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Relative Precision of Ability Estimations in Polytomous CAT: 
A Comparison under the Generalized Partial Credit Model and Graded Response Model 

 

Introduction 

      Computerized adaptive testing (CAT) using dichotomous scored item response models, such 

as Rasch or 1-PL, 2-PL, and 3-PL logistic models, are now found in many high- stakes 

educational and professional assessment programs.  However, in practice, there are a few CAT 

applications that have based on items with more "nature" format of using polytomous models, 

such as Samejima's (1969) graded response model (GRM), Muraki's (1992) generalized partial 

credit model (GPCM), Master's (1982) partial credit model, Bock's (1972) normal model, 

Andrich's (1978) rating scale model, and etc.. In some situations, given the richer and more 

realistic form of assessment of polytomous scored items comparing to dichotomous scored items, 

the CAT with polytomously scored items could be a more valid and reasonable choice.  in 

general, advantages of a polytomous model are:  (a) the amount of item information provided by 

a polytomous item is greater than that of a dichotomous response item (Baler, 1992; Bock, 1972; 

Sympson, 1983; Thissen & Steinberg, 1984, Samejima, 1969).  (b)  the rate of detecting 

mismeasured examinees using a polytomous item is greater than that of a dichotomous response 

item.  However, polytomous CATs are not widely used in the educational and professional 

testing settings because machine scoring of polytomous items is still difficult to achieve.  

Bennett, Steffen, Singley, Morley¸ and Jacquemin's (1997) research in computer scoring of open-

end format items has shown new hope for polytmous item-based CAT.   

        In CAT, an examinee's ability is estimated after each item response is given.  The ability 

estimates not only affect the final outcome of testing, but also affect which item is to be selected 

at each CAT stage.  Four IRT-based ability estimates have been popular in CAT research and 

applications in the past: (a) Warm's weighted likelihood estimate (WLE), (b) maximum 

likelihood estimate (MLE), expected a posterior estimate (EAP), and (d) maximum a posterior 

estimate (MAP).  Previous studies (Bock & Mislevy, 1982; Wang & Vispoel, 1998; Weiss & 

McBride, 1984; Wang, 1995; Wang, Hanson & Lau, 1999; Wang, 1999; Wang & Wang, 2001) 

have shown that the Bayesian methods, such as EAP and MAP, are severely biased toward the 

mean of the prior distribution and are thus unacceptable to many standardized testing programs.  

MLE was found to have smaller bias with a direction opposite to that of the Bayesian methods, 

(i.e., low ability examinees are negatively biased and high ability examinees are positively 



 3 

biased), but have a notably larger standard error (SE) than the Bayesian methods. Warm (1989) 

found that for 2- and 3- parameter IRT models, WLE were less biased than either MLE or 

Bayesian methods. Wang and Wang (2001) showed that for the Muraki's (1992) generalized 

partial credit mode (GPCM), WLE have better precision than MLE when the GPCM for fixed 

test length CAT was used in the CAT environment.   It was also found that WLE and MLE have 

smaller bias but larger SE than both EAP and MAP, which is consistent with the previous 

finding.  Samejima (1998) adopted Warm's approach and expanded it to the polytomous models 

and formulated it with the graded response model (GRM). Wang, Hanson and Lau (1999) and 

Wang & Wang (2001) demonstrated that Warm and Samejima's approach is a special case of a 

general approach proposed by Firth (1993) which has a more rigorous theoretical basis.  

The GPCM and GRM models are the two most commonly used IRT models for 

polytomously scored item.  Both models have item discrimination parameters, but GRM is a 

"difference model" and the GPCM is a "divide-by-total model" (Thissen & Steinberg, 1986).  

The two models differ in that with GPCM value of the item category parameters are not 

necessarily in successive order like those of the graded response model. 

A few studies have examined the relative precision of those four ability estimation 

methods using different polytomous IRT models (Gorin, Dodd, Fitzpatrick, & Shieh, 2000; 

Wang, 1999; Wang & Wang, 2001).  In particular, Wang and Wang (2001) systematically 

compared all four estimation methods under the GPCM model.  However, no study has 

systematically compared the four ability estimation methods under the GRM and no study has 

made the comparison between the GRM and GPCM models under a similar set of conditions.  

The present study not only extends the Wang and Wang (2001) study to GRM model, but also 

makes some comparisons between the two models.  It should be noted that the error indices 

under the two models can not be compared in a strict sense because the trait scales are slightly 

different for these two.  Thus, the two models can only be compared in some general sense.  For 

example, it can be examined if the relative precision of these ability estimation methods are 

consistent across the two models.  The comparison may also provide some guidelines to 

practitioners about which model they should use in implementing CAT.   

 

Objectives 

       The purposes of this paper are: (a) To evaluate relative precision (bias, SE, RMSE and 

others) of four ability estimation methods: Warm's weighted likelihood estimate (WLE), 

maximum likelihood estimate (MLE), expected a posterior estimate (EAP), and maximum a 
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posterior estimate under two polytomous models in CAT.  (b) To compare the ability estimations 

of the two polytomous models: the generalized partial credit model (GPCM) and the graded 

response model (GRM) under various computerized adaptive testing (CAT) conditions.   

 

Method and Data 

       A Monte Carlo simulation method was used to evaluate the ability estimation methods 

between two polytomous models in this study. A real item bank consisted of 263 polytomously 

scored 1996 NEAP's science items (Allen, Carlson, & Zelenak, 1999) and a simulated item bank 

were used for this study.  The item bank was originally calibrated using the GPCM model.  To 

construct the item bank using the GRM model, item responses to the entire item bank were 

generated for a large sample of simulees from a normally distributed population.  The response 

data were then calibrated using the GRM model using PARSCALE.  Three items were deleted 

from the calibration process due to poor fit, thus reducing the bank size to 260 for the GRM 

model.  These item parameters are treated as true item parameters in the simulation study.  The 

items in the two smaller banks are randomly drawn from the larger bank with 260 items.  Table 1 

and 2 show the descriptive statistics for the estimates of item parameters of three item banks 

under the generalized partial credit model and graded response model. 

The simulations were conditioned at 21 true ability values ranging from -4.0 to 4.0 by increments 

of 0.4 for both the GPCM and GRM.  A CAT was simulated for 500 simulees at each of the 21 

ability parameter points.  A maximum-information item selection procedure was used.  The 

effects of independent variables, size of item banks (260, 66, and 33), test termination rules 

(fixed test length and fixed test reliability), estimation methods (WLE, MLE, EAP, and MAP), 

and polytomously IRT models (GRM and GPCM) were examined by using both descriptive and 

inferential procedures.  The dependent variables are the bias, standard error (SE), root mean 

square error (RMSE), fidelity (correlation of the estimated and true ability parameters), and 

administrative efficiency (the mean numbers of items needed to reach a criterion SE level).  
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where θ is the true ability of simulees, which was used to generate responses in the simulation, 

 is the estimated ability for the rth replication, and N is the number of replications.  The 

number of replications in this MC study is the analogue of sample size.  Because the primary 

goal is to assess the relative accuracy of ability estimation methods, the significance of a statistic 

is tested, and the empirical sampling distributions for the statistics are generated.  In order to 

minimize the sample variance and increase the power to detect the effects of interest, a large 

number of replications are desired.  In this study, relative accuracy is assessed by comparing the 

differences between the ability parameter estimates and the true ability across replications. In 

such a study, 500 replications are considered sufficient (Stone, 1993). 

rθ̂

The RMSE can be separated into two components, Bias and SE (RMSE2 = Bias2 + SE2).   
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where the weight(θi) are quadrature weights based on the standard normal distribution, and the θi 

are the 21 equally spaced true ability levels that range from –4 to 4 in increments of 0.4. 

       Four experimental designs were used in the analyses of the overall indices.  For the fixed-

length tests, a 4 θ estimation methods x 3 bank size x 4 test length and a 4 θ estimation methods 

x 4 test length x 2 model completely crossed analysis of variance (ANOVA) designs were used.  

For the fixed reliability tests, a 4 θ estimation methods x 3 bank size x reliability level and a 4 θ 
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estimation methods x 3 reliability x 2 model completely crossed analysis of variance (ANOVA) 

designs were used. 

Results 

Conditional Indices 

      Figures 1 to 3 show the bias, SE, and RMSE of four ability estimates of fixed test length of 

10 items under both models.  It can been seen that the WLE has the smallest absolute biases and 

less SE over the entire or almost entire ability range among all the methods for both GRM and 

GPCM.  Both WLE and MLE have considerably less bias than the two Bayesian methods for 

both models. Both models have approximately the same precision characteristics along almost all 

ability levels for both fixed test length CATs although they are not strictly comparable.   

      Figures 4 to 6 show the bias, SE, and RMSE of four ability estimates of fixed test reliability 

of 0.9 under both models.  First, for both models, the WLE and MLE have remarkably smaller 

bias than EAP and MAP, especially at both extreme ability levels.  Second, for both models, all 

methods show the same amount of SEs, and last, for both models, WLE  and MLE have smaller 

RMSE than EAP and MAP. In general, there is no large differences of bias, SE, and RMSE  

between GPCM and GRM. 

      In general, the results of graded response model agree with those for the generalized partial 

credit model (Wang & Wang, 2001). 

 

Overall Indices 

      Table 3 summarizes the results of the three-way ANOVA of absolute bias, SE, and RMSE 

(averaged across θ levels) for the fixed test length termination and fixed reliability condition 

under the graded response model.  In general, the results for the overall indices further support 

the results of conditional indices for both models.  For the GRM, θ estimation methods and fixed 

test length termination rule that each accounted for 27.5% and 29.3% of the total variance of 

absolute bias had large influence on absolute bias while for the GPCM, the θ estimation methods 

had the most influence on absolute bias (Wang & Wang, 2001).  θ estimation methods for the 

fixed reliability termination conditions under the GRM has the most influence on absolute bias - 

they accounted for 80.5% of the total variance of absolute bias and this results match the result of 

GPCM.  Like GPCM, the each of fixed test length termination condition and fixed test reliability 

termination condition under GRM had large influences on RMSE (log of RMSE) and accounted 

for 51.1% and 90.9% of total variance of RMSE. 
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Figure  1.  Bias curves of the ability estimation methods of two models, 
test length = 10,  bank sizes = 263(260)     
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Figure  2.  SE curves of the ability estimation methods of two models,
 test length = 10,  bank size = 263(260)

0

0.2

0.4

0.6

0.8

1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Theta

SE

WLE_GPCM MLE_GPCM

EAP_GPCM MAP_GPCM

WLE_GRM MLE_GRM

EAP_GRM MAP_GRM

 



 8 

  Figure  3. RMSE curves of the ability estimation methods of two models,
 test length = 10, bank size = 263(260)
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Figure  4. Bias curves of the ability estimation methods of two models,
 Reliability = 0.9,   bank size = 263(260)
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 Figure  5.  SE curves of the ability estimation methods,
 reliability = 0.9, bank size = 263(260)
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Figure 6. RMSE curves of the ability estimation methods of two models,
 reliability = 0.9,  bank size = 263(260).
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  Table 4 provides the results of the three-way ANOVA of absolute bias, SE, and RMSE 

(averaged across θ levels) for the fixed test length termination and fixed reliability condition 

under the both models.  Instead of testing the effect of bank size, the effect of model as one 

among three factors of method, test length, and model was tested.   

      For fixed test length termination condition, all main effects of method, test length, and model 

on absolute bias, SE, and RMSE were statistically significant.  Although, model only accounted 

for 4% and 6.9% of the total variances of bias and SE, it accounted for 31.2% of the total 

variance of RMSE.  All interaction effects for bias, SE, and RMSE are not statistically 

significant at 0.01 level except for interaction between method and test length for SE and RMSE.  

θ estimation methods had the most influence on absolute bias - it accounted for 31.8% of the 

total variance of absolute bias; test length had the most influence on SE - it accounted for 51.5% 

of the total variance of SE.  

     For fixed test reliability termination condition, all main effects of method, test reiability, and 

model on absolute bias, SE, and RMSE were statistically significant at 0.01 level except for the 

effect of model on SE.  For bias, the three-factor interaction was not significant and all three 

two-factor interactions were significant.  For SE and RMSE, all two-factor and three-factor 

interactions were not statistically significant. Again, θ estimation methods had the most 

influence on absolute bias - it accounted for 76.7% of the total variance of absolute bias; test 

reliability had the most influence on SE and RMSE - it accounted for 54.7% of the total variance 

of SE and 88.5% of the total variance of RMSE.  

 

Summary and Discussion 

      This study examined the relative precision of four ability estimation methods (WLE, MLE, 

EAP, and MAP) under two polytomous models (GPCM and GRM) in CAT environment and 

comparison of relative precision between GCPM and GRM were provided.  In general, for all 

four θ estimation methods, conditional and overall bias, SE, and RMSE decreased as the test 

length, test reliability, and item bank size increased.  The magnitudes of the differences among 

the dependent variables decreased as the values of independent variables increased. For both 

models, WLE out performed MLE in terms of all the dependent variables studied, and WLE 

performed better than the Bayesian methods in terms of bias.  MLE had less bias than both 

Bayesian methods.  Both EAP and MAP showed more favorable results with SE and fidelity than 

either the WLE or MLE did; EAP did a better job than MAP for almost all conditions.  Different 
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test termination rules had significant impact on those dependent variables for given ability 

estimation methods, especially for WLE and MLE methods.  Although the quality of item banks 

has vast effects on the conditional distribution of bias, SE, RMSE, and test efficiency (Wang & 

Vispoel, 1998), the size of item bank had less impact on the differences among the dependent 

variables than test termination rules.  This study confirms Warm’s conclusions that (a) WLE is 

unbiased to first order, while MLE, EAP, and MAP are biased, and (b) the WLE method has 

small variance over entire range of θ for fixed test length CAT testing.  

      In general, for the fixed test length, both GPCM and GRM model, estimation method and test 

length had same impact on bias, SE, and RMSE.  But, the factor of model had the most impact 

on RMSE and it accounted for 31.2% of the total variance of RMSE under GRM.  For the fixed 

test reliability, practically, the factor of model had almost no influence on bias, SE, and RMSE 

under GRM.  

    As CAT with polytomous models can be applied to a variety of polytomously scored items, 

and can be implemented in more and more testing programs, the search for a sound ability 

estimation method with a particular polytomously IRT model becomes even more important.  

MLE has been widely used in many CAT programs due to its small bias.  The present study 

shows that under both GRM and GPCM for fixed test length rule, WLE not only reduced the bias 

of MLE to almost zero, but also reduced its SE as well.  As computer scoring for polytomously 

scored items becomes more of a reality, the results of this study will have more practical 

significance. 
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Table 1 
Descriptive Statistics for the Estimates of Item Parameters of the Three Item Banks, 

1GPCM, 2GPCM, and 3GPCM, under the Generalized Partial Credit Model 
 
Bank/ 
Parameter 

No.  
Items Mean Median S.D. Minimum Maximum 

1GPCM 263      
a  0.549 0.522 0.229 0.105 1.871 
b1  0.713 0.720 2.011 -6.972 11.746 
b2  1.270 1.264 2.640 -17.381 13.926 
b3  1.034 1.004 2.371 -6.369 7.187 
b4  0.822 0.822 2.546 -3.159 4.924 

2GPCM 66      
a  0.539 0.527 0.171 0.171 1.200 
b1  1.066 1.000 1.728 -3.204 7.399 
b2  1.679 1.491 2.519 -2.665 13.926 
b3  1.832 1.412 1.656 -0.856 5.506 
b4  4.270 4.270 0.535 0.535 4.925 

3GPCM 33      
a  0.560 0.523 0.190 1.90 1.055 
b1  0.752 0.631 1.384 -2.738 3.437 
b2  1.695 1.684 2.495 -3.638 7.293 
b3  1.467 1.680 3.480 -6.369 7.187 
b4  2.000 2.000 0.000 2.000 2.000 
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Table 2 

Descriptive Statistics for the Estimates of Item Parameters of the Three Item Banks, 
1GRM, 2GRM, and 3GRM, under the Graded Response Model 

 
Bank/ 
Parameter 

No.  
Items Mean Median S.D. Minimum Maximum 

1GPCM 260      
a  0.658 0.668 0.347 0.180 2.206 
b1  -0.889 -0.568 2.066 -20.105 3.066 
b2  1.496 1.163 2.245 -9.962 10.627 
b3  1.837 1.941 3.475 -17.578 12.767 
b4  2.033 2.096 1.500 -0.158 4.312 

2GPCM 66      
a  0.620 0.647 0.273 0.074 1.098 
b1  -0.834 -0.620 1.385 -5.565 3.066 
b2  1.590 1.108 2.291 -3.079 8.627 
b3  2.184 2.140 1.229 0.600 4.312 
b4  3.072 3.072 0.000 3.072 3.072 

3GPCM 33      
a  0.678 0.693 0.333 0.065 1.301 
b1  -0.980 0.803 1.594 -6.853 2.688 
b2  1.374 1.125 1.683 -1.390 5.446 
b3  1.703 1.164 1.639 0.304 5.231 
b4  2.096 2.096 0.000 2.096 2.096 
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Table 3 

Results of ANOVA with Fixed Test Length and Fixed Test Reliability Termination Rules for the GRM 
 

Rule/  Absolute Bias  Average SE  Average ln(RMSE) 
Effect     DF F  p η2 F p η2 F  p η2 

Fixed Test Length             
   Main Effects              
      Method (M) 3 28.621 0.000 0.275  1299.514 0.000 0.189  25.607 0.000 0.101 
      Bank Size  (S) 2 11.733 0.000 0.075  1667.641 0.000 0.162  79.169 0.000 0.209 
      Test Length (L)  3 30.517 0.000 0.293  3521.125 0.000 0.513  129.252 0.000 0.511 
   Interactions             
     M x S 6 2.408 0.041 0.046  72.800 0.000 0.021  1.734 0.134 0.014 
     M x L 9 1.281 0.272 0.037  232.102 0.000 0.101  5.619 0.000 0.067 
     S x L 6 2.368 0.044 0.046  15.849 0.000 0.005  1.255 0.296 0.010 
     M x S x L 18 1.275 0.246 0.074  7.444 0.000 0.007  1.068 0.410 0.025 
   Error 
 

48            
           

           
           
           

           
           
           
           

          

 
Fixed Test Reliability             
   Main Effects             
      Method (M) 3 4241.688 0.000 0.805 277.100 0.000 0.092 36.666 0.000 0.020
      Bank Size  (S) 2 33.022 0.000 0.004 769.988 0.000 0.170 104.525 0.000 0.037
      Reliability (R)  2 761.547 0.000 0.096 2340.038 0.000 0.517 2554.179 0.000 0.909
   Interactions             
     M x S 6 9.392 0.000 0.004 28.488 0.000 0.019 3.142 0.014 0.003
     M x R 6 215.322 0.000 0.082 56.738 0.000 0.038 6.259 0.000 0.007
     S x R 4 16.170 0.000 0.004 246.731 0.000 0.109 13.417 0.000 0.010
     M x S x R 12 4.359 0.000 0.003 38.731

 
0.000 0.051 3.752 0.001 0.008

   Error 36 
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Table 4 
Results of ANOVA with Fixed Test Length and Fixed Test Reliability Termination Rules for the GRM and GPCM 

 
Rule/  Absolute Bias  Average SE  Average ln(RMSE) 
Effect     DF F  p η2 F p η2 F  p η2 

Fixed Test Length             
   Main Effects              
      Method (M) 3 58.130 0.000 0.318  54.575 0.000 0.157  16.924 0.000 0.052 
      Test Length (L) 3 52.078 0.000 0.284  178.535 0.000 0.515  132.094 0.000 0.015 
      Model (MO)  1 22.944 0.000 0.042  71.545 0.000 0.069  56.549 0.000 0.312 
   Interactions             
      M x L 9 1.785 0.075 0.029  9.189 .000 0.080  2.811 0.004 0.054 
      M x MO 3 2.179 0.093 0.012  3.451 .018 0.010  1.596 0.193 0.072 
      L x MO 3 1.918 0.129 0.010  2.021 .113 0.006  0.236 0.871 0.082 
      M x L x MO 9 0.809 0.609 0.013  1.084 .378 0.009  0.820 0.598 0.161 
   Error 
 

160            
            

           

Fixed Test Reliability             
   Main Effects             
      Method (M) 3 1635.523 0.000 0.767  5.956 0.001 0.052  24.952 0.000 0.037 
      Reliability (R) 2 396.923 0.000 0.124  93.240 0.000 0.547  903.584 0.000 0.885 
      Model (MO) 1 7.640 0.007 0.001  3.293 0.072 0.010  13.694 0.000 0.007 
   Interactions             
      M x R 6 89.758 0.000 0.084  1.751 0.115 0.031  2.368 0.034 0.007 
      M x MO 3 5.296 0.002 0.002  0.839 0.475 0.007  2.197 0.092 0.003 
      R x MO 2 5.940 0.003 0.002  0.057 0.945 0.000  0.432 0.650 0.000 
      M x R x MO 6 0.229 

 
0.967 0.000  0.065 0.999 0.001  0.625 0.710 0.002 

   Error 120
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