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Introduction 

          Currently, CAT is of considerable interest to the measurement and research 

community because of its advantages over the traditional paper-pencil tests (Lord, 1977; 

Kingsbury & Weiss, 1983; McBride & Martin, 1983; Urry, 1977; Wainer et al., 1990).  A 

major feature of CAT is its ability to select a unique set of items from an existing item 

bank to match the current estimate of the ability level of an examinee. A equal or greater 

measurement accuracy can be achieved with fewer items than a paper-pencil test.  

However, the advantages of CAT cannot be fully realized without the application of item 

response theory (IRT).  IRT is a mathematical model describing the relationship between 

the probability of an examinee’s correct response on a test item and his or her underlying 

ability.  The estimation of ability is one of the major components in CAT systems.  The 

accuracy of ability estimation methods used in CAT has significant impacts on the 

quality of CAT testing because it affects not only the final score reported, but also the 

item selection and test termination.  The purpose of this investigation is to assess the 

relative accuracy of four CAT ability estimation methods:  Warm’s weighted likelihood 

estimate (WLE, 1982), maximum likelihood estimate (MLE; Lord, 1980), expected a 

posteriori estimate (EAP; Bock & Mislevy, 1982) and maximum a posteriori estimate 

(MAP; Samejima, 1969) using the generalized partial credit model (Muraki, 1992), in 

various conditions of CAT.  Special attention has been paid to the Warm’s (1989) 

weighted likelihood estimation of ability in polytomous IRT models because no empirical 

CAT study has been done on this procedure using polytomous IRT models. 

          In computerized adaptive testing (CAT), an examinee’s ability is estimated after 

each item response is given. There are several ability estimation methods available, such 

as the maximum likelihood estimation (MLE; lord, 1980) and the Bayesian estimation 
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methods (OWEN, 1975; EAP, 1982; MAP, 1983). Wang (1995) provided guidelines for 

selecting an appropriate CAT ability estimation method in different decision contexts for 

three-parameter IRT model. All of these estimation methods produce estimates that are 

biased to some degree, and are shown to have the first-order bias O(n-1) and higher-order 

bias, in other words, bias is inversely proportional to n, n2, n3, ... (Lord, 1983a, 1983b, 

1984, Wang, 1995). In general, the asymptotic bias of the MLE  may be written as 
∧

θ

                     (1)      ,   ...))(MLE(Bias))(MLE(Bias))(MLE(Bias 21 +θ+θ=θ
∧∧

where Bias1, Bias2 stand for first-order and second-order bias, etc. Firth (1993) stated   

that there are two approaches that may reduce the MLE bias, especially reducing the  

first-order bias term, one is a corrective approach and the other is a preventive approach.  

          The corrective approach includes the two methods that have been extensively  

studied in the literature, one is the computationally intensive methods, such as jackknife 

method and bootstrap method (Quenouille, 1949,1956), the other is simply to subtract as 

estimate of the first-order bias Bias1(MLE( )) from the MLE estimate; the bias-corrected 

estimate is then expressed as 

∧
θ

                                        .                                (2)         ))(MLE(Bias1MLEsCorrectBia
∧∧∧
θ−θ=θ

Both of these methods may succeed in removing term Bias1(MLE(θ)) from the  
∧

asymptotic bias (Warm, 1989).  A common feature of the two methods is that  they are 

‘corrective’ in nature, that is, the MLE  is first calculated, and then corrected.  

However, both methods require the existence of a finite θ . 

∧

θ
∧

          The preventive approach (Firth, 1993) to reduce MLE estimate bias, on the other 

hand, modifies the score function before the MLE estimate is calculated. In general, the 

MLE is derived as a solution to the score equation S(θ): 

0)(l)(S =θ
θ∂
∂

=θ ,                                                          (3) 

where l(θ)=lnL(θ) is the log likelihood function for any given model.  
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Figure 1.  Modification of the Score Equation
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      The bias in θ  can be reduced by introducing a small bias (first-order) into the score 

function (Firth, 1993). For given bias B(θ), score function S(θ) can be corrected to the 

score function S*(θ) by simple triangle geometry as illustrated in Figure 1. Since the 

Fisher Information function is defined as  
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Which is the expectation of the negative value of S(θ) tangent at ,or  –I(θ) = S’(θ)   

then for any given bias B(θ), the score function can be shifted by the amount of I(θ)B(θ). 

∧

θ

The direction of “corrected” bias depends on the sign of bias. If is subjected to a 

positive bias B(θ), the score function is shifted downward at each point θ by an amount 

I(θ)B(θ); otherwise, the score function is shifted upward. This defines a modified score 

function  

∧

θ

                                                   S*(θ) = S(θ)-I(θ)B(θ)              (4) 

and hence a modified estimate θ*, is given by solving S*(θ) = 0. It is can be seen that, in 

general, the O(n-1) bias may be removed from the maximum likelihood estimator by 

introduction of an appropriate bias term into score function. It is  not an assumption of 

this procedure that bias reduction is always desirable. The merits of bias reduction in any 

particular problem will depend on a number of factors (Copas, 1988).  
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       Warm (1989) proposed a weighted likelihood estimation (WLE) method for the 3-

parameter IRT model based on the relationship between the bias functions of the 

maximum a posteriori (MAP) and MLE methods. The WLE method not only reserves the 

MLE method’s attractive asymptotic properties, but also overcome the MLE method’s 

unbounded nature. The WLE method happens to be a special case of Firth (1993) 

preventive approach. The focus of Warm’s paper is a method for reducing the bias, 

especially on the removing first-order term. Warm derived so-called weighted likelihood 

estimation (WLE) and proved that WLE has less bias than MLE with same asymptotic 

variance and normal distribution (Warm,1989). Warm had proved that the WLE is 

unbiased to order o(n-1), that is, 

                                                    Bias(WLE(θ)) = 0 + o(n-1). 

Warm concluded that WLE is less biased than MLE estimation method in every 

condition investigated in his study. Samejima (1998) expanded Warm’s procedure to 

Graded Response Model. 

 

Warm’s Weighted Likelihood Estimation for Dichotomously Scored Responses 

   For a test with n items, the MLE of θ is the value of θ that maximizes the likelihood 

function L(u|θ), 

                                 L ,                 (5) jj u1
j

n

1j

u
j ))(P1()(P)|( −

=
θ−θ=θ ∏u

where u is the vector of n scored item responses, uj=1 if item j is answered correctly, and 

uj=0 if item j is answered incorrectly. Pj(θ) is the probability answering item j correctly 

for examinee with θ ability modeled by 3PL IRT model. The weighted likelihood 

estimate of θ, WLE(θ)=θ*, is defined as the value of θ, such that the weighted likelihood 

function:  

                                 w(θ) • L(u|θ) ,               (6) 

is maximized. θ* is the solution of  

                                         0)(wln
)P1(P
P)Pu(n
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Lord (1983a) gives the asymptotic bias in the MLE(θ), which is O(n-1): 

                                        Bias(MLE(θ))= 2I2
J− ,             (8) 

where I is test information, I =
)(Q)(P

)(P
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Lord (1984) also gives the bias of Bayesian modal estimate of θ, BME(θ), with a 

standard normal prior: 

                                              Bias(BME(θ))=Bias(MLE(θ))-
I
θ ,         (9) 

based on Equation 8 and 9, Warm conjectured that the bias of the estimator defined by 

(7) is 

          Bias(θ*)=Bias(WLE(θ))=Bias(MLE(θ))+
)(I

)(wln

θ
θ∂
θ∂

.         (10) 

In order to find the estimator that is unbiased, setting Equation 10 to zero and substituting 

Equation 8, Warm obtains 

                             )(I))(MLE(BiasI
I2
J

I2
J)(wln

2 θ∗θ−=∗





 −−==

θ∂
θ∂ .     (11) 

An estimate satisfying Equation 7 and 11 is called a weighted likelihood estimate. As 

Warm pointed out, the WLE is not in any sense Bayesian, because no assumptions have 

been made about the distribution of θ, and w(θ) is a function of the item parameters of 

the test. Warm (1989) proved that Bias(WLE(θ)) is only o(n-1) and showed WLE(θ) is 

asymptotically normally distributed with variance equal to the variance of MLE(θ). 

Expansion of WLE for Polytomously Scored Responses 

      Samejima (1998) expanded the Warm’s weighted likelihood estimation method to  

the polytomously scored responses. First, Samejima (1993a, 1993b) generalized Lord’s 

MLE bias function in 3PL for polytomous responses, then based on the bias function for 

polytomous scored items, she applied Warm’s WLE to the polytomous responses.  

  The MLE bias function for general discrete responses is given by  
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where Pjk(θ) is the probability of a response in category k to item j with the assumption 

that Pjk(θ) is, at least, five times differentiable with respect to θ. When Pjk(θ) is modeled 

by the Samejima’s Graded Response Model (1969), Equation 12 becomes 
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    When Pjk(θ) modeled by the Muraki’s Generalized Partial Credit Model, Equation 12 

takes the form 

  PccP2cPk2kcPk-PaD 
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Based on the general discrete response, a straightforward expansion of Warm’s WLE for 

3PL to general discrete response can be expressed as 

      ∑
∈

∧
≡θθθ−θ
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Where I(θ) is the test information. 

Method and Data 

          The primary goal of this design is to answer the stated research questions and to 

maximize generalizability and replicability of research results.  Both descriptive methods 
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and inferential procedures will be used in this MC study.  Although the descriptive 

methods provide global summaries of the study results, the deficiencies of descriptive 

methods are (a) masking of complex effects, (b) failing to provide estimates of the 

magnitudes of the effects, and (c) failing to systematically take into account the sampling 

error associated with the random generation of data (Harwell, 1997; Hoaglin and Andres, 

1975; Timm, 1976).  The inferential procedure, on the other hand, can overcome all of 

these deficiencies by conceptualizing this MC study as statistical sampling experiments 

(Harwell, 1997; Spence, 1983).  Additional advantages of using this conceptualization are 

that the threats to internal and external validity can be evaluated and that the similarities 

and differences among the results of different studies on the same problems can be 

compared (Campbell & Stanley, 1963).  

1  Independent Variables 

(1)  Ability Estimation Methods 

          The primary discrete independent variable examined in this study is the ability 

estimation methods.  Four ability estimation methods for the generalized partial credit 

model and the graded response model are MLE, WLE, EAP, and MAP and the 

relationship between this variable and other independent variables (described below) are 

considered.  For each method, the values of the true ability parameter used in this study 

are equally spaced across a fixed range on the θ scale.  Specifically, 21 true ability values 

are used ranging from –4.0 to 4.0 by increments of 0.4 are used for the GPCM.  CAT will 

be simulated for 500 examinees at each of the 21 true ability parameter points. 

(2)   Test Termination Rules 

     Two types of test termination rules to be investigated for the GPCM and the GRM are:   

     (a) Fixed test length:  The CAT test will be terminated after certain number of items  

           has been administered.  Four test lengths will be used in this study are 5, 10, 15,   

           and 20 items.  Previous studies (Koch & Dodd, 1985; DeAyala, 1992; Dodd et al.,  

          1989) employed the fixed test lengths from 10 to 30 items.  To search for the  

           smallest acceptable test length, a test length of 5 items is also included in this  

           investigation.  

     (b) Fixed test reliability:  The testing will be terminated when certain values of   

         estimated reliability are reached.   



   8 

Since the relationship between reliability (ρ) and the standard error of ability estimation 

(SE) can be expressed as ρ = 1- SE2 given the θ variance is 1, estimated reliability and 

estimated SE have the same effect on the CAT termination.  Both MLE and WLE use the 

square root of the reciprocal of test information as SE.  Both EAP and MAP Bayesian 

methods use the standard deviation of the posterior distribution as SE.  The three values 

of reliability to be employed are 0.7, 0.8, and 0.9, which correspond to SE of 0.55, 0.45, 

and 0.32 and test information values of 3.33, 5, and 10.  A maximum test length of 33 

items will be used to terminate the test for a given exaimee if the prespecified levels of 

reliability cannot be reached.  This maximum test length is used because the smallest 

bank size is 33 items.  

(3)   Sizes of Item Bank 

          Although some researches has found that item banks with 30 items may be 

sufficient for accurate θ estimation with few nonconvergence problems (Dodd, 1987, 

1993; Dodd & DeAyala, 1994; Dodd et al., 1989; Koch & Dodd, 1989). However, these 

findings do not imply that any item bank composed of 30 or more items will be sufficent 

for polytomous CAT (Dodd et al., 1995). 

          The real-life item bank 1GP, which consisted of 263 polytomous scored 1996 

NEAP' science items that have 3 to 5 categories for grade 4, 8, and 12, will be used for 

this study.  The item parameters for the generalized partial credit model were calibrated 

by the Educational Testing Service.  There are three sizes of item banks (1GP, 2GP, and 

3GP) for the GPCM.  Table 1 describes the sizes of the three item banks and the number 

of different category items in each bank. The 66 items in bank named 2GP and 33 items 

in the bank named 3GP are randomly drawn from bank named 1GP using the 

proportional stratified random sampling method (Gall et al., 1996), based on which the 

same proportional items with different numbers of category are randomly drawn from the 

1GP bank.  Similarly, the 66 items in the bank 2GR and 33 items in the bank 3GR are 

randomly drawn from the 1GR bank using the same technique.  

          The proportions (BN/BS) in Table 1 represent the percentage of different category 

items in the item bank in which the items are sampled.  All three banks have the  

 

 



   9 

Table 1 

The Sizes of the Item Banks and the Number of Different Category Items in Each Bank. 

 3 Categories Item 4 Categories Item 5 Categories Item 

IRT 

Model 

Bank 

Name 

Bank 

Size 

(BS)   

Number

(BN) BN/BS 

Number

(BN) BN/BS 

Number

(BN) BN/BS 

1GP 263 208 0.79 47 0.18 8 0.03 

2GP 66 52 0.79 12 0.18 2 0.03 

 

GPCM 

 3GP 33 26 0.79 6 0.18 1 0.03 

 

Table 2 

Summary of Descriptive Statistics for the Estimates of Item Parameters of the Three Item 

Banks, 1GP, 2GP, and 3GP, under the Generalized Partial Credit Model. 

 

Name/ 

Size 

 

Parameter Mean Median S.D. Min. Max. 

a 0.549 0.522 0.229 0.105 1.871 

b1 0.713 0.720 2.011 -6.972 11.746 

b2 1.270 1.264 2.640 -17.381 13.926 

b3 1.034 1.004 2.371 -6.369 7.187 

1GP 

(263) 

b4 0.822 0.822 2.546 -3.159 4.924 

a 0.539 0.527 0.171 0.171 1.200 

b1 1.066 1.000 1.728 -3.204 7.399 

b2 1.679 1.491 2.519 -2.665 13.926 

b3 1.832 1.412 1.656 -0.856 5.506 

2GP 

(66) 

b4 4.270 4.270 0.535 0.535 4.925 

a 0.560 0.523 0.190 1.90 1.055 

b1 0.752 0.631 1.384 -2.738 3.437 

b2 1.695 1.684 2.495 -3.638 7.293 

b3 1.467 1.680 3.480 -6.369 7.187 

3GP 

(33) 

b4 2.000 2.000 0.000 2.000 2.000 
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same proportions of items with different numbers of categories.  Table 2 shows the 

summary of descriptive statistics for the item parameters of these three item banks.  

2  Dependent Variables 

       There are a variety of statistics that can be used to evaluate the accuracy of ability 

estimation in CAT.  Based on the consideration of consistence with previous CAT ability 

estimation studies, five criteria variables (or their log transformation) were used in this 

study: the biases, standard errors (SEs), root mean square errors (RMSEs), fidelity 

(correlation of the estimated and true parameters, Wang & Vispoel, 1998), and 

administrative efficiency (the mean numbers of items needed to reach a criterion SE 

level).  These criterions are used to examine the effects of the manipulated independent 

variables described in the last subsection because they can provide complementary 

evidence. The bias in IRT ability estimate can cause several problems: (a) difficulty to 

maintain comparability of CAT and paper-and-pencil versions of a test (Eignor &  

Schaeffer, 1995; Segall, 1995; Segall & Carter 1995; Wang & Kolen, 1997), (b) 

problematic in the test with a domain-referenced cut-score (Wang et al., 1998).  In 

general, bias has little effect in the situations where only the relative orders of ability  

estimates are important. In this kind of the situation, SE or RMSE may play an important 

rule.  The bias, SE, and RMSE can be assessed both conditionally or overall (average) 

across an entire ability distribution.  The conditional indices are computed at each θ 

point, and overall indices are computed by taking the absolute values of the conditional 

indices and integrating them over a normally distributed θ for a population of examinees 

using the numerical integration method (Wang & Vispoel, 1988).  These formulas are: 

Conditional indexes: 
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where θ is the true ability,  is the estimated ability for the rth replication, and N is the 

number of replications.  The number of replications in this MC study is the analogue of 

sample size.  Because the primary goal is to assess the relative accuracy of ability 

estimation methods, the significance of a statistic will be tested, and the empirical 

sampling distributions for the statistics be generated.  In order to minimize the sample 

variance and increase the power to detect the effects of interest, a large number of 

replications are desired.  In this study, relative accuracy is assessed by comparing the 

differences between the ability parameter estimates and the true ability across 

replications. In such a study, 500 replications are considered sufficient (Stone, 1993). 

rθ̂

          The RMSE can be separated into two components, Bias and SE (RMSE2 = Bias2 + 

SE2).  With respect to θ, this can be expressed as 
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The Bias used in this study is averaged across the replications (or examinees),  

                                         )(
N
1)(Bias r

N
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∧
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∧

∑ .                                            (5)                                        

Overall indexes: 
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                          ),(weight)ˆ(RMSEAVERAGE i
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1i
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=
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where the weight(θi) are quadrature weights based on the standard normal distribution, 

and the θi are the 21 equally spaced true ability levels that ranged from –4 to 4 in an 

increment of 0.4.  On the basis of the assumption, = cθ + e, where c is a constant θ̂
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depending on bias, and e is the random error (If no bias, c=1).  Wang (1995) defined the 

fidelity correlation as 

                .

c
c

ccc)ˆ,cov(

2

2
e2

2
e

22
ˆˆ

2

ˆ
ˆ

σ
+σ

σ
=

σ+σ

σ
=

σ
σ

=
σσ
σ

=
σσ
θθ

=

θ

θ

θ

θ

θ

θ

θθ

θ

θθ
θθ

r               (3.9) 

If there is no linear relationship between bias and θ, then this equation will provide only 

an approximation to the fidelity index.  Not all dependent variables defined here will be 

used in the ANOVA.  Descriptive statistics will be provided for all conditional indices 

and overall indices, and inferential statistics will be used only for the overall indices. 

3  Experimental Design 

          In addition to obtain the descriptive statistics, for the overall indices, one 4 x 3 x 4 

and one 4 x 3 x 3 completely crossed design ANOVA (Table 3) will be used to 

investigate the effects of the four ability estimation methods by 

         Table 3   

         Experimental Design A and B for the Fixed Test Length (Items) and Fixed Test  

         Reliability  Termination Rules 

Termination Rules 
Design 

Estimation 

Methods Bank Sizes Fixed Test Length (Items) 

Design A MLE 263, 66, 33 5, 10, 15, 20 

 WLE 263, 66, 33 5, 10, 15, 20 

 EAP 263, 66, 33 5, 10, 15, 20 

 MAP 263, 66, 33 5, 10, 15, 20 

Design B MLE 263, 66, 33 0.7, 0.8, 0.9 

 WLE 263, 66, 33 0.7, 0.8, 0.9 

 EAP 263, 66, 33 0.7, 0.8, 0.9 

 MAP 263, 66, 33 0.7, 0.8, 0.9 

     

A.   The four test termination rules (fixed test length), the three sizes of item, and the four   

       ability estimation methods will be used in design A. 

B.   The three test termination rules (fixed reliability), the three sizes of item, and the four  

       ability estimation methods will be used in design B.   
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The four nominal levels of the ability estimation methods manipulated are MLE, WLE, 

EAP, and MAP for both designs.  The three levels of item bank sizes manipulated are 

261, 66, and 33 for both designs.  The four levels of the test termination rules 

manipulated are 5,10,15, and 20 using fixed length for design A. The three levels of the 

test termination rules manipulated are 0.7, 0.8, and 0.9 using fixed reliability for design 

B.    

4  Computerized Adaptive Testing Simulation Procedures 

          The C program CATMASTER will be used to carry out this CAT simulation study.  

The known item parameters for the GPCM will be used throughout the simulation 

process.  The procedure for polytomous IRT models CAT related to this simulation study 

include the following:  First, conditioned on each of the 21 equally spaced true ability θ 

levels, 500 simulees are assigned, the range of 21 true θ values is from -4 to 4 in an 

increment of 0.4.  Second, for each simulee, a CAT is simulated which takes the 

following steps: 

Step 1.  To start the test, an initial ability estimate of 0.0 is assumed. The maximum 

information item selection algorithm is used to select all the items, including the 

first one. 

Step 2.  After an item is selected, a response is generated based on the simulee's true θ 

             and item parameter estimates.  To generate a response, the probabilities Pjk(θi) of 

obtaining each of the k response categories are computed using either the GPCM 

or GRM model.  Then the cumulative probabilities of getting response category 

k or higher are computed and compared to a random number between 0 and 1 

generated from a uniform distribution.  If the random number falls between the 

cumulative probabilities of k-1 and k category, a response score k is assigned for 

this simulee.  

Step 3.   After a response is generated, the provisional ability level is estimated using one 

of four ability estimation methods (MLE, WLE, EAP, MAP).  Based on this 

provisional estimate, the next item is selected using the maximum information 

procedure and one of the stopping rules is checked using this information. 
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Step 4.   Step 2 and step 3 are repeated until a termination criterion is researched.  If the 

testing is terminated, the final ability estimate and error variance estimates are 

recorded.   

For all CAT simulations in this study, the provisional estimate after the first item is based 

on the EAP with a normal prior.   

5  Analyses of Results  

          Both descriptive statistics and inferential statistics will be used to analyze the 

results.  The descriptive statistics, such as tabular summaries, and graphical presentations, 

will be used to present the conditional and overall indices.  The results based on the 

conditional and overall indices are presented in following ways:   

(1)  The conditional indices Bias, SE, and RMSE of the four ability estimation methods  

      (MLE, WLE, EAP, and MAP) for different simulated conditions will be plotted   

against θ to investigate how different the bias, SE, and RMSE are by using different 

ability estimation methods. 

(2)  The mean and SD of the number items required for fixed reliabilities of four ability 

estimation methods will be plotted against θ to see how efficient of each ability 

estimation method is at different ability levels.  

(3)  The overall indices of bias, SE, and RMSE will be tabulated for different CAT 

simulation conditions.  

          At the same time, the inferential analyses will be carried out.  Because the 

independent variables of ability estimation method and test termination rule are nominal 

factors rather than metric factors, the ANOVA is preferred over a regression analysis for 

this study.  Several separate ANOVAs for each of the overall dependent variables are run 

to detect the effects of independent variables. 

Results 

1. Results Based on the Conditional Indices 

Fixed test length 

          Figure 2 through 12 show the bias, SE, and RMSE of four ability estimation 

methods (WLE, MLE, EAP, and MAP) with different ability levels for four fixed test 

lengths based on bank size 263. It is very clear from figures 2 and 5 that the WLE has the 

smallest bias over entire range of ability among all four estimation methods for all test  
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----------------------------------------- 

Insert Figures 2 to 5 about here 

----------------------------------------- 

lengths, this result also matches the dichotomous model case (Wang, Hanson, & Lau, 

1998). Both WLE and MLE have considerably less bias than two Bayesian methods, it 

can be seen that the MLE has “outward bias”, which means the bias of MLE is positively 

correlated with θ; while WLE almost has no bias. The biases of EAP and MAP have 

“inward bias”, which means the bias is negatively correlated with θ.      

      From Figures 6 and 9, we can see that the WLE has less SE than MLE at almost all 

ability levels for both fixed test lengths, which means WLE not only reduce MLE’s bias,  

but also reduce MLE’s SE. It can be also seen that for both ability extremes, the Bayesian 

methods of EAP and MLE have far less variability than WLE and MLE, this reduction of 

variability is at the expense of increased bias. This finding also confirms previous finding 

that Bayesian methods had lower SE but higher bias when compared with MLE and WLE 

for dichotomous models (Wang, Hanson, & Lau, 1998; Warm, 1989).  

 

----------------------------------------- 

Insert Figures 6 to 9 about here 

                                             ----------------------------------------- 

    The figures 10 and 13 show that for all test lengths, the RMSE for all four estimate 

methods is similar along all ability levels, and WLE had less RMSEs than MLE.  All 

bias, SE, and RMSE decrease as the test length increases. 

 

----------------------------------------- 

Insert Figures 10 to 13 about here 

                                             ----------------------------------------- 

Fixed reliability 

        Figures 14 to 16 show the effects of fixing reliability at 0.7, 0.8, and 0.9 on the 

biases of the four ability estimation methods based on item bank 263. The fixed 

reliability changed the bias direction of MLE from “outward” to the “inward”. The WLE 
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further increased that “inward” bias, which is opposite with the situation of fixed test 

length. This means under fixed reliability rule, WLE fails to reduce the bias of MLE.   

Both MLE and WLE have remarkable smaller bias than Bayesian methods. As indicated 

in Figures 17 to 19, both WLE and MLE have larger SE than Bayesian methods and 

WLE has less SE than MLE.  Figures 20 through 22 show that non-Bayesian methods 

have lower RMSE than Bayesian methods at extreme ability levels, but have higher 

RMSE than Bayesian methods at middle level of ability.  WLE perform slightly well than 

MLE.  All bias, SE, and RMSE decrease as the test reliability increase. 

----------------------------------------- 

Insert Figures 14 to 22 about here 

                                             ----------------------------------------- 

          The Figure 23 to 25 shows the mean numbers of items required for achieved the 

same reliability 0.7, 0.8, and 0.9 by using different ability estimation methods. For 

average ability level examinees, the number of items required for MLE and WLE are 

approximately the double of those for EAP and MAP; for extreme ability level 

examinees, the numbers of items required for MLE and WLE are tripled. 

The sizes of item bank have slight effects on the all conditional indexes. 

----------------------------------------- 

Insert Figures 23 to 25 about here 

                                             ----------------------------------------- 

1. Results Based on the Overall Indexes 

          Table  4 though 6 show the results of three-way ANOVA of absolute bias, average 

SE, and average RMSE for fixed test length termination rule and Table 7 to 9 show the 

results of three-way ANOVA of absolute bias, average SE, and average RMSE for fixed 

test length reliability rule. 

          In general, the results for overall indexes match well with the results of conditional 

indexes.  The factor of ability estimation methods has the most influence on absolute bias 

because it accounted for 54.0% total variance of absolute bias for fixed test length 

termination rule and 74.0% total variance of absolute bias for fixed reliability termination 

rule across the three sizes of item banks.  The test termination rule also play a important 

part of estimated absolute bias, it take 15.4% total variance for fixed test length and  
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Table 4 
Results of ANOVA of Absolute Bias for Fixed Test Length Termination Rules 
 

Source df F p η2 
Main Effects     
    M (Method) 3 1039.952 0.000 0.540 
    S (Size) 2 59.298 0.000 0.021 
    L (Length) 3 613.137 0.000 0.318 
Interaction Effects     
    M x S 6 37.496 0.000 0.039 
    M x L 9 38.191 0.000 0.059 
    S x L 6 2.336 0.046 0.002 
    M x S x L 18 4.076 0.000 0.013 
Error 48    

 
Table 5 
Results of ANOVA of Average SE for Fixed Test Length Termination Rules 
 

Source df F p η2 
Main Effects     
     M (Method) 3 122.258 0.000 0.167 
     S (Size) 2 66.079 0.000 0.060 
     L (Length) 3 483.836 0.000 0.659 
Interaction Effects     
     M x S 6 0.605 0.725 0.002 
     M x L 9 18.696 0.000 0.076 
     S x L 6 1.904 0.099 0.005 
     M x S x L 18 1.059 0.419 0.009 
Error 48    

 
Table 6 
 Results of ANOVA of Average ln(RMSE) for Fixed Test Length Termination Rules 
 

Source df F p η2 
Main Effects     
     M (Method) 3 3.361 0.026 0.052 
     S (Size) 2 1.473 0.238 0.015 
     L (Length) 3 20.135 0.000 0.312 
Interaction 
Effects 

    

     M x S 6 1.731 0.134 0.054 
     M x L 9 1.559 0.155 0.072 
     S x L 6 2.650 0.020 0.082 
     M x S x L 18 1.733 0.066 0.161 
Error 48    
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Table 7 
Results of ANOVA of Absolute Bias for Fixed Test Reliability Termination Rules 
 

Source df F p η2 
Main Effects     
     M (Method) 3 5774.783 0.000 0.740 
     S (Size) 2       7.463 0.002 0.001 
     R (Reliability) 2     1805.544 0.000 0.154 
Interaction Effects     
     M x S 6   33.933 0.000 0.009 
     M x R 6 341.405 0.000 0.087 
     S x R 4   13.018 0.000 0.002 
     M x S x R 12   11.723 0.000 0.006 
Error 36    

 
Table 8 
Results of ANOVA of Average SE for Fixed Test Reliability Termination Rules 
 

Source df F p η2 
Main Effects     
     M (Method) 3 60.737 0.000 0.021 
     S (Size) 2 590.280 0.000 0.139 
     R (Reliability) 2 2518.213 0.000 0.591 
Interaction Effects     
     M x S 6 29.867 0.000 0.021 
     M x R 6 37.894 0.000 0.027 
     S x R 4 304.547 0.000 0.143 
     M x S x R 12 37.996 0.000 0.054 
Error 36    

 
 
Table 9 
Results of ANOVA of Average ln(RMSE) for Fixed Test Reliability Termination  
Rules 

Source df F p η2 
Main Effects     
     M (Method) 3 124.574 0.000 0.062 
     S (Size) 2     8.993 0.000 0.003 
     R (Reliability) 2    2632.117 0.000 0.876 
Interaction Effects     
     M x S 6 6.910 0.001 0.007 
     M x R 6 9.523 0.000 0.010 
     S x R 4 7.438 0.000 0.005 
     M x S x R 12 3.564 0.002 0.007 
Error 36    



   19 

15.4% total variance for fixed test reliability test.  Both WLE and MLE show significant 

less absolute bias than Bayesian methods and WLE perform best.   On the other hand, the 

SE was affected mostly by the factor of test termination rule, the fixed test length take 

65.9% of total variance in average SE and the fixed test reliability take 59.1% total 

variance in average SE.  The second most influence factor for SE is different for different 

termination rule.  For fixed test length termination rule, the ability estimation method 

accounted for 16.7% variance in SE; and for fixed test reliability termination rule, the 

size of item bank accounted for 13.9% variance in SE.  SE from both WLE and MLE are 

significant larger than the SE of Bayesian methods, WLE has significant less amount of 

SE than MLE and EAP has significant less amount of SE than MAP.   RMSE (log of 

RMSE) was affected mostly by the factor of test termination rule.  The factor of fixed test 

length accounted for 31.2% total variance of RMSE and three-way interaction of M x S x 

L takes 16.1% total variance of RMSE.  The factor of fixed test reliability accounted for 

87.6% total variance of RMSE and second largest factor of ability estimation takes 6.3% 

total variance of RMSE.  There are no significant differences among different ability 

estimation methods except the difference between WLE and MLE.   

 

Conclusion 

        The precision of ability estimation method used in CAT has significant impact on 

the quality of CAT testing, because it not only affects the final score reported, but also 

affects which items are selected for particular examinee. The bias index is one of the 

most important measures of the precision of ability estimation in CAT. In general, for all 

four ability estimation methods (WLE, MLE, EAP, and MAP), both conditional and 

overall indexes (bias, SE, RMSE, fidelity) of dependent variables decrease as the values 

of independent variables (test length, test reliability, and item bank size) increase.  The 

magnitudes of the differences among those dependent variables decrease as the values of 

independent variables increase. 

         WLE is superior to MEL in terms of all those dependent variables and WLE 

perform better than Bayesian methods in terms of bias.  MLE has less bias than both 

Bayesian methods.  Both EAP and MAP show more favorable results of SE and fidelity 

than the results of both WLE and MLE; EAP did better job than MAP for almost all 
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conditions.  Different test termination rules have significant impact on those dependent 

variables for given ability estimation methods, especially for WLE and MLE methods.  

Although the quality of item banks has vast effects on the conditional distribution of bias, 

SE, RMSE, and test efficiency, the factor of size of item bank has less impact on the 

differences among those dependent variables than the factor of test termination rules.  

This study confirms the Warm’s conclusions of that (a) WLE biased to o(n-1), while 

MLE, EAP, and MAP are biased to O(n-1), (b) WLE method has small variance over 

entire range of θ for fixed test length CAT testing. 
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