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This study examined some effects of using a unidi-
mensional IRT model when the assumption of unidi-
mensionality was violated. Adaptive and nonadaptive
tests were formed from two-dimensional item sets.
The tests were administered to simulated examinee

populations with different correlations of the two un-
derlying abilities. Scores from the adaptive tests
tended to be related to one or the other ability rather
than to a composite. Similar but less disparate results

were obtained with IRT scoring of nonadaptive tests,
whereas the conventional standardized number-correct
score was equally related to both abilities. Differences
in item selection from the adaptive administration and
in item parameter estimation were also examined and
related to differences in ability estimation. Index
terms: ability estimation, adaptive testing, item pa-
rameter estimation, item response theory, multidimen-
sionality.

In computerized adaptive testing (caT), the ability (0) of each examinee is estimated from individually
tailored tests. Currently, most CAT procedures are based on unidimensional item response theory (IRT)
models which incorporate a single 0 to account for test performance in a particular domain. In reality,
many tests measure multidimensional domains. It is not clear what the effects on 0 estimation will be if
such tests are administered adaptively.

The unidimensionality requirement would be less critical if multidimensional IRT models could be
used in practical testing. Much work has been done to develop multidimensional IRT models (e.g., Bloxom
& Vale, 1987; Bock & Aitkin, 1981; Bock & Lieberman, 1970; McKinley & Reckase, 1983a, 1983b;
Reckase, 1985a, 1985b; Samejima, 1974; Sympson, 1978), but development of these models is not yet
complete and practitioners are currently limited to unidimensional models.

It has been shown that unidimensional three-parameter procedures for nonadaptive 8 estimation tend
to emphasize one ability as the dataset deviates from unidimensionality. Reckase (1979) generated mul-
tidimensional datasets to fit a factor-analytic model with two or more factors and analyzed 6 values from
the parameter estimation procedure (i.e., these were not adaptive estimates). For datasets with independent
item subsets, 6 was most strongly related to a single factor. For datasets with a dominant first factor, ê
was most strongly related to the dominant factor.

Drasgow and Parsons (1983) conducted similar comparisons for hierarchical datasets with a single
general factor and five specific factors. As correlations between the specific factors decreased, the strength
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of the general factor decreased. Consequently, nonadaptive 6 became more weakly correlated with the
general factor and more strongly correlated with the strongest specific factor.

Ansley and Forsyth (1985) explored the characteristics of 6 from two-dimensional data produced by
a noncompensatory model. Ansley and Forsyth found that as rIJ¡IJ2 decreased, nonadaptive 6 became more
strongly correlated with &reg;, and became less correlated with 0~ and with the average of 0, and 82. It should
be noted, however, that Dimension 1 was dominant over Dimension 2 (£1 = 1.23, ca2 = .49); emphasis
of 0, in the 6 would be expected in this situation.

Way, Ansley, and Forsyth (1988) also examined 11 from two-dimensional data, explicitly comparing
compensatory and noncompensatory models of data generation. For both models, they found that as
rIJ¡62 decreased, nonadaptive fit became more strongly correlated with 0, and more weakly correlated with
02 and with the average of 0, and 02. As in the Ansley and Forsyth (1985) study, Dimension I was

dominant over Dimension 2 in the datasets generated by both models.
The primary purpose of this study was to examine estimation of 0 in adaptive tests constructed with

a unidimensional model when the actual item responses were simulated from a multidimensional com-

pensatory model. Characteristics of item selection and parameter estimation were also examined. Sim-
ulations were chosen to permit explicit comparison between estimated and true ability values and item
parameters.

Method

Administrations of two types of item sets to several examinee samples were simulated using three
testing methods: adaptive administration with IRT ability estimation (CAT), nonadaptive administration
with IRT ability estimation (IRT), and conventional nonadaptive administration with standardized number-
correct scoring of ability (cony). The two item sets were two-dimensional either between- or within-
items.

IRT Models

The unidimensional three-parameter logistic model developed by l3irnbaum (1968) was chosen for
the item parameter and ability estimations in the CAT and IRT administrations. This model defines the
probability of a correct response to an item, x; = 1, for any ability level, 0, as a function of three item
parameters, a, b, and c, according to .

A compensatory multidimensional model was chosen for this study. A compensatory model assumes that
a greater degree of ability on one dimension can offset a lesser degree of ability on another dimension,
whereas a noncompensatory model assumes that a certain degree of ability is required on both dimensions.
The following compensatory two-dimensional model was used:

Hattie (cited in Ansley & Forsyth, 1985) is credited with proposing this model, which is similar to models
studied by Drasgow and Parsons (1983), McKinley and Reckase (1983b), and Reckase (1979). Equation
2 is an extension of the unidimensional model presented in Equation 1. All symbols for the two-dimensional
model represent the same parameters as for the unidimensional model, except that each examinee has
two ability parameters (0, and 02) and each item has two discrimination parameters ( a, and a2) and a
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single multidimensional difficulty parameter d. In two-dimensional space, the combination of ca, and a,
dictates the direction of each item and d indicates the distance of each item in the defined direction.

The natural extension of the unidimensional model might seem to include two difficulties, one on
each dimension. But it is easily seen that for each item, the constant in the denominator is a single value;
thus the two difficulties cannot be separately identified.

The compensatory model follows from the theory of factor analysis, in which underlying charac-
teristics account for common similarities among the variables. This model is also consistent with most
of the multidimensional models currently being developed.

Structure of the Item Sets

Multidimensional between-items. A set of items will be called multidimensional between-items if

it contains mutually exclusive subsets of items, such that one ability is required for one subset of items
and another ability is required for another subset. For example, a general science test may contain some
biology and some physics items; different abilities are needed for each subset. This structure is similar
to the simulated two-dimensional item set used by Reckase (1979).

In the present study, item set BT was two-dimensional between-items. It contained 96 items, sub-
divided so that half of the items exclusively measured Dimension 1 and half exclusively measured
Dimension 2. The 48 items measuring Dimension 1 were assigned a positive a, value (31 = 1.5, (Tal =
.25) and a2 = 0. The 48 items measuring Dimension 2 were assigned a, = 0 and a positive a2 value
(az = 1.5, (JQ2 = .25). 

_

They parameters were assigned at equal intervals in the range - 2.0 to + 2.0 (d = 0, Crd = 1.20)
for each subset of items.

Multidimensional within-items. A set of items will be called multidimensional within-items if every
item measures some combination of several abilities and the component abilities are nonproportionately
weighted, that is, if each item requires differing amounts of each ability. This structure is similar to the
simulated two-dimensional datasets of Ansley and Forsyth (1985) and Way et al. (1988). Hierarchical
models, such as those presented by Drasgow and Parsons (1983), would also fall in this category, but a
strong general factor could minimize within-item multidimensionality characteristics.

Item set WT was two-dimensional within-items. It contained 98 items divided into seven subsets,
each with a different proportion of c~, to a,. Because the average of the two abilities is later used as a
target, as recommended in Green (1988), the relationship between the dimensions was required to be
additive; thus ca parameters were assigned so that the mean of the sum of ca, and ~2 (~a.,. _ a, + a2) was
approximately equal to 1.5 for each subset. Means and standard deviations of the a parameters are shown
in Table 1.

Means and standard deviations of aT are also shown. Subsets 1, 2, and 3 emphasize Dimension 1

to varying degrees, subset 4 represents both dimensions equally, and subsets 5, 6, and 7 emphasize
Dimension 2 to varying degrees. The d parameters were assigned at equal intervals in the range - 2.0
to + 2.0 (d = 0, ~~ = 1.33) for each subset of items.

Procedure

First, unidimensional item parameter estimates were obtained after each complete item set was

’Proportional weighting will not be considered here because, as Reckase, Ackerman, and Carlson (1988) have recently demonstrated,
it would be undetectable in real tests and can be considered practically as a single composite of the abilities.
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Table 1
Mean and Standard Deviation of True aj, a 2 and

aT in Item Set WT, for Each Subset of Items

administered to examinee samples. Then, administrations of the three testing methods to new samples of
examinees were simulated, using the estimated parameters to calculate 6 in the IRT and CAT administrations.
In all simulations, examinee responses were generated from the two-dimensional model but the unidi-
mensional model was used to obtain estimates of item parameters and examinee abilities. Hence the data
were multidimensional but the test administrations assumed unidimensionality.

Parameter estimation. A modified maximum likelihood procedure was used to obtain item param-
eter estimates. Lord’s (1980) maximum likelihood equations were used to obtain a and b item parameter
estimates, but Bayesian modal estimation was used to estimate 11 (Mislevy, 1986; Swaminathan & Gifford,
1986). The Bayesian modal formula is but a slight addition to the maximum likelihood formulas; the
function being maximized is the log likelihood plus the prior distribution density. The method may be
considered a compromise between the LOGIST procedures (Wingersky, 1984) and the Bayesian methods
(Bock & Aitkin, 1981). All methods give satisfactory results. Because the Bayesian modal estimator is
used in the CAT procedure in scoring examinees, it seemed wise to include it in the item parameter
estimation process.

The estimation process required initial d, b, and 6 values as input. Equations from Hambleton and
Swaminathan (1985, pp. 144-147) were used to calculate starter values for each item’s L and each
examinee’s &reg;. Initial a values were set at 1.0. The parameter estimation procedure recalculated, in turn,
â and b, then 6, until the average squared change in estimation was less than .0001 for â, b, and 6.

Examinee samples for parameter estimation. Thirteen samples of simulated examinees (simulees)
were generated. Each sample contained 2,000 simulees, with two 0 values selected for each simulee from
a bivariate distribution (6 = 0, (f6 = 1.0) with one of five possible degrees of correlation between 0 and
82: r6¡62 = .20, .40, .60, .80, or 1.00. An original complete set of five samples was drawn where r6t62
for each sample was a- different value of the five possible correlations. Then, in order to examine the
effects of sampling, four partial replicate sets of samples were drawn from populations with r,,1,2 = .20
and r6162 = .60.

For the simulated tests, 13 additional simulee samples were drawn corresponding to the original and
replication samples described above for the parameter estimation.

CAT administration. Item sets BT and WT were each administered adaptively to the simulee samples
and unidimensional 6 values were obtained. Each simulee began with 6 = 0 and then received 15 items
which were successively selected to have the highest information value relative to the current (unidi-
mensional) 6 of that simulee. A provisional 6 was calculated after each item response using Owen’s
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(1975) approximation method. The final 6, after 15 items, was obtained using a Bayesian modal method.
The final 6 values were recorded for each simulee as the unidimensional model’s best 6; they are referred
to as êCAT’

IRT administration. Complete item sets BT and WT were also administered nonadaptively. rttT-

based 6 values were then calculated; these are referred to as &reg;,RT-
Conventional administration. In the conventional tests, complete item sets BT and wT were again

administered, but 6 values were estimated by calculating standardized number-correct scores. These are
referred to as &reg;CONV·

Analyses

For all administration methods, the relationships between 6 and each of the true abilities, 0, and 0,,
were examined by calculating the multiple correlation of 6 with 0, and 0, (R,,,). Bivariate correlations
between 6 and 0, (r,) and between 6 and 0, (r2) were also calculated and the absolute difference between
r, and r2 (Irl - r21) was calculated. In addition, because Green (a_988) recommended examination of the
relationship between 6 and 9avg [(0, + 0,)/2], the bivariate correlation between 6 and 9avg (rag) was
calculated.

Adaptive item selection. The items selected by CAT were examined to assess the representation of
the two dimensions. When a CAT was administered to a simulee sample, 15 items were selected for each
of 2,000 simulees, for a total of 30,000 item selections. The number of occasions on which items from
each subset were selected was divided by 30,000 to indicate the proportion of occasions on which items
from the subset were selected for administration. Item sets BT and WT differed in the number of subsets;
thus the item selection analyses were conducted slightly differently for each.

For item set BT, the subset administration proportions p, and p, indicated the representation of each
dimension because the two dimensions were mutually exclusive. The absolute difference bi - P21 was
also calculated as an index of overemphasis of a dimension.

Item set WT contained seven subsets of items, each with different relative weights of Dimension 1

and Dimension 2; administration proportions ps,, psz~ --~9 PS7 were calculated for each of the subsets.
However, because each subset contained different weightings of the two dimensions, the subset admin-
istration proportions were not useful for determining whether the dimensions themselves were propor-
tionately represented in the CATS. To assess the representation of each dimension, two groupings of the
items were created: The Dimension 1 group contained items from subsets which measured Dimension 1

more than Dimension 2 (subsets 1, 2, and 3); the Dimension 2 group contained items from subsets which
measured Dimension 2 more than Dimension 1 (subsets 5, 6, and 7). Subset 4 was excluded from this
comparison because these items measured both dimensions equally. Administration proportions PDI and
Pm were then totaled for the two dimension groups.

Difficulty parameter estimation. Average b and (yb values were calculated for each set of estimations.
Differences between the true and estimated difficulty parameters were assessed by calculating average
absolute deviations between d and b (AADb)- Correlations between b and d (rbd) were also calculated.

Discrimination parameter estimation. The â values could not be compared directly to a single true
value because there were two true parameters (a, and a2) for each item. Different analyses were chosen
for item sets BT and WT because they had differing structures.

For item set BT, the magnitude of a, for Dimension 1 items (these items had a2 = 0) was the same
as the magnitude of a2 for Dimension 2 items (a, = 0). Thus the relative emphasis of each dimension
was assessed by calculating the average a separately for each subset of items: the average £ for the items
measuring Dimension 1 [avg i(i)] and the average â for items measuring Dimension 2 [avg ~(2)]. AADS
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between a and a, for Dimension 1 items [AAD(1)] and between a and a2 for Dimension 2 items [AAD(2)]
and the absolute difference between AAD(1) and AAD(2) [[AAD(i) - AAD(2)j] were also calculated.

In item set WT, the average a for each subset was calculated [avg a(sl), avg â(S2), ..., avg a(S7)];
however, these values combine the true a parameters for Dimension 1 and Dimension 2 and cannot be

directly compared as in item set BT. Therefore, the sum of the true values (aT cz, + a2) was used as a
standard (as recommended in Green, 1988) and AADS between a and aT were calculated for each subset
[~~~(s 1), AAD(S2), ..., AAD(S7)].

The relative size of a was also assessed for the dimension groups (Dimension 1 group subsets 1, 2,
and 3; Dimension 2 group subsets 5, 6, and 7). Average a values [avg â(Dl), avg a(D2)] and AADS between
a and aT [AAD(DI), AAD(D2)] were calculated for each dimension group; the absolute difference

[JAAD(Dt) &horbar; AAD(D2)I] was also calculated.

esults and Discussion

Ite Set BT

Ability estimation. Tables 2 and 3 summarize the results of the analyses of the ability estimates
for the original and replication samples of simulees, respectively. Across simulee samples with different
rO¡62’ comparison of 6CONV values shows no differences between r, and r2. However, a striking pattern
emerged for the 6~RT and 61AT values: As r6J62 decreased, greater differences between r, and r2 were
consistently found, indicating that 6 was closer to either 0, or 02. This pattern was especially evident for
6CAT- ·

In some cases, Dimension I was emphasized; in others, Dimension 2 was emphasized. It is suspected
that this occurred because the item set was constructed to be perfectly balanced and random differences
in responding upset that balance (empirical evidence of this balance is shown in the 0,,,,v values, which
do not emphasize either dimension for any sample). If the item set had not been perfectly balanced in
number and quality of items, the dimension with the better or more numerous items would have pre-
dominated-as was demonstrated in the studies of Ansley and Forsyth (1985) and Way et al. (1988).

ki - r2i was included to indicate the tendency of 6 to emphasize one dimension, regardless of which
dimension happened to be emphasized for a particular sample. As r6162 decreased, ir, - r2l increased
somewhat for 6~RT and increased dramatically for &reg;~AT, indicating increasingly stronger relationships
between 6 and either 0, or 02.

Examination of Ri ,~ in Tables 2 and 3 indicates that 6 is strongly related to some optimal combination
of 6, and &reg;2-even for simulee samples with low rOJ62. However, 01 and 62 are not usually known and
their combination could not be discovered in real tests, hence 6 could not be meaningfully interpreted.
Even if the combination could be discovered, the implications are quite different if both dimensions are
equally weighted or if one dimension is emphasized.

A CAT should provide a 0 estimate that is in accordance with the relative importance of the corre-
sponding dimensions in the item pool; if the pool represents two dimensions equally, the 6CAT values
should be equally related to 8, and 02. In these simulations, the dimensions were identical in the number
and quality of items. If CAT had maintained the original representation, 6CAT values should have been
equally related to 6, and &reg;2-as were 6CONV values.

Item selection. Subset administration proportions are shown for the original and replication samples
in Table 4. If proportional representation were achieved, 50% of the items should have been selected
from each dimension. For simulee samples with high r6J62’ p, and P2 were very close to 50%. As r&reg;,eZ

decreased, an increasingly greater proportion of items was selected from one dimension or the other. For
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Table 2

Multiple Correlations Between ~ and 81 and -
02 (R1,2), Bivariate Correlations Between 0

and 8aVg(ravg), 8 and &reg; 1 ( ~°1 ) , and 0 and 8 ~ ( r2 ) , and

I rl-r2 I from CAT, IRT, and CONV Administrations

of Item Set BT to Original Samples, for

Levels of the Correlation Between 0~ and 82

example, the original simulee sample with rOl02 --- .20 received items almost exclusively from Dimension
1. In general, ~, - p2~ increased as r,,12 decreased.

The relative sizes of p, and p, were reflected in the OIIT values. When rOl02 was low, the CATS did
not proportionately select items from the dimensions and the OIAI values did not equally represent &reg;, and

82. It is not surprising that simulees in the original sample with r0102 = .20, for example, had 6cA, values
that were more strongly related to 0, because they received a test composed primarily of items from
Dimension 1.

Relation of difficulty parameters to their estimates. Analyses of the difficulty parameters for the
original and replication samples are shown in Table 5. Although the ~AD6 values indicate a slight positive
bias in b as r0102 decreased, the differences are minimal. Correlations between b and d were all above
.99, indicating a strong linear relationship. These results demonstrate that the unidimensional model
provided accurate b values for all simulee samples.

Note, however, that the task of the estimation procedure was simply to find a unidimensional ordering
of the b values, where the true d parameters represented difficulty along a single axis in multidimensional
space defined by the combination of the a parameters. This made the task somewhat easier. Also, the
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Table 3

Multiple Correlations Between and 81 and BZ (R1 2)’ Bivariate

Correlations Between W and BaVg (raV~), and 01 (r1’) , and ~ and
avg’avg’’ 1 ~1’’

(r2), and Ir1-r21 from CAT, IRT, and CONV Administrations of

Item Set BT to Original (1) and Replication (2-5) Samples, for

Correlation Between B1 and 82 of .20 and .60

scale of b was tied to the 6 scale. 6 values were standardized, as were the original true 0, and 0, values;
thus the scale of b was the same as that of the true d values.

Relation of discrimination parameters to their estimates. Analyses of the discrimination parameters
are shown in Table 6 for the original and replication samples. Average a values were highest for the
sample with r,,,,, = 1; these values were slightly higher than the true averages, indicating a slight positive
bias in the a values.

For simulee samples with higher r&reg;,e2, the AADS were virtually the same in the two subsets of items.
As rOt82 decreased, greater differences were obtained between the AADS for each subset. For example, for
the original simulee sample with r6¡82 = .20, â values were considerably lower for the items measuring
Dimension 2 than for the items measuring Dimension 1.

The a parameters have two important implications. One implication is that the response of an examinee
to an item with a larger a will carry greater weight in the calculation of that examinee’s &reg; than will that
examinee’s response to an item with a smaller a. Indeed, this is precisely what happened when 6IRT values
were calculated: The dimension receiving larger ti was more strongly emphasized in simulees’ 6IRT values.
For example, when item set BT was administered to the original sample with r8¡02 = .20, the Dimension
1 items received higher a [avg â(l) = 1.02, compared with avg a(2) _ .82 for Dimension 2 items, from
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Table 4
Item Selection Proportions From CAT Administrations
of Item Set BT to Original and Replication Samples

for Levels of the Correlation Between 01 and 02

Table 6]. For these simulees, êIRT was more strongly related to 81 than to 82 (rÔOt = . .80, compared with
r6,, = .67, from Table 2).

A second implication is that an item with a larger â is more likely to be selected in a CAT than is
an item with a smaller. This is exactly what was observed when simulee samples had weakly correlated
as. For example, when item set BT was administered to the original simulee sample with r,,1,2 = .20, the
Dimension 1 items received larger a values and were more likely to be selected in an adaptive test (88%,
compared with 12% for Dimension 2 items, from Table 4). The #c~~ values of these simulees were much
more strongly related to 0, than to 82 (r6,, = .94, compared with r6’2 = .26, from Table 2). In CAT, the
larger a values resulted not only in an overemphasis of certain items in the calculation of 0, but also in
the overselection of those items in the construction of the CAT.

Item Set WT

Ability estimation. Tables 7 and 8 contain analyses of the 0 estimates for the original and replication
samples of simulees. These results indicate that all methods of administering item set WT produced ê
equally related to 0, and 62.

Item selection. Subset administration proportions for the original and replication samples are shown
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,, 
Table5 5 

_

Average b, Standard Deviation of b, and Average
Absolute Deviations Between b and d (AAD)

for Item Set BT, From Original and Replication
Samples, for Levels of the Correlation

Between B1 and 82

in Tables 9 and 10. Proportional representation of the subsets was obtained if pn equaled 14%. For most
samples, items from subset 4 (which measured both dimensions equally) were administered most often.

Dimension group administration proportions are also shown in Tables 9 and 10. The dimensions
were fairly evenly represented in the caTS. This is in keeping with the analyses indicating that 6CAT values
for item set WT were evenly composed of 61 and 0,.

Relation of difficulty pcarameters to their estamcates. Analyses of the difficulty parameters are shown
in Table 11. These results indicate that the unidimensional model provided reasonably accurate b values.

Relation of discrimination parameters to their estimates. Table 12 contains analyses of the dis-
crimination parameter estimates obtained from the original samples. As rOl02 decreased, greater differences
were found among the avg ti values for the item subsets. The larger AADS tended to occur for subsets in
which the weighting of one dimension was greater than the weighting of the other dimension, for example,
for subsets 1, 2, 6, and 7. AADS were the smallest for subset 4, which equally weighted both dimensions,
indicating that the a values for these items were closest to aT. Items from subset 4 also tended to be
selected more frequently in the cA’rs, as was shown in Tables 10 and 11.

Dimension group comparisons are also shown in Tables 12 and 13 for the original and replication
samples. Comparison of these AADS shows no imbalance in the magnitude of ia between the dimension
groups. Indeed, no imbalance in the selection of items from the dimension groups was observed in the
CATS.

Summary and Conclusions

This study has demonstrated that under certain conditions, use of a unidimensional model will bias
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Table 6

Average a and Average Absolute Deviations
Between 3 and al (Subset 1) and Between a
and a2 (Subset 2) for Item Set BT, From

Original and Replication Samples, for Levels

of the Correlation Between 0~ and 82

parameter estimation, adaptive item selection, and ability estimation from CAT and IRT administrations.
The parameter estimation procedure appeared to lay the groundwork of this bias in the i values for item
set BT. For samples with high Te¡e2’ 9 values were equally related to cr, and ca2. However, as Tele2 decreased,
â increasingly emphasized either a, or az. This discrepancy was reflected in the &reg;IRT values: The dimensions
receiving larger ti exerted a stronger influence on nonadaptive 6IRT values.

The 6CIT values were led one step further astray. The ia values were used not only in the estimation
of 6, but also in the selection of items. More discriminating items tended to be selected and, as these
tended to come from one dimension, the adaptive test as a whole became primarily a test measuring that
dimension. Simulees’ true 6 values corresponding to the overselected dimension were necessarily the
most important influence on their OCAT values.
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Table 7 
_

Multiple Correlations Between 0 and 81 and
BZ (J? ), Bivariate Correlations Between 8

- 

and 6 ( r8~g ) , 8 and 81 (r 1)’ 0 and 02 (r 2) ,
and Ir1-rZ from CAT, IRT, and CONV Administrations

of Item Set WT to Original Samples, for Levels of

the Correlation Between 0. and 82 2

It had initially been expected that item set WT would pose serious problems if estimation biases
occurred and it became necessary to find a means of separating the dimensions, but the unidimensional
model seemed to handle item set WT fairly well. Why did this item set fail to exhibit a strong emphasis
of one true 0 for &reg;IRT and 61IT? One possible explanation is that because item set WT consisted of several
different combinations of the two dimensions, there was no explicit trade-off between the dimensions
during parameter estimation. The parameter estimation procedure did have a tendency to emphasize the
fourth subset and to underrepresent subsets in which one dimension predominated (subsets 1 and 7), but
both of the dimensions retained equal influence. The 6 values maintained the balance of the two dimensions
established in the parameter estimates and were equally related to &reg;1 and 0, in all administration methods.

These results indicate the potentially adverse effects of using a unidimensional model to estimate 0
from adaptive tests. Although the results are consistent with those of other researchers, this study has
highlighted the effects of adaptive testing when item parameter estimates are used not only to estimate
6 but also to select the items on which 0 will be estimated.

It is of particular concern that CAT is strongly affected by the tendency of the discrimination parameters
to emphasize one dimension. CAT may not maintain the representation of dimensions that exists in the
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Table 8

Multiple Correlations Between ~ and 01 and °2 (R12)’
Bivariate Correlations Between 8 and Bav~ (raV~), ~ and 81 (r1) , I

and 8 and BZ (r2), and Ir1-r21 from CAT, IRT, and CONV

Administrations of Item Set WT to Original (1) and Replication
(2-5) Samples, for Correlation of 81 and 82 of .20 and .60

complete pool of items; this shifting in the emphasis of the dimensions occurs without the awareness of
the test constructor.

Some tempering conclusions should be kept in mind. For item set BT, as long as the dataset did not
deviate greatly from unidimensionality, the unidimensional model provides a reasonable approximation.
If r91th is low, the datasets are better characterized as multidimensional and they cannot be approximated
with a unidimensional model, but it is likely that the dimensions would be more readily identifiable as
distinct domains. Then they could be separated into different tests, or a selection rule could be incorporated
to ensure equal representation of both dimensions (e.g., Thomas & Green, 1989).

These results argue strongly for the necessity of two current research trends: (1) dimensionality
assessment methods to reduce reliance on content identifiability of item subsets, and (2) development of
multidimensional models. (Hambleton & Rovinelli, 1986, and McDonald, 1965, 1981, 1982, have

reported nonlinear factor analysis as a promising approach to developing dimensionality assessment
methods.)

Item sets and examinee samples with different characteristics than those used in this study should
also be examined. In particular, noncompensatory multidimensional within-item sets are perhaps more
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Table 9
Item Selection Proportions for Item

Subsets and Dimension Groups From CAT
Administrations of Item Set WT to

Original Samples, for Levels of the
Correlation Between 01 and 92

realistic than the compensatory multidimensional within-item set used in these studies. Unequal repre-
sentation of dimensions should be examined because it is not likely that dimensions would be perfectly
balanced among the items in a test. Item sets with more than two dimensions should also be examined.

However, it is expected that the conditions simulated in this study pose the greatest challenge for
unidimensional IRT models: With equal representation of two dimensions, one dimension is effectively
pitted against the other as the unidimensional model attempts to find a single ordering of items and
examinees.

Table 10
Item Selection Proportions for Item Subsets and

Dimension Groups From CAT Administrations of Item Set WT
to Original (1) and Replication (2-5) Samples, for

Correlation Between 81 and 0 of .20 and .60
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_ 
Table 11 

_

Average b, Standard Deviation of b, and
Average Absolute Deviations Between b and
d (AAD) for Item Set WT, From Original and
Replication Samples, for Levels of the

Correlation Between &reg;1 and 82
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Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



389

tension of the two-parameter logistic model to the
multidimensional latent space (Research Report
ONR83-2). Iowa City IA: American College Testing
Program.

Mislevy, R. J. (1986). Bayes modal estimation in item
response models. Psychometrika, 51, 177-195.

Owen, R. J. (1975). A Bayesian sequential procedure
for quantal response in the context of adaptive mental
testing. Journal of the American Statistical Associa-
tion, 70, 351-356.

Reckase, M. D. (1979). Unifactor latent trait models

applied to multifactor tests: Results and implications.
Journal of Educational Statistics, 4, 207-230.

Reckase, M. D. (1985a, April). The difficulty of test
items that measure more than one ability. Paper pre-
sented at the annual meeting of the American Edu-
cational Research Association, Chicago.

Reckase, M. D. (1985b, August). Trait estimates from
multidimensional items. Paper presented at the annual
meeting of the American Psychological Association,
Los Angeles.

Reckase, M. D., Ackerman, T. A., & Carlson, J. E.
(1988). Building a unidimensional test using multi-
dimensional items. Journal of Educational Measure-
ment, 25, 193-203.

Samejima, F. (1974). Normal ogive model on the con-
tinuous response level in the multidimensional latent

space. Psychometrika, 39, 111-121.
Swaminathan, H., & Gifford, J. A. (1986). Bayesian

estimation in the three-parameter logistic model. Psy-
chometrika, 51, 589-601.

Sympson, J. B. (1978). A model for testing with mul-
tidimensional items. In D. J. Weiss (Ed.), Proceed-

ings of the 1977 Computerized Adaptive Testing Con-
ference. Minneapolis: University of Minnesota.

Thomas, T. J., & Green, B. F. (1989). Item presentation
controls for computerized adaptive testing: Content-
balancing vs. mini-CAT (Report 89-1). Baltimore: Johns
Hopkins University, Psychometric Laboratory.

Way, W. D., Ansley, T. N., & Forsyth, R. A. (1988).
The comparative effects of compensatory and non-
compensatory two-dimensional data on unidimen-
sional IRT estimation. Applied Psychological Mea-
surement, 12, 239-252.

Wingersky, M. S. (1984). LOGIST: A program for com-
puting maximum likelihood procedures for logistic test
models. In R. K. Hambleton (Ed.), Applications of
item response theory. Vancouver: Educational Re-
search Institute of British Columbia.

Acknowledgments

This research was supported, in part, through funding
from the Office of Naval Research, Contract No. N 00014-
86-K-0653. The authors thank Jeffrey J. Walczyk for
assistance in running simulations and statistical anal-
yses.

Author’s Address

Send requests for reprints or further information to Val-
erie Greaud Folk, Educational Testing Service, Princeton
NJ 08541, U.S.A.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



390

Correction

Lanning, K. (1989). Detection of invalid response patterns on the California Psychological
Inventory. Volume 13, Number 1, pp. 45-56.

Figure 1 on page 48, &dquo;Decision Tree for Evaluating CPI Profile Validity,&dquo; requires two
corrections: The labels for the branches from the Equation 2 node should be reversed, and
the &dquo;Valid&dquo; and &dquo;Fake Good&dquo; outcomes should be exchanged. The corrected figure
follows: 

___________

Announcement Correction

The Hebrew University of Jerusalem Louis Guttman Memorial Fund announcement in the
March, June, and September 1989 issues of Psychological Measurement gave an
incorrect address for donations within the United States. The correct address is American
Friends of the Hebrew University, 11 East 69th New York NY 10021. Checks
from Americans should be made out to American Friends of the Hebrew University-
Louis Guttman Memorial Fund. As before, gifts from outside the U.S. should be sent to
The Hebrew University of Jerusalem, Division for Development and Public Relations,
91905 Jerusalem, Israel. Donations are tax-deductible in most countries.
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