOR TWO
SUBJECT GROUPS WITH AND WITHOUT FEEDBACK

FEEDBACK NO FEEDBACK TOTAL

GROUP N MEAN N MEAN N MEAN
COLLEGRE OF

LIBERAL ARTS 60 -.66 62 -.62 122 -.64
GENERAL

COLLEGE 28 -.96 27 -.81 55 -.89
TOTAL 88 -.76 39 -.68 177 -.72

TWO-WAY ANALYSIS OF VARIANCE

SOURCE OF MEAN
VARITATION DF SQUARE F EST. P
GROUP 1 2.27 1.75 <184
FEEDBACK 1 .24 .19 . 999
GROUP X

FEEDBACK 1 .10 .07 .999
ERROR 173 1.29

However, in trying to interpret these apparently conflicting results, it
is necessary to remember that in the stradaptive test, almost everyone answers
about half the number of items administered correctly; thus, the feedback should
be about half negative and half positive. In the conyentional test, however,
high ability examinees receive mostly positive feedback while lTow ability
examinees receive mostly negative feedback. Further, the stradaptive test
maintains item difficulties at levels appropriate to each examinee's ability
so it is perhaps a less stressful and more positive experience, particularly for
"Tow ability" testees.
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Further analysis revealed that the levels of motivation reported by
examinees who took the stradaptive test were uniformly higher than the levels
reported by those who took the conyentional test. These data suggest that an
adaptive test led to higher levels of motivation whether or not feedback was
given. Thus, particularly for the low ability testees, an adaptive test may

have the same motivational effects that giving feedback on a conventional test
seems to have.

Implications. The results I have presented here are obviously not con-
clusive. Replications and further studies are certainly necessary. But given
the current concern with test fairness and bias, it seems that we should pursue
further the effects of various conditions of test administration upon perfor-
mance. Adaptive testing and immediate knowledge of results may be able to
provide testing conditions more conducive to allowing each individual to
demonstrate his/her fullest capacities in test performance. And, since compu-
terized adaptive trait measurement can provide us with important additional
information of a variety of types, it has promise of supplementing the paper
and pencil tests which have dominated psychological testing for the last 50
years.
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DISCUSSION -

Robert L. Linn . . . . . . . . . e e+« . . . .. .University of Illinois

I'd 1ike to start by commending David Weiss and the group of people
involved in the Psychometric Methods Program at the University of Minnesota
for the continued high quality work on issues related to adaptive testing.
This work is praiseworthy in several regards but, in my view, most notably
for its continued and systematic nature and for the use of multiple approaches
combining theoretical, simulation and empirical techniques. These aspects
give the work a cumulative quality that is too often missing.

Thanks largely to the continued work on problems in adaptive (or
tailored) testing by Fred Lord and the work at the University of Minnesota
there is by this time a pretty good understanding of the potential value of
adaptive testing techniques, at least under idealized conditions. The best
of the adaptive testing procedures provide the promise of measurement that
is nearly of equal precision throughout a wide range of ability with only a
small loss compared to a peaked converitional test at an ability level equal
to the difficulty location of the peaked test. David Vale's results support
this conclusion and indicate that several techniques have relatively good
potential.

There are a couple of general questions, however, that need to be kept
in mind in drawing conclusions from results such as Vale's. One of these
jssues is implicit in the limitations noted by Vale at the end of his paper.
That is, will the results based on an overly simple model generalize to real
items and real examinees? Items do differ in discriminating power. Further-
more, items with equal discriminating power are not apt to be uniformly dis-
tributed over item difficulty. Also, multiple-choice items are the backbone
of most standardized testing and such items generally require another ijtem
parameter for the lower asymptote. For these reasons I'd like to see more
simulation studies that are based on estimated item parameters (preferably
with three parameters per item) for actual pools of items.

Fred Lord has recently released an ETS Research Bulletin which not only
shows some very promising work of this type but includes an offer to make
available item parameter estimates based on the three-parameter logistic
model for 690 items from some fifteen forms of the SCAT and STEP tests. I
think that the exploitation of this pool of items and parameter estimates
in future simulation and empirical studies could be a great help in moving
our understanding of adaptive testing forward.

A second type of question that needs to be addressed in considering the
implications of results such as were presented by Vale and by McBride is
whether the gain is worth the extra effort and precision. This is a prag-
matic question and the answer will undoubtedly depend on a number of consider-
ations. Important among these considerations, however, is the purpose of the
testing. The procedures considered are of value where accurate measurement
over a wide range is important. For many testing purposes equi-precision is
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not very important. For example, in selection for a particular institution
precision is needed near the cut point, not over a broad range, and here the
peaked test does very well.

On the other hand, there are situations where precision over a wide
range is needed. Some of these were discussed by Wood in his review article
in the Review of Educational Research. Examples are for tests used by a
wide variety of institutions for many purposes such as a college admissions
exam. Another area is where there is an interest in plotting trends (growth)
over extended periods of time. In the latter situation, however, the compar-
isons to conventional procedures might be fairer if the possibility of using
prior information was allowed not only for the adaptive procedures but for
the conventional procedures. For example, Vale showed nice results for the
stradaptive test with different starting levels. Why not use prior information
to select different peaked or other conventional tests? This is done in crude
form all the time on educational achievement test batteries that have, so-
called, vertically equated tests appropriate for different grade levels.
However, current vertical equating is not based on an adaptive testing model,
and there is reason to believe that current vertical equating procedures are
rather inadequate.

The remainder of my comments are mainly on the paper by Nancy Betz and,
to a lesser extent, the one by James Sympson. I think there is a need for
considerably more research of the type reported by Betz under the heading of
Psychological Effects. Feedback effects are not a necessary part of a computer-
administered test but are an obvious possibility. The possible effects of
feedback on the measurement characteristics of the instrument are many and
mostly unknown. One might postulate that an adaptive test would be a less
frustrating experience for low ability examinees because they would encounter
fewer difficult items. On the other hand, many tests are arranged with easy
items toward the beginning of the test and progressively more difficult items
later in the test. Thus low ability examinees might have a less frustrating
experience as the result of the very easy items early in the conventional test
than on an adaptive test with a single middle difficulty entry point.

The three-way interaction of race by feedback by order obtained by Betz
js a tantalizing result. It clearly is one that is of sufficient potential
importance to require replication. Assuming that the result can be replicated
then many questions will need to be addressed, with the primary one being--Is
the same trait measured under feedback and no feedback conditions?

In the second feedback study reported by Betz it was unclear to me why
there was no group difference on the adaptive test. Doesn't this suggest
a problem with the adaptive test?

The focus on feedback vs. no feedback is an example of looking at one of
the components that Sympson wants to have separately evaluated. The logic of
separating the components is good but there is also a possibility of inter-
action which requires evaluation of the composites. '

I'd like to mention two other types of testing problems where adaptive
procedures may be of value. One is in instructional uses of Fests where .
frequent measures are needed for short-term dichotomous decisions. Adapting
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test length tg the examinee can yield savings in testing time. The second
prob1em area is in multidimensional measurement problems where allocation of
testing time for various dimensions might be adapted to the individual.

In summary, I would mainly Tike to encourage more work which uses as a
base parameters that mirror existing item pools, using these both for simu-

lation work and for corollary empirical work, and more efforts on psycho-
logical effects.

R. Darrell Bock . . . . . ... .. ... ... .. ... University of Chicago

As these excellent papers were being presented I made a few notes that I'l11
discuss in turn. Any discussant has to face the question of how much of the
difficulties of the subject he is going to let the speaker assume away. In the
case of David Vale's presentation, I find myself very reluctant to let him
assume away the item heterogeneity and the possibility of correct responses
due to guessing.

My experience has been that sets of items that are supposed to be homo-
geneous are often surprisingly heterogeneous. The Ravens Matrices Test, for
example, is usually considered homogeneous and certainly scored as such. But
David Thissen, one of the students at Chicago, has a paper to appear in
Educational Measurement in which he reports an item analysis of the Ravens A,
B, and C sections. He found that the discriminating powers of the items
estimated in this procedure indicate that the main source of discrimination
is a subset of items in Section B. They define the well-determined dimension
underlying the test and the other items contribute 1ittle to it.

This is typical of the dilemma that may confront the test constructor: he
has items whose discriminating powers vary a great deal, so that if he were to
throw away items in order to obtain a set that is homogeneous in discriminating
power, he would be in the embarrassing position of throwing away what appeared
to be the best items.

I am uncertain how to deal with this problem. Perhaps it is actually risky
to use these highly-discriminating items because their source of discrimination
may be something peculiar to the particular data. The discriminations may be
valid for the calibrating population, but not generalized to the population to
which the test will be applied. If this is the case, we may be well advised
to regard these highly-discriminating items with suspicion and to remove them,
or at Teast to adjust downward the discriminating powers when estimating latent
scores for subjects. The issue is difficult to resolve, but any proposals for
test construction that assume them away cannot be considered ready for imple-
mentation.

The other matter is that of guessing. I am not enthusiastic about any
solution to this problem that assumes all subjects are guessing in the same way.
Willingness to guess is very much a personality characteristic that cannot be
suppressed even by explicitly instructing all subjects to guess. Some will guess,
but others will omit items rather than mark them randomly. If the item analysis
procedure is based on the assumption that all subjects guess, then it will have
to, in effect, assign random responses to omitted items. But such a practice
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may so seriously degrade the information that the test gives about the subject
that it is misinformation and is better ignored than included in the scoring
procedure.

A better strategy is one in which there is an evaluation of the probability
that a given subject is in fact guessing in his response to a given item. This
is essentially the strategy taken by Michael Waller in dissertation work at
Chicago recently reported in an Educational Testing Service Research Bulletin.
On the basis of a provisional estimate of a subject's ability and a provisional
estimate of the difficulty of the item, Waller sets up an objective rule for
deciding whether or not that particular response should be deleted from the next
stage of estimation of the item parameter and latent ability. This is very
similar to the approach to data analysis advocated by Tukey, in which an observa-
tion is trimmed or censored if it is sufficiently improbable that it could have
arisen from the main population being sampled. My preference would be to regard
all item response data as potentially contaminated by random responding and to
take steps in the analysis to distinguish, insofar as possible, between infor-
mative and non-informative item scores.

Turning now to McBride's paper, I found myself having difficulty accepting
at face value the bias curves comparing the Bayesian procedure and the maximum
Tikelihood estimate of test score. In order to obtain biases in the Bayes
estimates like those shown in Figure 21, McBride must be assuming a normal prior
distribution of ability, which in effect restricts the Bayes estimate, especially
at the ends of the distribution. In that case the word "bjas" seems unduly
prejudicial--both the Bayes and maximum 1ikelihood estimates are valid inferences
from the data starting from different assumptions. To plot curves of these
estimates conditional on ability, as in the graph, is unfair to the Bayes
estimate since, in effect, it takes into account the assumed probability density
at each point on the trait continuum.

I also think it is somewhat misleading to show the information supplied by
the ordinary test score based on an item-sequential test administration procedure
in which all subjects are expected to obtain the same score (but from items of
differing difficulty). The information of such scores, which is itself an
expected value, is actually zero everywhere. This seems a little too trivial to
plot on a graph. The non-zero values shown presumably reflect the imperfect
working of the sequential procedure.

In Sympson's paper, I certainly agree with him that there is a need, before
plunging headlong into latent trait assumptions and models, to give considerable
thought to the plausibility of the assumption that the behavior in question is
under the control of an unobservable and continuous latent trait. There may be
good reason to do so, but some sort of theoretical justification is needed.

Consider, for example, a vocabulary test. We could estimate vocabulary size
in terms of a sample of the number of words that a person has available in his
personal lexicon. That would be a perfectly objective, direct way of describing
the trait. How does one then justify switching from that intuitively diregt _
concept to an abstract conception of a latent verbal ability? A possible justi-
fication that I can think of is that, if vocabulary is to serve as an index of
cognitive development generally, we might wish to think in terms of capacity for
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acquisition of vocabulary as a developing latent trait of which personal lexicon
is a consequence. If so, it is a measure of that continuously developing
capacity that we're trying to capture, and the vocabulary ijtself is just a
symptom of that growth. Another justification might be that the latent trait
estimate has greater generality and power to predict and account for behavior

in other areas. If so, some of that generality and power should be demonstrated
and not merely assumed as is so often the case in theoretical presentations of
the subject.

Concerning specific criteria for evaluating items, I wish that Sympson had
not chosen to omit discussion of some of the preliminaries. I think that, at
an early stage in working with an jtem domain, it is advisable to look at some
form of factor analysis of the item intercorrelations. In the past there have
been objections to this because of the type of correlation coefficient used.
Phi coefficients introduce spurious "difficulty" factors and should be avoided.
Tetrachoric correlation coefficients may give a non-positive definite matrix
of correlations and thus rule out rigorous factor analysis with a statistical
test of the number of factors (although an approximate analysis goes through
without difficulty).

But recently, in the March 1975 issue of Psychometrika, Anders Christoffersson
has published a technique for a general factor analysis of dichotomous data that
overcomes all of these objections and is reasonably practical computationally.

His procedure could be used at a first level to verify that the item domain is
unidimensional, or to classify items according to dimension. Once the set of
items is narrowed down to a unitary domain under the control of a single latent
trait, then the psychometric procedures for estimating item parameters and traijt
values will provide good statistical tests of whether or not the latent trait
model holds. There are tests that would distinguish between the homogeneous case
where a Rasch model would apply and a heterogeneous case where a more general
model--the normal ogive or logistic model--would be required. The technical pro-
cedures for making these decisions are in fact available in the form of likelihood
ratio tests of alternative models.

Finally, a comment on Nancy Betz's paper. Bob Linn has already made a number
of points about that paper, so I will pick up just one aspect of it. I strongly
support the point of view that traditional testing is too limited in terms of the
sources of information that it exploits in order to assess abilities. But I am
also concerned that, in an effort to expand these sources by a shift to computer
terminal test administration, we will cut off a very important area of item con-
tent, namely the graphics. Much graphic material--half-tone or color pictures,
for example--cannot be presented even on CRT displays under computer control.

But these visual and non-verbal ways of communicating information should never-
theless be part of the evaluation of ability.

In recent years it has become increasingly clear that cognition is by no
means limited to verbal skills. It appears that, in most people's minds, there
is going on simultaneously with verbal and logical reasoning based on semantic
mediation, a kind of analogical, spatial, non-verbal reasoning capable of solving
concrete problems without the aid of the semantic device. The evidence for this
is in work that shows the relative specialization of the left and right hemi-
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spheres of the brain--the left to semantic processes and the right to spatial or
configural processes. Some of this work has been summarized by Jerre Levy in
the Proceedings of the 32nd Annual Biology Colloguium.

This work should remind us that if we restrict ourselves to the written or
spoken word, we may end up measuring just half the brains of our subjects!
Rather than do that, we should demand some type of computer-controlled equipment
that is capable of handling visual displays as well as verbal displays. We
could imagine stand-alone equipment based on a small mini-computer and some sort
of random-access slide file. Slides would be selected under computer control and
projected as the item stimuli. We might also want to have auditory display, but
I think for most purposes a random access slide file would be sufficient. Proto-
types of such equipment already exists, but I do not believe they are available
off-the-shelf at non-prohibitive prices..

As education becomes increasingly centered on the individual, it is not
unreasonable to assume that a school of any size ought to have some such special
equipment for individual evaluation of students. Students could then be sent to
the facility for individualized testing under control of the mini-computer at any
time that a question arises about their educational progress. If schools had
such facilities, the possibility would be open for much more frequent individual
testing and monitoring of student progress. That's the direction I would like to
see educational testing move in the next decade.
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APPENDIX

Technical Information

Data Generation and Analysis . . . . . . . . . . . . ... C. David Vale

The data for the information curves presented were obtained from compu-
ter simulations of responses of hypothetical testees to hypothetical items
administered under the different testing strategies. In a computer simula-
tion, the computer first simulates a hypothetical testee, by specifying an
ability level. Then, that hypothetical testee is "administered" items, and
responds according to some mathematical model. For this presentation,
assuming no guessing and item discriminations of a=1.0, the response model
(i.e., algorithm) was as follows: :

First, the probability of a correct response, given the "testee's"
ability, was calculated from the following equation:

P;(e)=e(e-by) [5]

where Pi(e) Probability that testee with ability o

will answer item 7 correctly.

¢(x) = the unit normal distribution integrated
‘ from -~ to the standard deviate, x.

0 = the ability level of the testee.

bj = the difficulty of the item.

After the probability of a correct response was determined, a random number
was generated from a rectangular distribution between 0 and 1. If this
number was greater than the probability of answering the item correctly, the
jitem was considered answered incorrectly; otherwise it was considered correct.

Using data generated in this way, information curves were constructed by
calculating information values at several points along the ability continuum
from the following formula, suggested by Birnbaum (1968):

| (o) = [—gTE()ﬂOj:]z
X x10
where I,(0) is the information about o provided by score x.

(6]

The numerator of Equation 6 may be viewed as a scaling function, converting
the score, x, into an ability metric. It is also the partial derivative of
the score with respect to ability evaluated at that level of ability, indi-
cating the relative rate of change of the two variables. The denominator is
simply the conditional standard deviation of the score, or the dispersion of
the score, x, evaluated at a fixed level of ability (i.e., imprecision of
measurement).
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To calculate information values, 1000 response records were generated at
each of 15 equally spaced levels of ability ranging from -3.5 through 0.0 to
3.5. For the middle 13 points, partial derivatives of the score means were
calculated with respect to ability at each level of generating ability by
taking the derijvative of the second degree Lagrangian interpolation polynomial
fitted to three successive points. This technique finds the first derivative
of the second degree polynomial best fitting the point of interest and the
two adjacent points. Because points on each side of the point of interest
were needed to estimate the polynomial, the endpoints (i.e., -3.5 and 3.5)
were not considered in calculating the information values. When the deriva-
tives were obtained, they were divided by the standard deviation of the scores
at the level of ability on which the derivative was centered and then squared
to yield the information at that point.

Table A-1 presents the raw information values, for each of the seven
strategies, from which the information curves were calculated. To draw the
curves, these values were "smoothed" by fitting a cubic polynomial regression
curve to them and then plotting the regression function (except for the
pegke? conventional test's curve which was smoothed by averaging the two
sides).

Data Generation and Analysis . . . . . « « « v « v« v 4 . . James R. McBride

Item response simulation. Every item g had its discrimination parameter
ag equal to 1.25, and its guessing parameter c¢_ equal to .20. Each simulated

examinee < was characterized by one of 32 discrete values of the trait o.
One hundred examinees were simulated at each of thirty-two points in the

interval [-3.2, +3.0]. For each examinee i, the probability of a correct
response to the current simulated test item was calculated by evaluating

the 3-parameter logistic function:

Plu;=1]0) = P (e) =c + (1-cp[1+expi-17a, (6,-b)H]™" [7]

The resulting numerical value Pg(@i) was compared with a random number Rgi
from a distribution rectangular in the interval [0,1]. An jtem score of 1
was assigned if P (ei)>R ;5> otherwise a score of 0 was assigned. The item
difficulty parame%er value bg was determined as described below.

Generation of item response vectors and scores. Owen (1969) gave the
Bayesian sequential procedure for selecting test items, and scoring the
resulting tests, used in this study. Before administering the initial test
item to any examinee ¢, the method assumes a normal prior distribution on o,

with parameters u_, o 2. For every examinee in this study, u =0 and o=1.

The parameters Hg and og were updated after each item response ug (ug=] or 0;
here g=1, 2, ... 20). Thus, before administering item g, there was an

assumed normal prior distribution on ©;, with parameters “51]’ 02.41).
- o-



Table A-1

Raw Information Values Used To Construct Information Curves

Strategy
Ability Rectangular Peaked
Level Conventional Conventional Flexilevel Pyramidal Two-Stage Stradaptive Bayesian
-3.0 3.676 .636 4,582 6.425 6.411 12. 301 10.983
-2.5 5.024 1.432 5.222 8.074 7.556 12.943 12.867
-2.0 5.737 3.165 7.253 9.757 8.839 11.806 12.988
-1.5 6.011 5.520 9.257 12.517 10.001 ~ 11.966 14.354
-1.0 6.286 9.251 9.510 13.643 11.133 12.055 13.941
-0.5 6.621 13.689 9.485 14.394 11.494 13.030 13.917
0.0 6.301 15.276 11.584 14.525 13.593 11.939 13.118
0.5 6.726 13.521 8.819 14.677 12.530 12.189 14,352
1.0 6.476 8.859 9.024 13.868 10.602 12.120 13.446
1.5 5.923 5.749 7.734 12.038 9.019 12.416 13.753
2.0 5.901 3.775 7.186 10.379 9.038 12.612 12.659
2.5 4.745 1.620 6.307 8.801 8.208 12.866 11.490
3.0 3.617 .654 4,081 6.605 6.392 12.612 10.683

_Vg.-
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The updated parameters p(i),.oz(i) were those of the posterior distribution on

©3. After each step g tﬁe next item to be administered was selected from those
in the item pool so as to minimize E(°§+])' The Bayesian "test score" (which
is an estimator of ei) assigned was the latest posterior value Mg In this
study, twenty items were administered to each examinee 7, so in each case the

Bayesian test score é? = ugg), the posterior mean after twenty items were
administered.

The method of updating p, and ¢2 is contingent on the item response.

For a correct response to item g the updated prior was set equal to the

posterior value Hgo such that

,
- P D)
M= M+ e }’ 9-1 ‘
A I TX ° J';2+-c:_' { ¢ + 1=} dc-0) [8]
and its variance is
of = o? 1 - 1—-¢g “cp(r»i ‘(1-1:.) $(D) _ D'
v DRETS | T [9]
Following an incorrect response the corresponding expressions are
a2 ] ¢¢o) | _
u - ” - — "‘ _I
i ! J.'-z_'_ ”oz.i‘. ecor] ol
and ) . $(D)
o = of 1 - d0) o) T °
’ 9=t . J1+-;’c:_" A oo ‘ [11]

In equations 8 through 11:
¢ (D) is the normal probability density function;

¢ (D) is the cumulative normal density function;

D = {b’— uy_',/ J.;2+ "::.1

A= 'c' + |1—e°]q,¢-m

In this simulation study, at every step g, the item difficulty b _was set
equal to the current prior mean, which is Mg-1- Thus at every step g the

value D=0. This considerably simplifies evaluating Equations 8 through 11.
Although it is an artifice, it was done here in order to "purify" the results,
whose generality would be restricted if a typical finite item pool were used.
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Table A-2. Sample means (X) and conditional variances (S2) of test scores
from three different methods of scoring a simulated 20-item
Bayesian adaptive test.

Scoring Method

Owen's Maximum Number
Bayesian Likelihood Correct

0 X X X S2 X 52
-3.2 -2.197 .203 -2.997 1.095 5.04 2.418
-3.0 -2.174 212 -2.799 .516 5.54 2.028
-2.8 -2.118 .168 -2.747 .419 5.72 1.642
-2.6 -2.057 .118 -2.603 .442 6.30 2.110
-2.4 -1.887 .126 -2.352 .404 6.72 2.242
-2.2 -1.775 .126 -2.162 421 7.35 2.428
-2.0 -1.756 .074 -2.015 .192 7.68 1.518
-1.8 -1.590 .071 -1.796 .197 8.46 1.848
-1.6 -1.373 .073 -1.601 .288 8.64 2.290
-1.4 -1.263 .067 -1.366 .096 9.31 1.754
-1.2 -1.097 .094 -1.167 .135 9.79 2.506
-1.0 - .960 .072 - .996 .100 10.23 1.777
- .8 - .762 .073 - 772 .092 10.65 2.088
- .6 - .569 .065 - .556 .072 11.07 2.005
- .4 - .386 .060 - .366 .070 11.68 2.198
- .2 - .189 .086 - .147 .097 11.89 1.678
0 - .034 .071 .010 .082 12.11 1.918
.2 211 .089 .278 .096 12.30 1.910
! .389 .082 .458 .087 12.81 1.814
.6 .549 .068 .619 .071 13.27 1.697
.8 .729 .085 .816 .092 13.21 2.046
1.0 .940 .070 1.031 .079 13.87 1.673
1.2 1.141 .086 1.248 .096 14,01 1.630
1.4 1.290 .099 1.411 114 14.15 1.528
1.6 1.506 .082 1.637 .096 14.51 1.090
1.8 1.705 .087 1.860 .104 14.68 1.638
2.0 1.887 .067 2.056 .080 15.32 1.258
2.2 2.042 .068 2.224 .086 15.52 1.010
2.4 2.209 .080 2.420 .101 15.88 1.126
2.6 2.442 .068 2.687 .090 16.43 1.065
2.8 2.536 .096 2.797 .120 16.67 1.341
3.0 2.784 .081 3.060 .108 17.07 .965
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Let é?L be defined as the maximum likelihood score (or estimator). This

test score was calculated after each examinee's vector of twenty item scores
was generated, and was based on the pattern of item scores, and the 1ikelihood
function

L= P(u,.uz....uzol )=1 P (9 “l-p 0]

[12]
Newton-Raphson iteration was used to solve for the approximate value of o
at which L was maximal.
The number-correct score for person 7 was simply the sum of the jtem
scores ug:
X E u,,

Unlike the Bayesian and maximum likelihood scores, X. is not strictly an
estimator of ©;. However, since number correct scores are usually used to

estimate ab1]1ty, it is not inappropriate to treat X as an estimator of 04

in order to study the bias in X.. Therefore let e Xi'

Estimation of test score regressions, and information curves. Let the
symbol X refer genera]]y to any test score (or trait level estimate) 6. For
each of the three scoring methods used in this study, the conditional mean
and variance of the 100 scores X at each of the thirty-two o levels were
recorded. These data are listed by scoring method in Table A-2, and were
used to generate the plots shown in Figures 19 and 20.

For each scoring method, the regression of X on © was estimated by
fitting a third-degree polynomial to the thirty-two observed mean scores,
using a least-squares regression program to calculate the regression co-
efficients. The coefficients obtained are listed by scoring method in
Table A-3; the regression equations were of the form

~

X=a +ao+ao02+ao0d [14]
0 1 2 3

The slope of each regression equation was estimated s1mp]y by evaluating
the first derivative of each, at every o0-point samp1ed in the interval
-3<@<+3

Calculation of the test score information at each of the sampled o-points
was based on Equation 6. Numerical values shown in Table A-4 were derived
by dividing the square of the regression slope by the smoothed score variance
estimate at each o point in that same interval.

That is,Ix(@) was estimated for each scoring method by

i, (0 -2 [15)

X1
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Table A-3. Estimated coefficients of the third-degree polynomial equations
for the regression of test score X on simulated trait level o,
for three different scoring methods.

Scoring Method

Coefficient Owen's Bayesian Maximum Likelihood Number Correct
a -.0302 .0217 12.0410
a .9528 , 1.0237 1.7623
a .0338 ' .0055 - .1020
a ‘ -.0150 - .0046 .0192

3

Variance accounted
for: .9996 .9997 .9976

In estimating oile for Equation 15 the method of "moving averages" was

used to "smooth" the sample estimates at each o-point in the interval [-3, +3].
The resulting estimates, oile , are listed in Table A-4, along with the slope

and information value estimates, for each ©-point in the interval. Figure 23
is a plot of the information estimates listed in Table A-4.
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Table A-4. Silope of the estimated regression of test scores on trait level,

the smoothed estimated conditional variance aile of test scores,
and the estimated information fx(e) in the test scores, for each
of three methods of scoring a 20-item Bayesian adaptive test.

Scoring Method

Owen's Bayesijan Maximum Likelihood Number Correct

e) Slope oile Ix(e) Slope oile Ix(@) Slope oile Ix(e)
-3.0 .341 .194 .58 866 .677 1.11 2.894 2.029 4.13
-2.8 407 .166 1.00 .884 .459 1.70 2.786 1.927 4.03
-2.6 469 137  1.61 L9071 .422 1.92 2.683 1.998 3.60
-2.4 .528 .123 2.27 .917 422 1.99 2.584 2.260 2.95
-2.2 .583 .108 3.15 .932 .339 2.56 2.490 2.063 3.01
-2.0 .634 .090 4.47 .946 .270 3.31 2.401 1.931 2.99
-1.8 .682 .073 6.37 .959 .226 4.07 2.316 1.885 2.85
-1.6 .726 .070 7.53 971 194 4.86 2.236 1.964 2.55
-1.4 .767 .078 7.54 .981 .173 5.56 2.161 2.183 2.14
-1.2 .804 .,078 8.29 .990 .110 8.91 2.090 2.012 2.17
-1.0 .837 .080 8.76 .999 109 9.16 2.024 2.124 1.93
- .8 .87 .070 10.74 1.006 .088 11.50 1.962 1.957 1.97
- .6 .893 .066 12.08 1.012 .078 13.13 1.905 2.097 1.73
- .4 916 .070 11.99 1.017 .080 12.93 1.853 1.960 1.75
- .2 .935 .072 12.14 1.021 .083 12.56 1.805 1.931 1.69
0 .950 .082 11.01 1.024 .092 11.40 1.762 1.835 1.69
.2 .962 .081 11.43 1.025 .088 11.93 1.724 1.880 1.58
.4 .970 .080 11.76 1.025 .085 12.36 1.690 1.807 1.58
.6 .974 .078 12.16 1.025 .083 12.66 1.661 1.852 1.49
.8 .975 .074 12.84 1.024 .081 12.95 1.636 1.805 1.48
1.0 .972 .080 11.81 1.021 .089 11.71 1.616 1.783 1.46
1.2 .966 .085 10.98 1.017 .096 10.59 1.601 1.610 1.59
1.4 .956 .089 10.27 1.012 .102 10.04 1.590 1.416 1.79
1.6 .943 .089 9.99 1.001 .105 9.54 1.584 1.419 1.77
1.8 .925 .079 10.83 .998 .093 10.71 1.582 1.329 1.88
2.0 .905 .074 11.07 .990 .090 10.89 1.585 1.302 1.93
2.2 .880 .072 10.76 .980 .089 10.79 1.593 1.131 2.24
2.4 .852 .072 10.08 .970 .092 10.23 1.605 1.067 2.41
2.6 .821 .081 8.32 .958 .104 8.82 1.622 1.177 2.24
2.8 .78 .082 7.51 .945 .106 8.42 1.643 1.124 2.40
3.0 .746 .082 6.79 .931 .108 8.03 1.669 1.153 2.42
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