A FIVE-YEAR QUEST:

IS COMPUTERIZED ADAPTIVE TESTING FEASIBLE?

Five years of research on the feasibility of computer
assisted testing has attempted to answer four extremely
significant questions: (1) What types of items are required
for effective computerized adaptive testing? (2) Do these
types of items exist in sufficient number to measure
important abilities adequately? (3) Can estimates of the
item parameters be obtained that are sufficiently reliable to
be used successfully in a computerized adaptive testing
algorithm? and (4) Is there an efficient and accurate
adaptive algorithm for computerized testing?

In answer to the first question, “What types of items are
required for effective computerized adaptive testing?”, the
development of specifications for effective item banks or
item pools for computerized adaptive testing was begun
about five years ago (Urry, 1970). These specifications were
written with reference to the three parameters of the
normal ogive model (Lord & Novick, 1968) and the logistic
model (Birnbaum, 1968). At that time, they included
requirements for a minimum of 100 itemns with item
discriminatory powers (the a;) of at least .80, with item
difficulties (the b;) evenly distributed on the interval from
—2.00 to 2.00, and with item coefficients of guessing (the
¢;) of 25 as a maximum. Some research was later
completed (Jensema, 1974; Urry, 1974b) indicating that
the maximum value for the ¢; could be set as high as .30
with item bank effectiveness still maintained.

In these studies, an item bank was adjudged effective
when computerized adaptive testing required fewer items
than conventional paper and pencil testing to attain the
same level of reliability. The specifications were arrived at
through model sampling and simulation techniques. The
concern was the capability of the 3-parameter models for
the specific purpose of computerized adaptive testing. After
model capabilities were adequately explored, there
remained the empirical question, “Do these types of items
exist in sufficient number to measure important abilities
adequately?”

At first glance, it might have appeared that the
requirement for item discriminatory powers of .8 or greater
was unreasonably high given the usual test item because an
item discriminatory power of .8 corresponds to a biserial
correlation of .62 between the item and latent ability. In
the experience of most psychometricians this would seem
an impossible specification to meet, because the usual
item-test biserial correlations tend to be much lower than
this specified value. However, the impossibility exists only
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if the attenuating effects of guessing on conventional
indicants of item discriminatory power are not fully
understood. These effects mask the true discriminatory
power of multiple-choice items to a marked degree, and
they are still largely unappreciated.

In order to illustrate these effects, equations were
derived for the point-biserial (Urry, 19742) and the biserial
(Urry, 1975) correlations between multiple-choice items
and latent ability. The equation for the point-biserial
correlation was derived as
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(Urry, 19744, eq. 15); (1)
and the derivation of the biserial correlation resulted in
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(Urry, 1975,eq.6).(2)

In these equations, a prime was used to indicate that the
given term was affected by guessing. Definitions were as
follows:
¢;  the item coefficient of guessing, is the lower
asymptote of the regression of the binary item
on latent ability;
Prg is the biserial correlation, unaffected by
guessing, between the binary item and latent
ability;

v;  is the baseline value of the item distribution
N(0,1) above which the probability of (or
proportion) knowing the correct response
occurs;

¢(y;) is the height of the ordinate at 07F

P{ is the probability of (or proportion) passing a

multiple-choice item;
or 1- P/, is the probability of (or proportion)
missing a multiple-choice item;

o;



v;  is the baseline value on the distribution N(0,1)
above which the probability of (or proportion)
passing, viz. P}, occurs:
¢(v}) is the height of the ordinate at v,
The difference between the probability of (or proportion}
knowing the correct response to an item, viz.,
1 o -2

= — f exp
vV 2m y; 2

dt, (3)

and the probability of (or proportion) passing a
multiple-choice item, viz.,

Pl =c;+(1-¢c)P;,
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is to be duly noted. As a consequence, it is known that v; is
equal to v/ only when c; is zero. When guessing is effective
(or, synonomously, c; is not zero), neither v; and v/ nor
¢(y;) and ¢(y';) are equal. Further, when guessing is
effective, 7/, as a baseline value, is unlike 7; which divides
the item distribution meaningfully on the basis of success
on the item. Notice that for ¢; equal to zero, equation (2)
indicates the equality of pp and pgy. Otherwise the
distinction between these two coefficients is to be kept
clearly in mind. Since item discriminatory power is defined
by the normal ogive model as

_ P
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it is totally inappropriate to substitute estimates of 91’6 for
pre in equation (5) to estimate a;. When guessing is
effective or when the items are of a multiple-choice variety,
this procedural error adversely affects computerized
adaptive testing.

The derived equations for the point-biserial and biserial
correlations were used to illustrate the attenuating effects
of guessing on these conventional indicants of item
discriminatory power. In the procedure, the item
coefficient of guessing is usually set at some meaningful
value, say, the reciprocal of the number of alternatives for a
multiple-choice question; and for this fixed value of ¢;, the
equations are evaluated to map the levels of 4; and b; onto
the planes defined by the coordinates, the point-biserial
correlation and the p-value, or the biserial correlation and
the p-value. In Figure 1, the levels of a, viz., .8, 1.0, 1.2,
14,1.6,2.0,and 3.0, and the levels of b, viz.,2.0,1.6, ...,
-2.00, have been mapped onto the plane defined by the
population point-biserial correlation and the population
proportion passing or p-value for ¢ equal to .20. When c is
fixed at .20, the effectiveness of guessing is roughly

(%)
q;
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equivalent to the level typical of 5-alternative items. Since
the biserial correlation. (unaffected by guessing) between
the item and latent ability is defined as

a; (6)

1+a;

Prg =

in the normal ogive model, the levels of a portrayed in
Figure 1, viz., .8,1.0,1.2,14,1.6,2.0 and 3.0, correspond
to item ability biserials of .62, .71, .77, .81, .85, .89, and
95. Notice then the apparent paradox. For example, an
item which has an item-test point-biserial correlation of .11
with a p-value of 22 is indicated to have an item
discriminatory power, @;, of 3.00 or a P, of .95. The
astonishing paradox is due to the attenuating effect of
guessing. In Figure 2, identical levels of 4 and b have been
mapped onto the plane defined by the population biserial
correlation and the population proportion passing or
p-value, again, for ¢ fixed at .20. While the attenuating
effect is less pronounced for the biserial correlation relative
to the point-biserial correlation, it is most severe for
difficult items. For example, a five-alternative multiple-
choice item with an item-test biserial correlation of .17 and
a p-value of .22 is indicative of an item discriminatory
power of 3.0 or an item-ability biserial of .95 and an item
difficulty of 2.00. What would happen if the procedural
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Figure 1. Relationship between conventional and normal ogive item
parameters when the coefficient of guessing (c¢) equals
.20.
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Figure 2. Relationship between conventional and normal ogive item
parameters when the coefficient of guessing (c) equals
.20.

error alluded to earlier were committed in connection with
this interesting case? It will be recalled that the error
involved the misuse of py, in equation (5). In this
instance, a; would have been erroneously estimated as .17
when the true value was 3.00. Obviously, gross errors of
this nature render computerized adaptive testing less
efficient than it should normally be. If the data point
defined by the item-test point-biserial or biserial correlation
and the p-value is plotted on one of these maps or charts,
the corresponding values of @; and b; for the given item can
be interpolated from the grid system that identifies the
various levels of g; and b;. For reliable total tests' and large
samples, the interpolated values of a; and b; approximate
the true parameters and allow the researcher (1) to identify
items appropriate for the purpose of computerized adaptive
testing and (2) to assess the efficacy of a given set of
appropriate items for the purpose of computerized adaptive
testing by comparing the obtained interpolated values with
the specifications for item bank effectiveness. When the
specifications are met, improved reliability per item used is
assured for computerized adaptive tests relative to
conventional tests. However, the number of items required
in computerized adaptive testing relative to conventional
testing can be markedly reduced when the a; appreciably

1 As total test reliability decreases, the approximations for the
parameters a; systematically underestimate the true values of a;.
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exceed the minimum value of .80, the b; are widely and
evenly distributed, and the c; are maintained at low values.

Experience has shown (Jensema, 1972; Urry, 1974b)
that roughly one-third of the items in the usual aptitude or
ability test survive this screening for appropriateness.
Moreover, item discriminatory powers have been frequently
found to exceed 2.0 in value. .

After it was ascertained that sets of items could be
found that would satisfy the specifications for effective
item banks, there remained the important question, “Can
estimates of the item parameters be obtained that are
sufficiently reliable to be wused successfully in a
computerized adaptive testing algorithm?” In answer to this
question, a relatively rapid and inexpensive item-analytic
procedure was developed (Urry, in press—a). It has been

“programmed and is currently available for use on several

computers. The output of the program is an item analysis
yielding ancillary estimates for g;, item discriminatory
power; b;, item difficulty; and ¢;, item coefficient of
guessing.

Estimates of the parameters a;, b;, and ¢; are obtained by
an iterative minimum x-square procedure. The procedure
consists of two stages that differ only with respect to the
particular measure used for manifest ability. In the first
stage, the distribution of manifest ability is represented by
corrected raw scores where the item being parameterized is
omitted from the scoring. In the second stage, the
distribution of manifest ability is represented by Bayesian
modal estimates of ability (Samejima, 1969). Generally,
Bayesian modal estimates of ability more closely
approximate the distribution of latent ability than does the
distribution of corrected raw scores. Therefore, the second
stage constitutes a refinement on the first stage. In both
stages the procedure iterates item by item through values of
¢; to obtain pairs of @; and b; consistent with large sample
estimates of the item-manifest ability point-biserial
correlation and the item p-value. This allows the generation
of various item characteristic curves (ICC’s). The ICC’s are
then compared with the regression of the binary item on
manifest ability. The ICC that best fits this regression, as
indicated by the minimum x-square, is given by the set of
approximations — %, 'b;, and 7. The approximations are
then corrected for characteristics of the particular sample
of items being parameterized to obtain “ancillary
estimates” — 71\,-,7},~, and ’c\, Ancillary estimation as a generic
method was developed by Fisher (1950). The ancillary
corrections improve the efficiency of the estimates.

The procedure has been evaluated through model
sampling and simulation techniques. In particular, two
parameterization samples, one of 2,000 and one of 3,000
cases, were generated from the logistic model using
specified, and hence known, item parameters. The data
were then analyzed by the procedure, and the resulting
estimates were compared to the known parameters for each



of the samples. Specifically, root mean square errors
(RMSE’s), ie.
m m R
z G- a>m™t " (b= b m~' ¢ " and
i=1 i=1
m )
= G-e)Pm™ g ”

, were obtained. These measures of

deviation are given in Table 1 for the two parameterization
samples and stages. Notice that the particular RMSE
indicated by a given equation tends to decrease with stages.
This is an indication of improved efficiency
due to ancillary corrections. For the final stage ancillary
estimates, these deviation measures were .242, .123 and
.056 for the 2000 case sample, and .228, .148, and .056 for
the 3000 case sample. For 100-item parameterization tests,
these data indicated that 2,000 cases were sufficient for the
effective use of the procedure. Correlations were also
computed between the estimates and the known para-
meters, ie., kpy,, Mgy, and rp.. These correlations are
provided in Table 2 for the two parameterization samples
and stages. Notice that there is a tendency for each
correlation to increase with stages as predicted given that

the ancillary corrections improve efficiency of estimation.
For the final stage ancillary estimates, the correlations were
915, 996, and .764 for the 2,000 case sample, and 918,
997, and .760 for the 3,000 case sample. Since the ranges
of the @; and ¢; were somewhat restricted, these correlations
are very respectable. The results of these comparisons
between the estimates and the known parameters indicated
the merit of the item-analytic procedure.

The ancillary estimation procedure was further evaluated
using simulation techniques. In particular, testing was
conducted using a Bayesian algorithm developed by Owen
(1969). Samples of 100 cases each were generated for
computerized adaptive testing using 100 items with known
item parameters. In the generation process, values of 8, the
ability parameter, are sampled randomly from N(0,1) and
are also known. As a result, estimates of the ability
obtained under computerized adaptive testing could be
correlated with known ability. Comparisons of correlations,
rgp, were made across three conditions of computerized
adaptive testing where (1) the known item parameters, (2)
the ancillary estimates of the item parameters based on the
2,000 case sample, and (3) the ancillary estimates of item
parameters based on the 3,000 case sample were used in the
algorithm. The appropriateness of the use of the ancillary
estimates could be evaluated, therefore, by comparing the
results obtained for the last two conditions with those

TABLE 1

Root Mean Square Errors for Estimates by Parameterization
Samples and Stages

Sample Size Parameterization Stage

Root Mean Square Error
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2000 Corrected Raw Score:
Approximation .309 181 077
Ancillary Estimate 283 120 067
Bayesian Modal:
Approximation 269 150 061
Ancillary Estimate 242 123 056
3000 Corrected Raw Score:
Approximation .308 .139 .081
Ancillary Estimate 253 135 .073
Bayesian Modal:
Approximation 252 .109 .059
Ancillary Estimate 228 .148 .056
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TABLE 2

Correlations Between Estimates and Known
Parameters by Parameterization Samples

and Stages
Sample Size Parameterization Stage Correlation
T4a "Bb ree
2000 Corrected Raw Score:
Approximation .876 996 651
Ancillary Estimate 873 996 .668
Bayesian Modal:
Approximation 909 996 754
Ancillary Estimate 915 996 764
3000 Corrected Raw Score:
Approximation .884 996 611
Ancillary Estimate 895 996 616
Bayesian Modal:
Approximation 914 997 752
Ancillary Estimate 918 997 .760

obtained for the first. In Table 3, the results are
summarized for each of the conditions of testing.

Further explanation, however, is in order before
proceeding to an interpretation of these results. When
compared with conventional testing procedures, comput-
erized adaptive testing can lead to a substantial reduction in
the number of items required to obtain a given degree of

TABLE 3

Validity Coefficients (ré‘te

Items (7) Required to

validity. Therefore, the concern was not only with the
validity obtained but also with the economy in items
observed in obtaining the given validity. Control over the
validity of computerized adaptive testing is direct. When an
individual is being evaluated, the standard error of the
estimate of ability is available at any stage in the sequence.
Validity, over individuals, is controlled by terminating the

), and Average Number of

t Tailored Testing to
Various Termination Rules Where the Item
Parameters Were Known or Estimated

Termination Rules

Item Parameters Estimated in

a Sample of:

# O LT Pdo

Parameters Known 2,000 Cases 3,000 Cases

"§g i "§o n T§6 d
1 .5477 .70 .84 .84 2.7 .83 2.0 .84 2.3
2 .5000 5 .87 .85 3.2 .86 2.7 .86 2.6
3 4472 .80 .89 .89 3.9 .89 34 .88 3.2
4 .3873 .85 92 91 4.7 .90 4.0 90 4.0
5 .3162 .90 95 94 6.6 .92 5.4 93 5.6
6 .2828 92 96 96 8.2 .94 6.7 93 7.1
7 .2449 .94 97 .96 10.8 95 9.1 94 9.6
8 2236 95 97 96 13.3 .95 111 95 11.9
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individual sequences at a common value for the standard
error of the estimate of ability. In the study, eight such
termination rules were designated. These rules are identified
in columns 1 and 2 of Table 3 and specify that the standard
error of the estimate of ability, o, was equal to or less than
(1) 5477, (2) .5000, (3) 4472 (4) .3873, (5) .3162, (6)
2828, (7) 2449 and (8) .2236, respectively, over all
individuals. Given o, for any termination rule, synonomous
rules may be generated through

Phe =1~ 0F N

and

Pge =1~ 0% (8)

for the expected rcliability and validity, respectively. These
synonomous rules are given in column 3 and 4. The
validities of column 4 may then be compared with obtained
validities. Eight estimates of ability satisfying these rules
were obtained for all cases. Obtained validities were
indexed by the correlations between known ability and
estimated ability rpy, for specified termination rules as
appropriate to the testing condition. As the termination
rule becomes more stringent, the obtained validities given in
columns 5, 7, and 9 increase and compare very closely with
expected validities given in column 4. Additionally, the
average numbers of items required, the 7, given in columns
6, 8, and 10 also increase as the termination rule becomes
more stringent. Notice that the # at each termination rule
differ only slightly across testing conditions. Since the
results were almost identical across testing conditions, the
item-analytic procedure appeared very appropriate in
computerized adaptive testing applications. Consequently,
ancillary estimates of the item parameters based on more
than 2,000 cases and 100 items were strongly recom-
mended for use in computerized adaptive testing.

Further research in evaluating the item-analytic pro-
cedure has been accomplished for varying numbers of cases
and items (Gugel et. al., 1975), and more detailed
recommedations regarding the use of the procedure will be
given later in the conference.

As it turned out, the last significant question, ““Is there
an efficient and accurate adaptive algorithm for comput-
erized testing?” could have been answered in the
affirmative as early as 1969. The important event was the
publication of an Educational Testing Service research
bulletin, “A Bayesian Approach to Tailored Testing”, by
Roger J. Owen. Subsequent research (Urry, 1971, 1974b, in
pressa; Jensema, 1972, 1974, 1975) has shown the
efficiency and accuracy of the algorithm. For example, it is
possible to construct some 2,000 computerized adaptive
tests in some 17 minutes of central processor unit time, and
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the precision of measurement can be accurately controlled
with termination rules.

In summary, we now find that: (1) the specifications for
effective item banks have been developed, (2) these
specifications can be met for a number of significant
abilities, (3) efficient procedures exist for the reliable
estimation of parameters, and (4) an efficient computerized
adaptive testing algorithm is available to conduct the actual
testing. All the necessary prerequisites for the success of
computerized adaptive testing are therefore now in
evidence. At this juncture, the feasibility of computerized
adaptive testing can be realistically assessed, and this
realistic assessment is decidedly and resoundingly affirma-
tive in nature. At present, computerized adaptive testing
appears to have a future without parallel in the literature of
psychological measurement.
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