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The Nominal Response Model in
Computerized Adaptive Testing
R. J. De Ayala
University of Maryland

Although most computerized adaptive tests
(cATs) use dichotomous item response theory (IRT)
models, research on the use of polytomous IRT
models in CAT has shown promising results. This
study implemented a CAT based on the nominal
response model (NR CAT). Item pool requirements
for the NR CAT were examined. The performance of
the NR CAT and a CAT based on the three-parameter
logistic (3PL) model was compared. For two-, three-,
and four-category items, items with maximum
information of at least .16 produced reasonably
accurate trait estimation for tests with a minimum
test length of approximately 15 to 20 items. The
NR CAT was able to produce trait estimates
comparable to those of the 3PL CAT. Implications
of these results are discussed. Index terms:

adczptive testing; computerized adaptive testing; EAP
estimation; nominal response model; polytomous
models.

Computerized adaptive testing (CAT) is an

important and promising application of item
response theory (IRT). Unlike the conventional
paper-and-pencil test in which an examinee is
administered all test items regardless of trait lev-
el, CAT is a procedure for administering tests that
are individually tailored for each examinee. The
advantages of tR’~-based CAT over paper-and-
pencil testing have been well documented (e.g.,
Wainer, 1990; Weiss, 1982).

Although not necessary (cf., De Ayala, Dodd,
& Koch, 1990), a CAT system typically uses an IRT
model to estimate the examinee’s trait level. Typi-
cally, the dichotomous three-parameter logistic
(3PL) model or the Rasch model (e.g.,

Kingsbury & Houser, 1988; McBride & Martin,
1983) has been used in CAT. These models do not
differentiate between an examinee’s incorrect an-
swer and other incorrect alternatives for purposes
of trait estimation. Thus, dichotomous models
and dichotomous model-based CATS operate as
if an examinee either knows the correct answer
or randomly selects an incorrect alternative.

Dichotomous model-based CATS have not in-

corporated findings from human cognition
studies (e.g., Brown & Burton, 1978; Brown &

VanLehn, 1980; Lane, Stone, & Hsu, 1990;
Tatsuoka, 1983). For example, Tatsuoka’s (1983)
analysis of student misconceptions in solving
mathematics problems showed that incorrect

responses could be of more than just one kind;
however, dichotomous scoring uniformly as-

signed a score of zero to all incorrect responses.
Moreover, Nedelsky (1954) demonstrated from a
classical test theory perspective, and Levine &
Drasgow (1983) from an IRT perspective, that the
distribution of incorrect answers over the options
of multiple-choice items differed across trait lev-
els. However, an item’s incorrect alternatives may
augment the estimate of an examinee’s trait level

(0) by providing information about the ex-

aminee’s level of understanding (i.e., provide di-
agnostic information). Bock (1972) and Thissen
(1976) found that for examinees with 0 estimates
in the lower half of the 0 range the nominal

response (NR) model provided from one-third to
nearly twice the information furnished by a
dichotomously scored two-parameter model;
there was no difference in information yield be-
tween these two models for 0 estimates above the
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median 0. In an application to multiple-choice
and free-response items, Vale & Weiss (1977)
found that the NR model provided more infor-
mation for middle 0 examinees than that shown
in the Bock (1972) and Thissen (1976) studies.

In classical test theory, the use of proper scor-
ing techniques to assess partial knowledge yields
increases in the reliability of multiple-choice tests
(e.g., Coombs, Milholland, & Womer, 1956).
Frary (1989), Haladyna & Sympson (1988), and
Wang & Stanley (1970) provided reviews of the
literature on option scoring strategies. It is obvi-
ous that the dichotomization of an examinee’s

response ignores any partial knowledge that the
examinee may have of the correct answer and, as
a result, this information cannot be used for 0
estimation.

Some research has explored the benefits and
operating characteristics of CATS based on poly-
tomous IRT models (e.g., Dodd, Koch, & De

Ayala, 1989; Koch & Dodd, 1989; Sympson,
1986). Research on the use of polytomous IRT
models in CAT has shown promising results. For
instance, Sympson (1986) found that an adaptive
test based on a polytomous model (Model 8)
could be 15-20% shorter than a paper-and-pencil
test without sacrificing test reliability. These
studies have shown that (1) using item pools
smaller than those used with dichotomous
model-based CATS leads to satisfactory estima-
tion ; (2) using the standard error of the 0 estimate
(SEE) for terminating an adaptive test is preferred
to using the minimum item information termi-
nation criterion; and (3) using a variable stepsize
instead of a fixed stepsize tends to minimize non-
convergence of 0 estimation. The models used in
these studies included Masters’ (1982) parti~’1
credit model, Andrich’s (1978) rating scale model,
and Samejima’s (1969) graded response model.

Bock’s (1972) NR model is appropriate for
items with unordered responses, such as multiple-
choice aptitude and achievement test items. The
NR model also may be used with testlets (Wain-
er & Kiely, 1987) to solve various testing prob-
lems, such as multidimensionality (Thissen,
Steinberg, & Mooney, 1989); with items that do

not have a &dquo;correct&dquo; response, such as demo-

graphic items (e.g., to provide ancillary informa-
tion) ; and with items whose alternatives provide
educational diagnostic information. Innovative
computerized item formats also may be devel-
oped specifically for use with polytomous models
and adaptive testing environments. Presently,
CATS typically present items in an analogue of
simple paper-and-pencil item formats.

Purpose

This study concerned the implementation of
an NR model-based CAT (NR CAT) and had several
objectives:
1. Because the NR model is written in terms of

slope and intercept parameters (a form not
typically used; cf., Hambleton & Swami-

nathan, 1985; Lord, 1980; Weiss, 1983),
formulas for the location parameters were
derived in order to facilitate understanding
of the model’s formulation. The NR model’s

relationship with the dichotomous two-

parameter logistic (2PL) model is presented.
In addition, the effect of varying the loca-

. tion parameters on item information is ex-
amined.

2. The quality of the item pool is paramount
to CAT performance. Two factors that deter-
mine the item pool’s quality are the locations
of the items and their discrimination indices.
Items should be evenly and equally distribu-
ted throughout the 0 continuum of interest
(Patience & Reckase, 1980; Urry, 1977; Weiss,
1982). Because there was no reason to believe
that this would not hold for the NR model,
this factor was not studied. The minimum
item information (i.e., the effect of item dis-
crimination) that would allow reasonably
accurate 8 estimates by the NR CAT was in-
vestigated. This investigation (Study 1) was
limited to two-, three-, and four-category
cases.

3. The comparative performance of the NR CAT
and a CAT based on a dichotomous 3PL
model was assessed (Study 2). Furthermore,
because of the existence of option informa-
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tion, an exploratory simulation was conduct-
ed in which items were selected on the basis
of option information.

The NR Model

The NR model assumes that item alternatives

represent responses that are unordered. The
model provides a direct expression for obtaining
the probability of an examinee with a specified
level of 0 responding in the jth category of item
i as:

where a;j is the slope parameter,
c.ii is the intercept parameter of the non-

linear response function associated
with the jth category of item i, and

m; is the number of categories of item i

(i.e., j = 1, 2, ..., p m;).
For convenience, the slope and intercept param-
eters are sometimes represented in vector nota-
tion, where a = (ail’ ai2l ..., a¡nJ and c _ (cils
Ci2l ... &euro;,,~), respectively.

To aid in the interpretation of these param-
eters, Figure la shows a logistic space plot of the
(multivariate) logit (i.e., c,~ + ~;;9) against 0 for
a three-category (m = 3) item with a = (-.75,
-.25, 1.0) and c = (-1.5, -.25, 1.75). As the fig-
ure shows, Cu is the y intercept (i.e., e = and
aii is the slope of the category’s response func-
tion. The aus are analogous to, and have an

interpretation similar to, traditional option dis-
crimination indices. That is, a cross-tabulation
of 0 groups by item alternatives shows that a cat-
egory with a large au reflects a response pattern
in which progression from the lower 0 groups to
the higher 0 groups results in a corresponding in-
crease in the number of persons who answered
the item in that category; for categories with neg-
ative aijs, this pattern is reversed. Large values of
c;; seem to be associated with categories with
large frequencies. As the value of cii becomes

smaller, the frequencies for the corresponding

Figure 1
A Three-Category Item, With a = (-.75, -.25, 1.0)

and c = (-1.5, -.25, 1.75)

a. Multivariate Logit Plot

d

b. Example of Corresponding ORFs

categories decrease.
The probability of responding in a particular

category as a function of 0 is depicted by the cat-
egory or option response function (ORF). Figure
lb contains the or~FS corresponding to the three-
category item presented in Figure la. The inter-
section of the oR~’s can be obtained by setting
the multivariate logits of adjacent categories
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equal to one another and solving for 8. Therefore,

In general, for any item with m; > 2, and be-
cause 0 and b are on the same scale:

This formulation is analogous to that of the par-
tial credit model in which step difficulties are de-
fined at the intersection of adjacent category
response functions.

Bock (1972) compared the NR model with a
binary version (lie., the items consist of correct
and incorrect categories). When mi = 2, Equa-
tion 1 becomes

Given Equation 4, note that the two linear con-
straints imposed on the item parameters-
Lea = 0 and Ec = 0, to address the indeter-
minacy of scale-imply that in the two-category
case

and

Therefore, given Equations 5 and 6, for mi = 2

By solving Equation 7 for ~2 and substituting the
equality into Equation 4,

By substituting Equation 5 into Equation 8 and
simplifying,

is obtained.

Therefore, if the NR model’s discrimination
parameters are cast in terms of the 2PL model’s
discrimination parameter, a, and because a is

typically positive:

For m; = 2, the 2PL and NR models are equiva-
lent. For example, Figure 2 shows the NR model’s
ORFs for an item with a2 = .40, a1 = -.40,
cZ = .2, and Cj = -.20 and the item response
function (IRF) for the 2PL model withy _ . .80
and b = -(.4/.8) = -.5.

Figure 2
NR Model ORFs (a2 = .40, a, - -.40, ~ = .2, and
c, = -.20) and the 2PL IRF (a = .80 and b = -.5)

1.0, .

Information

For the NR model, the item information [1¡(8)]
is equal to the sum of the option informations,
where option information is defined as (Bock,
1972)

and item information is

For a given item i,
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For the m; = 2 case, the location of maximum
item information (ImaX) is

with Imax = .25(caz - a1)z. Due to the number of
unknowns, a formula for the location of I._ can-
not be determined for m; > 2. For mi = 2 and
a given a, changing the values of c forces the lo-
cation of [mal{ to shift along the 0 continuum, but
the maximum amount of information remains
constant.

For m; = 3 and a given a, if the bs are in

ascending order, then the item information func-
tion becomes comparatively more leptokurtic as
the difference between bs becomes less extreme.
When the bs are in descending order, the item in-
formation function becomes more platykurtic as
the difference between bs becomes less extreme.
In both cases, there is a shift in the location of

[max.
For m; = 4 and a given a, if the bs are in

ascending order, then the item information func-
tion becomes more platykurtic as the difference
between bs becomes less extreme. This pattern
holds if the last two bs are reversed. When the
bs are in descending order, then relative to the
item information function when the bs are in

ascending order, the function becomes more lep-
tokurtic as the difference between bs becomes less
extreme. This is also true if the first two bs are

transposed. For the other two possible b patterns,
the information function becomes comparative-
ly more leptokurtic as the distance among the bs
decreases. It is possible to obtain bimodal item
information functions. For instance, Figure 3

contains the information function for an item
with a = (1, .l, -. 1, -1) and c = (.1, 2.4, -2.6, .1).

Figure 3
Bimodal Information Function for an Item With
a = (1, .1, -.1, -1) and c = (.1, 2.4, -2.6, .1)
I1 A

As Equation 12 implies, item information is
a function of the magnitude of the elements of
a, and the order of the elements of a [i.e., for a
given c, a = (-.25, 1.0, -.75), a = (-.25, -.75,
1.0), and a = (-.75, -.25, 1.0)] will produce three
different I._s at three different 8maxs. For a given
a, the signs of the elements are irrelevant as long
as Ea = 0 (and Ec = 0). For instance, given two
items that have the same c [e.g., c = (.25, -.15,
-.1)] but that differ only in the sign of the ele-
ments, such as a = (.4, .25, -.65) and a = (-.4,
-.25, .65), the items will have the same

Imax = .245 but at different 6~s; specifically,
8max = .84 for a = (-.4, -.25, .65), and 8max =
-.84 for a = (.4, .25, -.65). This is also true in
the four-category case. Given the same c, two
items that differ only in the sign of the elements
of a (and satisfy Ea = 0), such as a = (.55, .4,
-.35, -.6) and a = (-.55, -.4, .35, .6), will yield
dmax = .26 at 8max = .059 and 8max = -.059,
respectively.

Method

Study 1: Determination of inimum Item
Information for ZTse in NR CAT

Programs. A program was written for per-
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forming adaptive testing with the NR model. The
program used expected a posteriori (EAP) estima-
tion (Bock & Mislevy, 1982) of 0. Item selection
was based on information. The adaptive testing
simulation was terminated when a maximum of
30 items was administered. 0 estimates at test

lengths of 10, 15, 20, 25, and 30 items were
recorded. The initial 0 estimate for an examinee
was the population’s mean, and a uniform prior
with 10 quadrature points was used. An addition-
al program for generating data according to the
NR model was written and is discussed below.

Data. A series of item pools was created.
The item pools differed on two factors: Imax and
the number of item alternatives arc = 2, 3, or 4
options). The item pool contained 90 items (cf.,
Dodd, Koch, & De Ayala, 1989; Koch & Dodd,
1989).

Although Urry’s (1977) guidelines for the dis-
crimination parameter were stated in terms of the
magnitude of c~, the importance of an item’s a
value is its effect on ¡max. When the number of
categories is three or more, different combina-
tions of a and c can produce the same lmax value;
therefore, establishing guidelines in terms of the
magnitudes of the elements of these vectors was
not pursued. Rather, specified values for Im_ were
set a priori, and the a vector to obtain a specific
lmax was determined. The lmax values studied were
.25, .16, .09, and .04.
When m¡ = 2, the a vectors may be specified

a priori. For lmax values of .25, .16, .09, and .04,
the corresponding a vectors were (.50, -.50), (.40,
-.40), (.30, -.30), and (.20, -.20), respectively. (For
the 2PL model, these a vectors are equivalent to
c~ values of 1.0, .8, .6, and .4, respectively.) Be-
cause Urry (1977) recommended the use of items
with a ;::: .80 in CAT, for aaa; = 2 the use of
a = (.40, -.40) was expected to be equivalent to
the use of c~ = .80 with a 2PL model-based CAT.
For each lmax level of the mi = 3 and mi = 4 con-
ditions, the a vectors for the items were selected
using a trial-and-error procedure to approximate
the relevant lmax value.
A number of researchers have stated that the

bs should be evenly distributed throughout the

0 range of interest (e.g., Patience & Reckase, 1980;
Urry, 1977; Weiss, 1982). Therefore, the bs were
distributed at nine scale points between -4.0 and
4.0 in increments of 1 logit (e.g., for Item 1

b = -4.0, and for Item 2 b = -3.0). For mi > 2,
the average location for an item was set at one
of the nine scale points.

Once the a vector for a given Imax level was de-
termined, the c vector could be calculated [in
terms of its b (for mi = 2) or average b (for
m, > 2)] to locate the items at the specified scale
points. Therefore, these item sets consisted of
nine items with a constant maximum informa-

tion, that were distributed to encompass the ex-
aminee 0 range. These nine items were replicated
to produce a 90-item pool for each of the 12 com-
binations of the four Inax levels crossed by the
three m, levels. De Ayala, Dodd, & Koch (1990)
found that multiple items with the same

parameters were administered to an examinee as
the CAT estimation algorithm approaches its fi-
nal 0 estimate.

1,300 examinee 8s were generated to be evenly
distributed between -3.0 and 3.0 using a .5 logit
interval between successive 0 levels (i.e., for 100
examinees 0 = -3.0, for 100 examinees 0 =

-2.5, etc.). These true 8s plus the 90 item

parameters for each condition were used to gen-
erate polytomous response strings with a random
error component for each simulated examinee

(i.e., 12 response datasets were created). Genera-
tion of an examinee’s polytomous response string
was accomplished by calculating the probability
of responding to each alternative of an item ac-
cording to the NR model. Based on the proba-
bility for each alternative, cumulative

probabilities were obtained for each alternative.
A random error component was incorporated
into each response by selecting a random num-
ber from a uniform distribution [0,1] and com-
paring it to the cumulative probabilities. The
ordinal position of the first cumulative probabil-
ity that was greater than the random number was
taken as the examinee’s response to the item.

Analysis. Study 1 was designed to determine
the minimum Imax value that would result in a
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significant improvement in the estimation of 0.
The accuracy of 0 estimation was assessed by root
mean square error (RMSE) and bias. RMSE and
bias were calculated as

and

where 0, is the 0 estimate for examinee k with 0,
and n is the number of examinees at intervalf (i.e.,
nf = 100).

The analysis of the two-, three-, and four-
category cases was treated separately. Therefore,
a one-group repeated measures design with two
dependent variables-RMSE and bias-was used.
Imax was the between persons factor, and test
length was the within persons factor. The test
length factor was included because the accuracy
of 0 estimation is influenced by both the adap-
tive test length and the information content of
the items administered. Because the Bonferroni
method was used to control for familywise Type
I error, a was set at .008 (i.e., .05/6). Post hoc
analysis was performed with the Scheff6 test
using a critical F of 13.26, based on 3 and 48
degrees of freedom (Hays, 1988).

Study 2: Comparative Performance of the NR
and 3PL CATs .

Programs. The NR CAT program used in

Study 1 also was used in Study 2. The program
was designed to select items on the basis of either
item or option information. An additional CAT
program based on the 3PL model (3PL CAT) was
written. The 3PL CAT program estimated 0 by EAP
and selected items on the basis of information.
The adaptive testing simulation was terminated
when either of two criteria was met-a maximum
of 30 items was administered or a predetermined
SEE was obtained (SEE termination criteria of .20,
.25, .30 were used). The initial 0 estimate for an

examinee was the mean of the population. Both
CATs used a 10-point uniform prior distribution
for 8.
A data generation program based on a linear

factor analytic model (Wherry, Naylor, Wherry,
& Fallis, 1965) was written and is discussed be-
low. The linear factor analytic approach for gen-
erating the data was used to minimize any bias
in favor of either the 3PL or NR model; this

procedure has been used previously (De Ayala,
Dodd, & Koch, 1992; Dodd, 1984; Koch, 1981;
Reckase, 1979). MULTILOG (Thissen, 1988) was
used to obtain item parameter estimates for the
NR and 3PL models using default program

parameters.
Data. 1, 300 examinee Os were generated to

be evenly distributed between -3.0 and 3.0 using
a .5 logit interval between successive 8 levels. The
examinees’ responses to 150 four-alternative items
were generated according to the linear factor ana-
lytic model:

where 0, is examinee ks latent 0 level,
at is the factor loading of item i,
11/ is the communality of item i, and

z,,, is a random number generated from a
N(0,1) distribution and is the error

component of examinee. and item i.

All factor loadings were uniformly high and
ranged from .62 to .84. zk; was compared to
prespecified category boundaries to determine the
category response for examinee to item i.

MULTILOG was used to obtain item parameter
estimates for both the NR and 3PL models. Based
on the results of Study 1, item pools for the NR
and the 3PL CATS were constructed by identify-
ing items with values of Imax > .16 and with 8max
values distributed evenly throughout the -2.0 to
2.0 0 range. These items were replicated to

produce item pools of 152 items.
Analysis. Study 2 was designed to determine

whether there were any psychometric advantages
to using the polytomous NR model as opposed
to the dichotomous 3PL model. The quality of
the 0 estimation provided by the two CATS was
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analyzed by calculating RMSE and bias. More-
over, the number of items administered (NIA)
in obtaining 6 also was used for comparing the
two types of CATS. A one-group repeated meas-
ures design with three dependent variables-
RMSE, bias, and NIA-was used. The between
persons factor was the type of CAT used (NR,
3PL), and the repeated measures or within per-
sons factor was the SEE termination criterion
used (.20, .25, .30). The Bonferroni method was
used to control for familywise Type I error, and
a was set at .0056. Post hoc analysis was per-
formed with the Scheff6 test using a critical F’ of
10.223 based on 1 and 16 degrees of freedom
(Hays, 1988).

Because of the item pool characteristics, only
examinees with -2.0.:::; 8 < 2.0 were used in the
cA’rs. For each of these 900 examinees, an adap-
tive test was simulated using the NR and 3PL
CATS, the relevant item pool, and SEE termination
criterion.

Results

Study 1

Table 1 contains descriptive statistics on the NR
adaptive tests. As expected, there was a direct rela-
tionship between the fidelity coefficient, rôo, and
7~, and between rôo and test length. For

~m~ _ .25, there was a slight increase in rôo as the
number of categories increased for a given test
length (10, 15, 20, or 25 items)-this increase in
ree tended to diminish with increasing test length.
For instance, for a test length of 10 items, rôo in-
creased from .935 (m = 2) to .942 (m = 4).

The repeated measures analyses are presented
in Tables 2 through 5. For the two-category con-
dition, the average RMSE improved significantly
as test length and lmax increased. Post hoc anal-
ysis of the Imax factor (Table 4) showed that for
the two-category case there was a significant
reduction in RMSE as lmax increased from .04 to
.09 to .16 across test lengths. Increasing the item
information from .16 to .25 did not produce a
significant improvement in 0 estimation as

assessed by RMSE. For the 10-item test, there was

a significant improvement in the accuracy of es-
timation from Imax = .16 to .25 (Table 4). That
is, for the shorter test length (10 items) more in-
formative items were needed than at longer test
lengths.

For all 1max values, there was a significant
improvement in the accuracy of estimation as test
length increased from 10 to 15 to 20 items (see
Table 5). At higher item information levels (e.g.,
.16 and .25), increasing test length from 20 to 25
items or from 25 to 30 items did not yield a sig-
nificant reduction in RMSE. For Imax = .09, esti-
mation accuracy was significantly improved by
increasing the test length from 20 to 25 items, but
not from 25 to 30 items. These results suggest that

using items with 1max ;;::: .16 (i.e., ~ >_ . .80) pro-
vides reasonable 0 estimation for tests of 20 (pos-
sibly 15) or more items. Shorter tests require more
informative items than longer tests.

Results of the ANOVAS (Table 2) show that test
length and 1max did not have a significant effect
on bias. This is, in part, a function of the way
bias was calculated and the potential for cancel-
lation of negative bias by positive bias. Figure 4
contains RMSE and bias plots for selected NR
c~’rs-these plots were typical of all the NR CAT
plots.

For the three-category condition and test

lengths of 20 or more items, the results were simi-
lar to the two-category condition (Tables 2-5).
There was a significant reduction in RMSE as 1max
increased from .04 to .09 to .16, but not from .16
to .25. However, for the 10- and 15-item test
lengths, the results were the reverse of those of
the two-category condition.

In general, the results for the four-category
condition paralleled those of the two- and three-
category conditions. There was a significant
reduction in RMSE as 1max increased from .04 to
.09 to .16 to .25 for tests of 20 or fewer items.

There was no significant reduction in RMSE as
1m ax increased from .16 to .25 for tests of 25 or
30 items.

Study 2

Table 6 contains descriptive statistics for the
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Table 1
Mean 6, Standard Deviation of 6 (SD), and Pearson
Product-Moment Correlations Between 0 and 6 (r)
for NR Adaptive Tests with Mean 6 = 0.0 and
so = 1.872 for m = 2, 3, and 4, and Imax From
.25 to .04 at Test Lengths of 10 to 30 Items

NR and 3PL adaptive tests. These results for the
NR and 3PL CATS are comparable, but a meaning-
ful difference did occur in ri, at a termination
SEE of .30. However, the NR CAT tended to ad-
minister adaptive tests which, on average,

were shorter than those administered by the 3PL
CAT.

Table 7 contains results for the ANOVAS. The
NR CAT and 3PL CAT did not differ significantly
with respect to RMSE and bias. The NR CAT
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Table 2
Results of the Repeated Measures ANOVAs for RMSE and Bias
for the Two-, Three-, and Four-Category NR CAT Conditions

*Significant at overall a = .05.
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Table 3
Mean RMSE for Levels of 7~ for Two-, Three-, and

Four-Category Conditions at Five Test Lengths

administered, on average, fewer items than the
3PL CAT to achieve the same accuracy in estima-

tion, but this difference was not significant using
the Bonferroni criterion. That is, the 0 estima-
tion of the NR CAT was comparable to that of the
3PL CAT.

With a polytomous model, item information
is the sum of the information functions for in-
dividual responses (i.e., category or option infor-
mation function); therefore, an exploratory study

that selected items on the basis of category in-
formation was conducted, in which items were
selected based on which item provided the maxi-
mum information for the particular alternative
selected by the examinee. This was based on the
assumption that selecting items on the basis of
category information would be more consistent
with the concept of polytomous scoring of exam-
inee responses than selecting items on the basis
of item information, which ignores the particular

Table 4
Post Hoc Comparison Fs for NR CAT Imax at Five Test Lengths

for Two-, Three-, and Four-Category Conditions

*Significant at overall a = .05
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Table 5
Post Hoc Comparison Fs for NR CAT Test Length at Levels

of Imax for Two-, Three-, and Four-Category Conditions

*Significant at overall a = .05

response an examinee provided (although the
likelihood function is a function of an examinee’s

particular responses). This exploratory study used
the same simulated data and programs as Study
2, except that items were selected on the basis of
category information rather than on the basis of
item information.

. 

The results, provided in Tables 8 and 9, parallel
those presented in Table 7. Specifically, the NR
CAT that selected items on the basis of category
information provided 0 estimation that, in terms
of RMSE and bias, was comparable to that of the
3PL CAT. However, unlike the NR CAT results
presented previously, selecting items on the basis

Figure 4
RMSE and Bias for NR CAT (m; = 3, NIA = 20)
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Talble 6
Mean and Standard Deviation (SD) of 8, Mean, Median, and SD of

NIA, and Spearman Rank-Order Correlations Between 6 and
8 (r) with 6 = 0.0, So = 1.292 When Items Were Selected

by Item Information for NR and 3PL CATs

of category information did result in the NR CAT

administering significantly shorter tests, on aver-
age, than did the 3PL CAT for all SEE termination
conditions. The post hoc comparison Fs for NIA
were all significant at an overall a = .05 and

were 12.074, 16.225, and 11.357 for the SEE ter-
mination criteria of .20, .25, and .30, respectively.
Despite this reduction in test length, the NR CAT
yielded fidelity coefficients comparable to those
of the 3PL CAT (see Table 9).

Table 7
Results of the Repeated Measures ANOVAs for RMSE, Bias, and NIA for

NR and 3PL CATs When Items Were Selected by Item Information

*Significant at overall a = .05.
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Table 8
Results of the Repeated Measures AN&reg;VA for RMSE, Bias, and NIA for NR

and 3PL CATs When Items Were Selected by Category Information
for NR CAT and Item Information for 3PL CAT

*Significant at overall a = .05.

Discussion

In general, the distribution of information was
affected by the distance between the item’s bs, by

the order of the bs, and by the number of item
alternatives. Study 1 showed that for two-, three-,
and four-category items, items with an Imax value
of at least .16 produced reasonably accurate 0

Table 9
Mean and Standard Deviation (SD) of 6, Mean, Median,
and SD of NIA, and Spearman Rank-Order Correlations
Between 6 and e (r) with 6 = 0.000, So = 1.292 When
Items Were Selected by Category Information for the
NR CAT and Item Information for the 3PL CAT
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estimation for test lengths of 15 or more items.
Shorter length tests required more informative
items to maintain reasonable 0 estimation.

Results from Study 2 indicated that the NR
CAT was able to produce 0 estimates compara-
ble to those of the 3PL CAT. To achieve the same

level of accuracy (e.g., SEE = .20), the NR CAT
administered fewer items, on average, than did
the 3PL CAT (e.g., 12.393 versus 16.191, respec-
tively). A plot of the difference in average NIA
between the NR and 3PL CATS versus 0 (Figure 5)
showed that the NR CAT administered substan-

tially fewer average items primarily for examinees
with e :5 -1.0. A relative efficiency comparison
of the information content of the item pools of
the NR and 3PL CATS showed that although the
NR model provided slightly more information
than did the 3PL model throughout the 0 range,
the NR model began to provide substantially
more information than the 3PL model below
0 = -1.0. However, 3PL item pools can be con-
structed that are more informative for 0 < -1.0

than the item pool used here. The significant NIA
results when category information was used for

selecting items for the NR CAT might also have
resulted from these characteristics of the item

pool used.
The present results indicate that a NR model-

based CAT can provide 0 estimation comparable
to a dichotomous model-based CAT. The NR CAT

did not provide more accurate bs for examinees
with 0 < 0.0, relative to the 3PL CAT, because a
variable test length was used. That is, the addi-
tional information provided by the NR model
over a dichotomous model for the lower half of

the 0 distribution resulted in the adaptive test ter-
minating sooner than it would with the dichoto-
mous model. For a given (reasonable) fixed

length test, the NR CAT would be expected to pro-
vide more accurate 6s for examinees with 0 < 0.0
than would a dichotomous model.

For the situations discussed above (testlets and
administration of items that do not contain a cor-
rect response, such as demographic items, innova-
tive computerized item formats, or items that
contain educational diagnostic information), it

Figure 5
Mean NIA for NR CAT Minus

Mean NIA for 3PL CAT

appears that the NR CAT may be a viable CAT op-
tion. Given the exploratory results, the use of
category information for item selection needs to
be more systematically investigated. The use of
category information for item selection may
prove useful in certain situations.
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