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It has been established that in the unidimensional case in which only
one ability is tested (Jensema, 1974, 1976; Urry, 1974, 1975, 1977),
computer—-assisted tailored testing can be very economical. The reliabilities
typical of paper-and-pencil tests of single abilities can be achieved with
far fewer items. This economy results from the computer-interactive adapta-
tion of the item sequence to the level of ability of the particular examinee.
In one study (Urry, 1977) the number of items required to achieve a specified
reliability was only one-fifth as great as the number required by a conven-
tional paper—and-pencil test: The paper-and-pencil test required 100 questions
and the tailored test required only 20.

When several calibrated item banks are available for the measurement
of several abilities, the problem becomes one of determining the most economical
use of these banks to optimize the multidimensional validity of a composite of
the several tailored test scores. The conventional paper-and-pencil test
analogue of this problem is to differentially allocate the number of items to
the various tests in a battery so that the multiple correlation is maximized
for a fixed testing time. This particular problem was addressed earlier by
Taylor (1939, 1950), Horst (1949, 1956), and Woodbury and Novick (1968).

The problem is addressed in the present paper from the perspective of
tailored testing. The Woodbury and Novick solution is modified to provide--
at an asymptotic value of the maximum multiple correlation as a function of
testing time--allocations by item banks for (1) terminal reliabilities, (2)
terminal standard errors, and (3) appropriate weights for ability estimates
obtained from tailored testing. The modified solution can be used in con-
junction with the Owen unidimensional algorithm. The result is a multidimen-
sional algorithm appropriate for use when (1) tests are tailored from several
item banks for each examinee and (2) an external measure of job proficiency
is available.

In the Owen algorithm, tailored testing can be terminated when a specific
value of the standard error of the ability estimate is achieved. The specific
value for a given bank is referred to as a terminal standard error. In
actuality, this is the square root of the Bayesian posterior variance. Since
the standard deviation of ability has been set equal to unity, 1.0 minus the
Bayesian posterior variance will yield the terminal reliability when tailored
testing has been terminated at a specific terminal standard error. A composite
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score, or predicted criterion score, can then be obtained by merely adding
tailored test scores (ability estimates) that have been multiplied by their
appropriate weights. The appropriate weights in this context are regressed
score weights. The extent of regression, or the standard deviation of the
regressed scores, is given by the square root of the terminal reliability.
This is the construct validity coefficient or the slope of the regression of
tailored test scores (ability estimates) on true ability. True ability,
through calibration, has a standard deviation of 1.0.

In the balance of this paper, the modified Woodbury and Novick solution
is detailed, a multivariate item response generator is described which
generated data for a simulation study, the design of the simulation study to
assess the effectiveness of the multidimensional algorithm is presented,
results obtained from the simulation study are given, and the important impli-
cations of the multidimensional algorithm for tailored testing are considered.

Method

Multivariate Item Response Generation

In multivariate item response generation, several true ability scores and
a true criterion score are sampled for each simulated examinee. Given these
true ability scores, binary item responses (that is, zeroes or ones indicating
incorrect or correct answers) are sampled for the items. TFor convenience, the
item responses for each simulated examinee are arranged on the basis of the
particular ability each item measures. These data are then available for the
simulation of multidimensional tailored testing. Each ability can be estimated
through a unidimensional tailoring algorithm using the appropriate item responses;
each ability estimate can then be compared with its corresponding true value.
In addition, appropriate weights can be applied to each ability estimate to
obtain a composite or predicted criterion score that can, in turn, be compared
with a true criterion parameter.

An estimate of the population supermatrix P is required. This symmetric
supermatrix has the following partitioned structure:
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where P66 is the matrix of intercorrelations between the latent abilities,
ek,for k=1,2 .. . p;
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is a column vector of correlations pe between the latent

k
abilities ek and a criterion variable,y; and

-

£ 1s the transpose of p, or a row vector of the validity coeffi-
cients for the latent abilities.

While the supermatrix P is never observed in practice,1 it can
be satisfactorily estimated from supermatrices of attenuated correla-—
tions based on large samples through the use of

[ —I] D—if + I. [2]

av}

L[}

i
B

In Equation 2, the matrix I is the (p+l) by (p+l1) identity matrix.
The supermatrix F is partitioned as follows:

R/\/\ - B

%66 | x| _ . NP S
R = E,—’—m 1.00 1’6162 . . relep P91y
r§2§1 1.00 . e e Pézép Pézg
ra A rea A e e e 1.00 ra o~
8 6 8 9 8
pt p”? pY
AN AN . ran 1.00
1ﬂyel lay@z yep

where R@@ is the matrix of attenuated intercorrelations between less than
perfectly reliable or fallible measures of the latent abilities,
Sk’ for k =1, 2 . . . p;

I3

is a column vector of attenuated correlations, Pé g, between the
k

fallible measures of latent gbilities, ék’ and a fallible criterion

~

variable, y; and

|3

is the transpose of r, or a row vector of validity coefficients
attenuated in the variables.

1

The supermatrix P represents the intercorrelations between perfectly reliable
ability and criterion measures. While this supermatrix exists in theory, in

practice, perfectly reliable ability and criterion measures are exceptional.
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is partitioned as follows:
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where DrAA is a p by p diagonal matrix of reciprocal square roots of the
80 .
reliabilities of the fallible measures of the latent abilities;
0 is a column or p by 1 null vector;
0~ is the transpose of 0 or a row or 1 by p null vector; and
1

, a scalar, is the reciprocal square root of the reliability of the

‘VIQQ criterion variable.
The estimate of the supermatrix P is decomposable into its eigenvectors

and eigenvalues. This process yields the identity

= ¢DQ~ , [5]

where ¢ is the (p+1) by (p+l) matrix of the eigenvectors of P
D is the (p+l1) by (p+l) diagonal matrix of the eigenvalues of P in

descending order of magnitude; and
Q”is the transpose of 4.

A (p+l) by (p+l) matrix of weights

W= D% (6]

3 I3 ;/

is obtained for later use, where the diagonal matrix D° contains the square
roots of the eigenvalues in descending order of magnitude and the matrix

®" is as previously defined. A matrix T can then be obtained through

T = 7w, (7]

where Z is the N by: (p+l) matrix,the elements of which are merely independent,
drawing from the normal distribution, N(0,1), with a mean of zero and a vari-
ance of one; and the matrix W is as defined in Equation 6. The matrix 7T is
partitioned as follows:
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T =16 yi= 911 912 « . . elp Y1 [8]
621 822 - - . B2p Y2
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1 w2 ... ®wp Yy

where 6 is the N by p matrix of ability parameters in standard score form, and
y is the N by 1 column vector of criterion parameters in standard score
form.

Since the expectation, E,of Z7Z7 is equal to the identity matrix, i.e.,

N
A/
= 9
B [ 7 J I [9]
it then follows that the expectation, E, of T°T , or
N

g % - s ~

E [TNT} - E [ZNZJ g = B, [10]

is equal to the desired supermatrix. Thus, the operation in Equation 7 pro-
vides a simulated sample of size N from the population defined by P.

Let it be assumed that representative values for the item parameters
are available for items measuring the several abilities. For example, the
.th , . th L q . . .
it item measuring the kX~ ability would have the parameters a. (discrimin-
atory power), bik (difficulty), and 1 (coefficient of guessing),

where 7 =1, 2, . . . qk, the number of items measuring the kth ability;

qy 1s the last item in the kth bank; and k =1, 2, . . . p, the number of

abilities measured.

Given ij (examinee Jj's true ability score on ability k) and the parameters

for item 7 on ability k, the jth simulated examinee's binary response, or
uijk’ (that is, 0 or 1 indicating an incorrect or correct answer) is obtained

through evaluating
Pip(8) = e+ (1-c; )53, (8 ) [11]

-

where Pik(ejk) is the proportion obtaining a binary score of 1 at ejk, and
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Pik(e'k)’ the proportion knowing the correct answer (as opposed to
J knowing or guessing correctly) at ejk is

-1
Pik(ejk) = [l + EXP%"Daik(ejk_ bik)}] > [12]
where D is the constant 1.7. Because of the complementary relationship,
. . = 1-P.; (6.
Qup(04) = 1P 2 (00) [13]

the exhaustive and mutually exclusive events (that is, 0 or 1 indicating an

. .th | . th cas
incorrect or correct answer to the 7 item measuring the k ability) may be
mapped onto the unit interval.

Thereafter, a random number, ru, is drawn from a distribution of uniform

density on the interval from O to 1. Given that

r > Pik(ejk) . [14]
assign
uijk = 0 (dincorrect) . [15]

Otherwise, or when

r, 2 PG [16]
assign
uijk = 1 (correct) . [171

The process is merely repeated for distinct uijk'

For the purpose of subsequent processing, it is convenient to structure

a complete record for the jth simulated examinee in the following manner:

ejl uljl u2jl e e . uijl e . uqul
ejz uljZ uzjz . e . uijz .« e . uq2j2
ejk uljk u2jk « o e uijk . . . uqkjk
6. U, Un o . e . U.. e e . .

Jp 14p 24p idp ”qpap

Yj
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.t
where e.k is the parameter in standard form on the kth ability for the g h

examinee;
. . .th . .th , .
is the binary score for the J examinee on the 7 item measuring

th ‘1
the k¥ ability; and th
yj is the criterion parameter in standard form for the J examinee.

“iik

. . . th , .
For convenience, the number of the last item in the k item bank, Qs 1s

illustrated in this record as constant across banks. It need not be held
constant in practice.

Modified Woodbury and Novick Solution

The developments in this portion of the paper parallel those given by
Woodbury and Novick (1968), with some notational change. Where simplifications
were possible and modifications necessary, these are introducted.

The investigators designate a diagonal matrix D with main diagonal ele-
ments dkk given by

Vi

kk =
x,(t,) | 1-p .
‘/ KMk [ xk(tk)x k(tk)]

where tk is the time allocated to the kth test in the battery. The variance

d , [18]

and reliability of the kth test are o and p , respectively,

2
for the allocated time, tk. Thus, the total time allocated to the # tests in

the battery is given by

n
T= 2 £y, - [19]
k=1
In further developments, a product of matrices is useful:
DED = |pwD7? 3 |p7% D*| = D*RD* [20]
diag I diag T i

where the elements of D were defined in Equation 18, and $ is the variance-
covariance matrix for the tests under the allocated times that sum to T.

In actual practice, it will be convenient to work with the righthand equality,
where R (the intercorrelation matrix for the tests under the allocated times
that sum to T)is given by

- = -%
B = Ddiag > Ddiag z? [21]

%
as indicated by the equalities in Equation 20 in which Ddéa 5 is a diagonal

matrix of reciprocal square roots of the diagonal elements (test variances)
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of . Since D is the product of D* and Ddiag 5o D* may be observed to have

diagonal elements
o Vi , [22]
kk Vl -p .
ay (£)% 2 (1)
where the terms are as previously defined. The matrix

-1 -1
= * X -
F D (D RD D ) D [23]

is then obtained for future use. 1In this equation, Dt is a diagonal matrix
with elements tk (as previously defined) on its main diagonal. The diagonal

. -1 . . , . . .
matrix Dt contains, by convention, the reciprocals of tk on its main diagonal.

It is also required that there be a column,vector

2 pxp2 7
b C—O%(t)y/vcy D*Piiag » Za(t)y®y /\("y ESTOYE [24]

* 5 . . .
where D, D, Ddiag y are as previously defined;

Cov )y is a column vector of covariances, rxk(tk)y ka(tk) Oy’
between the tests, under the allocated times that sum to T,
and the criterion y;
o and o® are the standard deviation and variance, respectively, for
Y Y the criterion ys and
L is a column vector of validity coefficients under the
= (t)y allocated times that sum to T.
Again, in actual practice, it is convenient to work with the righthand
equality in Equation 24, For future use, a column vector

_l
= *
Y Dt D* p )y [25]

is obtained where all terms have been previously defined.

B A valid solution requires that all the optimally allocated testing times,
t in the column vector
k b
T*+e” Fle
e Fry

>

be non-negative. In Equation 26, T* is the total time available for testing,
i.e.,
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T* = [27]

k

t

*
1 k

M

where the column vector ¢ is an elementary vector of length n, the elements of
which are all unity;
e’ , the transpose of ¢, is a row vector of length »n, the elements of
which are all unity;

-1 . . . .
F is the inverse of the output matrix of Equation 23; and
y is the output vector of Equation 25.

An application is begun with a large value for T*, which is then
decreased systematically. When a negative tz is encountered, the kth

test is dropped from the solution by appropriately reducing the involved
matrices, vectors, and scalars. In this case, the terminal reliability,
the terminal standard error, and the weight for regressed ability estimate

t . .
on the k h test are set to zero, unity, and zero, respectively; and the
original subscripting is preserved for the purpose of tailored testing.

A diagonal matrix Dt* is defined to contain the elements of t* of Equation

26 on its main diagonal. The diagonal matrix then required is

A= [I + (D4 7' - D DP] Dzi D, [28]

where I is the identity matrix;

D D D-1 are as previously defined;

t*? Tt Tt
D is a diagonal matrix containing the reliabilities of the tests under
the allocated times that sum to 7 on its main diagonal; and

Dt* is the inverse of Dt*'

At a particular T*, the terminal reliabilities for tailored testing are
then given on the main diagonal of

D. = Ao , [29]
r r

where A~! is the inverse of the diagonal matrix defined in Equation 28. It is

of interest to interpret a diagonal element of Equation 29. From Equations 28

and 29, it can be deduced that a diagonal element of D?, namely ?kk’ is defined
as

t:('
k

;Z'Pkk

r = s
Kk » [30]
1+ "k -1)r

T kk

k

*
which is the continuous form of the Spearman-Brown formula, where tk is the

%
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continuous analogue of the discrete integer k as given in

k r
~ kk
r = [31]
kk 1+ (k- 1) %

under the usual notation for the formula. The diagonal elements of D}

are thus the appropriately altered reliabilities from a solution for a
particular T*.

At a particular T#*, the terminal standard errors for tailored testing
are given on the main diagonal of

%
Dy = [I - D%] , [32]

€

where I is the identity matrix and D? is defined in Equation 29. Thus, a

diagonal element of D8 , namely 58 » can be interpreted from Equation 32 as
> k

§ =V1-rp [33]

the square root of 1 minus the reliability.

The squared maximum multiple correlation for the weighted composites
of ability estimates, Ré, for a particular T* is given by

R? =

- _ -1
e " Zoeyy BHA-DT 2oy, [34]
where E;(t)y’ a row vector, is the transpose of Ex(t)y as previously defined

in Equation 24;

E and A are as previously defined in Equations 20 and 28, respectively;
and

I is the identity matrix.

Tt is necessary to derive the appropriate weights for regressed ability
estimates at a given 7*%. Standard weights, Bi, are obtained through the

normal equations provided by calculus,
A~ = ~~*
Tz (tM)y RE* 1351

wherei&(t*)yand R are the appropriately altered column validity vector and

intercorrelation matrix for the tests in which the allocations of time sum to

T#. The altered colummn validity vector is known from Woodbury and Novick
(1968) to be given by
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1
~ _ 23
Zieny T Lty [36]

and the altered intercorrelation matrix is similarly known to be given by

1
2

~ _1 T
R=A2[R+A—IJA . [37]

Thus, an explicit solution for B* involves the premultiplication of both
sides of Equation 35 by E™!. Then

B* = R “r. . [38]

But it is known that

L

~ 1
R! = AZ[R+A—I] G [39]

because the inverse of a product of square basic matrices is equal to the
product of their inverses in reverse order. Substitution from Equations 36
and 39 into Equation 38 now provides a more convenient form,

~ 1/2 -1
ﬁf = A [R + A - I] zm(t)y . [40]

The weights for regressed ability estimates appropriate in tailored testing
are now obtained from

b= 1/2 B* [41]

-1
because the main diagonal elements of D~2 are the reciprocal square roots of
the reliabilities or the reciprocal standard deviations of the regressed
ability estimates provided by the Owen algorithm. A predicted criterion
score, @j, is obtained with

b =8 DR, [42]

|®>
|®>

yJ
where 07 is a row vector of regressed ability estimates from the Owen algo-
rithm (one for each ability bank) and the remaining terms are as previously
defined. The middle equality in Equation 42 is the most convenient form, but

the righthand equality is more informative. In the righthand equality, the
1

-—rr
product 6 D~2 can be seen to standardize ("unregress') the regressed ability

estimates prior to the application of standard weights; concomitantly, this
product can be viewed as an operation that unbiases the regressed ability
estimates or renders them on the same scale as the corresponding true abilities.

Of interest, in actual practice, are the asymptotic properties of the
maximum multiple correlation as T* increases. Beyond some point on T%,
increased testing time yields diminishingly small increases in validity, as
indexed by the maximum multiple correlation. A solution at a specific 7%
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is then selected in which negligible increase in the maximum multiple correla-
tion is expected with an increase in testing time. The terminal reliabilities,
terminal standard errors, and appropriate weights for tailored testing may
then be obtained for the selected value of T%*,

Design of the Simulation Study

The population intercorrelation matrix, by assumption, contains the
intercorrelations of the latent abilities, their correlations with a criterion,
and the criterion self-correlation, unity. To assure verisimilitude, this
matrix of parameters should be an intercorrelation matrix actually obtained
in a large sample and later disattenuated in the tests. A matrix of
parameters implies error-free tests. An attenuated matrix was obtained from
French (1963). This matrix is well known because it was also used in the
six-predictor-variable problem analyzed in the original Woodbury and Novick
article. The reliabilities required to disattenuate this matrix appropriately
were .76, .82, .70, .64, and .74.

The particular population matrix used to generate the intercorrelated
true ability and criterion parameters, given in .Table 1, is partitioned. The
last row and column of the matrix contains the true validity vector and the
criterion self-correlation, unity. The larger partitioned area contains the
intercorrelations between the latent or true abilities.

Table 1
The Assumed Population Matrix
True Abilities Criterion
Variable 1 2 3 4 5 6 7

1 1.00 .16 A7 .38 .46 .33 .50
2 .16 1.00 .22 .12 .21 .09 17
3 .47 .22 1.00 .30 .53 .34 .51
4 .38 .12 .30 1.00 .49 .21 .36
5 .46 .21 .53 .49 1.00 .36 .50
6 .33 .09 .34 .21 .36 1.00 .20
7 .50 .17 .51 .36 .50 .20 1.00

Through the use of this matrix, 900 simulated cases were randomly sampled,
each case having six true ability parameters, ejk,for k=1, 2, . . . 6 and

one criterion parameter,yj. The subscript J indexed the simulated cases where

i=1,2,...0N.

In order to generate the item responses for the simulated cases for each
item (ability) bank or test, the item parameters must be specified. The
distinction between item bank and test depends on the use of the particular
simulated case as described below. TFor convenience, each bank or test had
the same parameter specifications. The parameters for the 100 items in each
bank or test were specified as follows: 1In sequence, 20 items were assigned



~74—

to each level of ai, viz., .8, 1.2, 1.6, 2.0, and 2.4 that in turn contained
20 levels of bi varying from -1.9 to 1.9 in increments of .2. The ¢, were

successively assigned the values from .03 to .27 in increments of .03, where

both ey and clOO were accordingly .03. Again, to assure verisimilitude, these

specifications were in accord with reasonable expectations for ability test
items.

For 500 of these simulated cases, the generated item responses were
scored as they would be for six 100-item conventional tests. Raw scores—-
merely the number of items answered correctly--were obtained for the 100-item
test variables. The scores were then intercorrelated along with the criterion,
Kuder-Richardson Formula 20 reliabilities were estimated, and a modified
Woodbury and Novick solution was obtained.

Using the obtained solution, multidimensional tailored testing was then
conducted with the 400 simulated cases remaining from the original 900.
These cases were evenly divided into two samples, viz., Sample 1 and Sample 2.
For each case, tailored testing proceeded by using each bank until the
particular terminal standard error, 58 , was achieved. The tailored test
k

scores, or ability estimates, were then weighted to obtain Qj, the predicted

or estimated criterion parameter. These estimates were then correlated with
their corresponding and known true parameters in order to allow an asseéssment
of the effectiveness of the multidimensional algorithm.

Results

The 100-item tests for the first 500 simulated cases were conventionally
scored. Their reliabilities were computed by means of Kuder-Richardson
Formula 20, and the tests were intercorrelated along with the criterion. The
results are reported in Table 2. The off-diagonal elements of this matrix
should resemble the off-diagonal elements of the assumed population matrix (as
given in Table 1) from which the 500 simulated cases were sampled in order to
allow the generation of item responses. The resemblance is unmistakable
because both the sampling error for the 500 cases and the measurement error,
as indicated by the high test reliabilities, were small.

Table 2
Obtained Reliabilities (Main Diagonal), Test Intercorrelations, and
Validity Coefficients (Last Row and Column, Omitting the Main Diagonal), ¥=500

Variable 1 2 3 4 5 6 7
1 (.963) 171 .510 .378 422 .353 .512
2 171 (.962) .181 .122 .157 .083 171
3 .510 .181 (.960) .317 .516 .373 .469
4 .378 ’ 122 .317 (.961) 436 .221 .287
5 422 .157 .516 436 (.958) .333 487
6 .353 .083 .373 .221 .333 (.958) .206
7 .512 171 .469 .287 .487 .206 1.000
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Using the data given in Table 2, the modified Woodbury and Novick
procedure was applied. For this application, the initial testing times for
the tests,tk, were all set to unity. Accordingly, the diagonal matrix Dt

was the identity matrix.

The pertinent results obtained in this application are summarized in
Table 3. 1In the notation of this table, the squared construct validity
coefficient, 52 , has been substituted for its identity,rkk, the terminal

%%
reliability. This identity is readily established by merely correcting the
reliability coefficient for attenuation in one of the parallel forms to obtain
the validity coefficient. This coefficient is the correlation between the
attenuated fallible parallel form and the disattenuated parallel form repre-
senting the errorless latent ability or pertinent psychological construct.
Squaring this construct validity coefficient merely removes the radical, again
yielding the reliability coefficient. This identity assumes that true score
is a linear function of true ability.

In Table 3 terminal reliabilities (bi J, terminal standard errors (58 ),

ekek k

and the regressed estimate weights (Ek) are given for each bank at five levels of

testing time (7*) along with their associated maximum multiple correlations
(R). 1t should be noted that the maximum multiple correlation increased with
testing time and that these increases diminished in magnitude as testing time
increased; the maximum multiple correlation as a function of testing time (T%)
eventually reached an asymptotic value beyond which further testing time (7%)
yielded no further return in validity (R). It should also be noted that
relatively large increases in the terminal reliabilities were required for
negligible increases in validity (R) as testing time (7%*) increased.

In this context, the terminal standard errors are completely determined
by the terminal reliabilities. These are merely the square root of 1.0 minus
the particular reliability. It is of interest to note that the banks with
the higher terminal reliabilities, Bi » also have the larger regressed

erk

estimate weights, bk' The ordering is perfect.

The asymptotic properties of the maximum multiple correlation (R) as a
function of testing time (7*) may be readily observed in Figure 1. Here this
function is given for testing times (T7*) of zero through five. There is an
abrupt rise in this function in the range of T* of zero through one; there-
after, increases in the maximum multiple correlation tended to be negligible.
The asymptote of the function is approximately .61l. As a result, it was
decided to use the modified solution at a T* of 1, where the maximum multiple
correlation was approximately .60. This solution yielded the terminal
standard errors (BE ) and regressed estimate weights (bk) for the six item

k
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Table 3
Terminal Reliabilities (pe 5 ), Terminal Standard Errors (Oek)’
and Regressed Estimate Weights (bk) for Six Item (Ability)
Banks at Five Levels of Testing Time (7%), and the

Associated Maximum Multiple Correlation (R)

Item Bank (k)

Testing Time (T %) 1 2 3 4 5 6
1 (R=.598)
bé 5 .913 440 .835 . 000 .892 .000
8€k .295 748 .406  1.000 .329  1.000
5k .328 .052 .180 .000 .282 .000
2 (R=.607)
52 .953 .690 .909 .000 .942 .000
929%
ng .216 .557 .301  1.000 .241  1.000
Zk .320 .049 .171 .000 .275 .000
3 (R=.610)
bx .968 .786 .938 .000 .960 .000
99%
5 .178 .463 .250  1.000 .199 1.000
€x
Ek .317 .048 .168 .000 .272 .000
4 (R=.612)
bé 5 .976 .835 .952 .000 .970 .000
k'k
Gey .155 .406 .218  1.000 .173  1.000
Ek .315 . 047 .167 .000 .270 .000
5 (R=.613)
~2
pekek .980 .867 .962 00N .976 .000
6€k .140 .365 .196  1.000 .156  1.000

bk .314 .046 .166 . 000 .270 .000
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Figure 1
The maximum multiple correlation (R) as a function of testing time (T%*)
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(ability) banks (k) that are indicated in columns 1, 2, and 3 in Table 4.

If the square roots of the terminal reliabilities given in Table 3 for T*

equal to 1 are taken, they will represent forecasts that can be made re-

lative to the pé 6.’ or the constant validity of tailored test scores,where
k' k

the criterion is the particular latent ability. These forecasts, the P8 p.

k“k

are given in row 5 of Table 4. The solution selected after the application
of the modified procedure forecasts a cross-validity, 5yy, of .60 allowing,

of course, for no shrinkage; this forecast is shown in row 4, Tt should
be noted that the abilities measured by Banks 4 and 6 were not required in
criterion performance. The terminal standard errors 654 and 586, both 1.00

for Banks 4 and 6, imply that § and D both equal zero. Thus, uni-
646y Beb¢

dimensional tailored testing was unnecessary with respect to Banks 4 and 6.

Multi-bank tailored testing was then conducted using the 400 simulated
cases remaining from the original 900. These cases were evenly divided into
two samples, viz., Sample 1 and Sample 2. For each case, tailored testing
proceeded by using each bank until the particular terminal standard error,

58 , was achieved. The four tailored test scores, the éjk’ were then weighted

k

to obtain Qj, the predicted criterion score. The obtained correlations can

be directly compared with the forecasts of theory provided in Table 4. These
comparisons indicate that the multidimensional procedure performed very well
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Table 4
Multidimensional Tailored Testing:
Forecasted and Obtained Results

Item Bank (k)

Statistic 1 2 3 4 5 6
Terminal Standard Error 68 .30 .75 .41 1.00 .33 1.00
Uk
Regressed Score Weight bk .33 .05 .18 .00 .28 .00
Forecasted Results:
Validity 5@ 6 .95 .66 .91 .00 .94 .00
k'k
Cross-Validit fs] .60
Y Yy
Simulation Results:
Sample 1
Validity ra .95 .70 .91 .00 .95 .00
9%
Average No. Items m 7.20 1.00 4.20 .00 6.10 .00
Total No. Items Tm 18.50
Cross-Validity Tyy .59
Sample 2
Validity r5 o .94 .68 .92 .00 .94 .00
k7k
Average No. Items m 7.10 1.00 4.00 .00 6.00 .00
Total No. Items Tm 18.10
Cross-Validity Pyy .64

in terms of the reduction in the total of the average number of items requir-
ed per examinee vis—-a-vis the number of items typically used in conventional
paper—and-pencil test batteries.

Discussion

When external criterion measures are available, the economy of multi-
dimensional tailored testing derives from

1. 1low values for the terminal reliabilities,

2. a reduced number of measured abilities, and

3. an allocation of terminal reliabilities to minimize computer-

interactive time.

Low values for the terminal reliabilities are possible because the maximum
multiple correlation (validity) as a function of testing time typically
approaches asymptotically high values quite rapidly. High values for the
terminal reliabilities, requiring larger numbers of items, are necessary
only after this function has approached the asymptote.

Abilities that are not valid or those sufficiently well measured
through correlated abilities are not measured. Thus, correlated abilities
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pose no particular problem. A proper economy in items is observed even
when abilities are correlated. If the items measuring different abilities
vary systematically in average examinee response time, computer-interactive

time is minimized through the use of the appropriate initial time matrix Dt

in obtaining a modified solution. These initial testing times need only be
proportional to attain a proper solution.

Whether a modified solution is found for conventional tests or tailored
tests, it is equally applicable later in multidimensional tailored testing.
The case in which the modified solution was found through conventional
testing and later applied in multidimensional tailored testing was illus-
trated in this paper. The modified solution can also be found for tailored
tests and then applied in multidimensional tailored testing.

Certain salient aspects of tailored testing will now be considered by
means of the Owen (1969, 1975) algorithm. It is well known that the corre-
lation coefficient completely determines the correlational surface. Thus,
a function completely determined by the correlation coefficient will do

likewise. For example, if the standard error of the estimate, v 1 - pi 6
0
~ k'k
(the error about the regression of ek on ek), is controlled by the appropriate

termination of tailored testing, the slope of this regression, p@ is also

e b
kK'k -
controlled. Since the correlational surface implies equality and symmetry
of errors about both regression lines, the error about the regression of

ek on Sk, which is more traditionally considered to be the standard error

of measurement, is equal to the standard error of the estimate, v 1 - p% o

k k
(In this context, the traditional distinction between these standard errors,
drawn from classical test theory, breaks down algebraically.)

This determination of the correlational surface aiso implies a marginal
distribution of ék that has a scaling identical to that of the marginal

distribution of ek, true ability, where the mean is zero and the standard

deviation is unity. To allow this feature of control over the correla-
tional surfaces,
1. tailored testing with the Owen algorithm must begin with zero and
unity for the prior estimates of ability and the standard error
of the estimate, respectively; and
- 2. the scaling of a mean of zero and a standard deviation of unity
for ek must have been employed when the item parameters were being

estimated in large random samples from the population of interest.
Appropriate termination requires variable-length tailored tests to
control the resulting correlational surfaces. Fixed-length tailored tests
do not provide this control because the standard error of the estimate is,
out of necessity, ignored. Evidence of the effectiveness of this control
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through variable-length tailored testing is provided in Table 4, as well as
in several other studies (Urry, 1974, 1975, 1977).

In this context, fixed-length tailored tests clearly result in curvi-
linear regressions of estimated ability on the corresponding true ability
because the standard error of the estimate is ignored. Equiprecision of
measurement throughout the important range of each ability is lost when,
as in fixed-length tailored testing, the standard error of the estimate is
ignored. Terminating the variable-length tailored sequences after a specific
value of the standard error of the estimate has been achieved guarantees
equiprecision of measurement for the important range of each ability.2

Through the multidimensional algorithm, a conditional maximum multiple
correlation or validity coefficient at a fixed testing time is sought. To
attain the unconditional maximum validity coefficient, infinite testing
time would be required. While this is clearly the solution, it has a severe
practical drawback in requiring an infinite number of items. Fortunately,
increases in testing time beyond some point yield negligible returns with
respect to the validity coefficient. There is, then, a trade-off involved
in which the appropriate testing time can be rigorously established in a
decision theoretic framework. For example, a specific cost/benefit ratio
can uniquely determine the appropriate testing time. 1In this context, the
computer could be used to monitor (1) validities, (2) costs, and (3) benefits.
Thus would be known on a continual basis (1) the validities of the procedures
for personnel selection; (2) the dollar costs of obtaining pertinent test
information; and (3) the dollar benefits in increased productivity accruing
from the selection decisions.

Preliminary work in decision or utility theory has already been in-
itiated at the U. S. Civil Service Commission. The findings indicate that
the dollar benefits of personnel testing tend to be grossly underestimated
by both practitioner and sponsor. A close examination of the value of
personnel testing would afford a realistic reappraisal, which is much needed
after the controversy surrounding personnel testing during the passing decade.

References
French, J. W. The validity of new tests for the performance of college

students with high-level aptitude (Research Bulletin 63-7). Princeton,
NJ: Educational Testing Service, 1963.

°In a Bayesian context, the standard error of the estimate is the proper
term to use in determining equiprecision. The reciprocal square root of
the information function is appropriate only in a maximum likelihood
context. Error reduction is more rapid in the Bayesian context and occurs
to a greater extent when incorrect answers are encountered. This can be
deduced from Equation 3.7d provided by Owen (1975, p. 353). Greater
efficiency in the Bayesian context can result in a correlation between the
length of variable-length tailored tests and ability estimates because
examinees of lower ability provide more incorrect answers. Hence, fewer
itmes are required.



-81-

Horst, P. Determination of optimal test length to maximize the multiple
correlation. Psychometrika, 1949, 14, 79-88.

Horst, P. Optimal test length for maximum differential prediction.
Psychometrika, 1956, 21, 51-66.

Jensema, C. J. The validity of Bayesian tailored testing. Educational
and Psychological Measurement, 1974, 34, 757-766.

Jensema, C. J. Bayesian tailored testing and the influence of item bank
characteristics. Proceedings of the first conference on computerized
adaptive testing (PS-75-6, U. S. Civil Service Commission,Personnel
Research and Development Center). Washington DC: U.S. Government
Printing Office, 1976. (Superintendent of Documents Stock No. 006-
000-00940-9)

Owen, R. J. A Bayesian approach to tailored testing (Research Bulletin
69-92). Princeton, NJ: Educational Testing Service, 1969.

Owen, R. A. A Bayesian sequential procedure for quantal response in the
context of adaptive mental testing. Journal of the American Statistical
Association, 1975, 70, 351-356.

Taylor, C. W. A method of combining tests into a battery in such a fashion
as to maximize the correlation with a given criterion for any fixed
total time of testing. Unpublished master's thesis, University of
Utah, 1939.

Urry, V. W. Computer—-assisted testing: Calibration and evalution of the
verbal ability bank (Technical Study 74-3). Washington, DC: U.S.
Civil Service Commission, Personnel Research and Development Center,
December 1974.

Urry, V. W. Computer-assisted testing with live examinees: A rendezvous
with reality (Technical Research Note 75-3). Washington, DC: U.S.
Civil Service Commission, Personnel Research and Development Center,
January 1975.

Urry, V. W. A five-year quest: Is computerized adaptive testing feasible?
Proceedings of the first conference on computerized adaptive testing
(PS-75-6, U.S. Civil Service Commission, Personnel Research and Develop-
ment Center). Washington, DC: U.S. Government Printing Office, 1976.
(Superintendent of Documents Stock No. 006-000-00940-9)

Urry, V. W. Tailored testing: A successful application of latent trait
theory. Journal of Educational Measurement, 1977, 14, 181-196.

Woodbury, M. A., & Novick, M. R. Maximizing the validity of a test battery
as a function of relative test lengths for a fixed total testing time.
Journal of Mathematical Psychology, 1968, 5, 242-259.






