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Abstract 

 Several alternatives for item selection algorithms based on item response theory (IRT) in 
computerized classification testing (CCT) have been suggested (Spray & Reckase, 1994; Eggen, 
1999; Lin & Spray, 2000; Weissman, 2004) with no conclusive evidence on the substantial 
superiority of a single method.  It is argued that the lack of sizable effect is due to the fact that 
some of the methods actually assess the same concept through different calculations, and the 
simplest method is therefore the most appropriate.  Moreover, the efficiency of item selection 
methods depend on the termination criteria that is used, which is demonstrated through didactic 
example and monte carlo simulation.  Item selection at the cutscore, which seems conceptually 
appropriate for CCT, is not always the most efficient option. 
 

 

 

 

     



Item Selection in Computerized Classification Testing 

 Computerized administration of psychoeducational tests offers many advantages.  A 
well-documented advantage is the reduced number of items required per examinee when variable-
length testing is applied.  Variable-length testing refers to tests where not every examinee 
receives the same number of items; if the purpose of the test has been satisfied after only a small 
number of items, the test is concluded.  The most common method of variable length testing, 
when it is used for ability/trait (θ) estimation, is computerized adaptive testing (Weiss & 
Kingsbury, 1984).  When the purpose of the test is to assign an examinee to two or more mutually 
exclusive categories along the θ continuum, it is called computerized classification testing (CCT: 
Lin & Spray, 2000). 
 A major component within CCT that realizes the advantage of reduced test length is that 
of intelligent item selection algorithms.  Contrary to a fixed-form conventional test, items are 
selected throughout the test, either in testlets (Luecht & Nungester, 1998) or after each individual 
item (Spray & Reckase, 1994; Lin & Spray, 2000).  The item selection process can be termed 
“intelligent” because the computer attempts to evaluate which item remaining in the bank would 
be the “best” item to administer next, within certain constraints.  Item selection methods differ in 
how they perform this evaluation. 
 Several intelligent item selection options have been suggested based on item response 
theory (IRT), including the maximization of item information at the current θ estimate (Reckase, 
1983), the cutscore (Spray and Reckase, 1994; 1996), across a region of θ (Eggen, 1999), a log-
odds ratio (Lin & Spray, 2000), and across θ (Weissman, 2004).  However, these tend to fall into 
two general types: estimate-based (EB) and cutscore-based (CB). 
 The other major component of a CCT that produces shorter tests is the application of 
variable-length termination criteria.  The termination criterion is an algorithm that determines 
whether the examinee is able to be classified within certain parameters at each point in the test.  
When the examinee is able to be classified, they are assigned a category and the test is 
terminated.  There are three primary termination criteria in CCT.  The sequential probability ratio 
test (SPRT; Wald, 1947; Eggen, 1999) formulates the decision process as a hypothesis test that 
the examinee’s θ is equal to a specified point above the cutscore or another specified point below 
the cutscore.  Ability confidence intervals (ACI; Thompson, 2006), originally termed adaptive 
mastery testing (Kingsbury & Weiss, 1983), terminate the test when a confidence interval for the 
examinee’s θ is completely above or below the cutscore.  Lastly, loss/utility structures from 
Bayesian decision theory can be used to assign classifications (Rudner, 2002).  The decision 
theoretic approach often uses random item selection and classical test theory, so it is not 
considered here. 
 The purpose of this study is threefold: 
 

(1) Demonstrate that item selection methods can be generally classified as EB or CB; 
(2) Demonstrate that, within the EB and CB paradigms, various item selection 
methods assess the same concept; 
(3) Demonstrate that EB selection is appropriate for ACI, and CB selection is 
appropriate for the SPRT. 

 
 
Item Response Theory 
 The third necessary component of a CCT is the adoption of a psychometric model.  While 
CCTs can be developed using classical test theory (Frick, 1992), methods discussed herein only 
make use of item response theory (IRT; Hambleton & Swaminathan, 1985; Embretson & Reise, 
2000) for several reasons.  First, item banks for large-scale testing programs are often calibrated 
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with IRT.  Second, CCT methods that use classical test theory assume that examinees can be 
neatly divided into categories such as “masters” and “nonmasters” before item calibration, which 
is not always possible.  The ACI criterion for CCT and the item selection methods discussed in 
this study require that items be calibrated with IRT because IRT places items and examinees on 
the same scale.  Lastly, the majority of research on CCT is based on IRT. 

This study assumed that the data can be efficiently modeled with the three-parameter 
logistic model.  The probability of an examinee with a given θj correctly responding to an item i 
is (Hambleton & Swaminathan, 1985, Eq. 3.3): 
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where  

ai is the item discrimination parameter, 
bi is the item difficulty or location parameter, 
ci is the lower asymptote, or pseudoguessing parameter, and 
D is a scaling constant equal to 1.702 or 1.0. 

D was assumed to be 1.0 in this study to make the example calculations simpler. 
 
 
Item Selection Criteria 

Although CCT research dates back to the 1960s (Ferguson, 1969), the first intelligent 
item selection method used in CCT was the maximization of Fisher information (FI) at the 
current estimate of θ (Reckase, 1983; Kingsbury & Weiss, 1983).  FI is broadly defined as the 
conditional slope squared divided by the conditional variance, given the probability of a correct 
response to item i Pi(θ), or (Embretson & Reise, 2000, Eq. 7 A.1) 
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The information function for the three-parameter model is specifically defined as (Embretson & 
Reise, 2000, Eq. 7 A.2) 
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FI, while a function of θ, is evaluated at a single point for each item.  Reckase (1983) and 

Kingsbury & Weiss (1983) chose the current θ estimate as this point.  Spray and Reckase (1994) 
suggested that items instead be selected to maximize Fisher information at the cutscore, arguing 
that this makes more conceptual sense since the goal of the test is only to determine if an 
examinee is above or below that point. 

Eggen (1999) advocated the use of information across a region of θ.  This regional, rather 
than point, type of information is known as Kullback-Liebler information (KLI).  KLI can be 
described as the expectation over observed responses xi of the log-likelihood ratio for each item, 
or 
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with θ1 and θ2 representing two points on θ chosen by the test user that define the region that KLI 
is calculated on and  
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denoting the likelihood function for the ith item.  The double vertical bars are used in this context 
to emphasize that θ1 and θ2 are separated, and not viewed as the conditional relationship indicated 
by a single vertical bar.  With a dichotomous IRT model (Eggen, 1999; Lin & Spray, 2000), this 
simplifies to 
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where Pi(θ2) is the probability of a correct response at θ2 and Qi(θ2) is the complementary 
probability of an incorrect response.  The values θ1 and θ2 can be chosen above and below the 
cutscore or the current estimate. 

Lin and Spray (2000) developed another item selection criterion, selecting items by 
maximizing the log of the ratio of the item response probabilities at θ1 and θ2, 
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Lin and Spray suggest that θ1 and θ2 be chosen above and below the cutscore, but similar to KLI, 
it is also possible for them to be specified at an interval above and below the current θ estimate.  
While the log calculations performed by Lin and Spray were more involved, they were still 
dependent on maximizing the difference P(θ2) – P(θ1). 

The most general item selection method, mutual information (Weissman, 2004), 
evaluates information across all responses and all values in θ.  It is equivalent to the KLI between 
the distributions of θ and X.  This is expressed as  
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Because the function in this situation is the probability of a response, the numerator of the 
bracketed ratio, the joint function of the item response and θ, is the item response function (IRF).  
The function f(xi) is, in psychometric notation, P(X = 1), the classical difficulty value.  The 
function f(θ) is the assumed distribution of θ.  Weissman proposed that this expression be 
evaluated at discrete points on θ, such as a point above and below a cutscore.  The simulation in 
that study involved multiple cutscores, but if there is only one cutscore, mutual information can 
be reduced to KLI. 
 Conceptually, mutual information then quantifies the difference between the IRF and the 
classical difficulty across θ at the discrete points specified.  An item with very low ai results in 
IRF values that differ very little from the classical difficulty across θ.  An item with high ai 
results in low IRF values with low θ and high IRF values with high θ, resulting in higher mutual 
information.  What makes mutual information different from a mere transformation of the ai 
parameter is the application of an assumed θ distribution.  Discrimination values equal, an item 
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with a difficulty near the mean of the θ distribution will have greater mutual information than an 
item with extreme difficulty, because it provides its information to a greater proportion of 
examinees. 
 One drawback to mutual information is the assumption of a prior.  If nothing is known 
concerning the examinee distribution, a uniform prior may be appropriate, analogous to the use of 
maximum likelihood θ estimation rather than Bayesian θ estimation procedures.  If this were to 
be applied, mutual information would simply be a function of ai.  This was the approach used by 
Weissman (2004). 
 Weissman (2004) also suggested another new criterion for item selection in CCT, Fisher 
information with a weight function of the posterior θ distribution or likelihood function.  Similar 
to other methods, this was evaluated at the current θ estimate by Weissman, but can also be 
evaluated at the cutscore.  This method does not contribute anything more than FI because, at a 
given point such as the cutscore or current θ estimate, the FI for all remaining items in the bank is 
being multiplied by the same value – whatever is the weight for that θ value.  Such multiplication 
does not change the ranking of the items in terms of information.   
 
 
EB and CB Selection, and Equivalence Within Category 
 As evident from the outline of the evaluative processes above, each method can be 
designed to assess the item with regards to the cutscore or to the current θ estimate.  For the three 
methods with a constrained evaluative locale (FI, KLI, log-odds ratio), the evaluative process 
takes place at either a single point or two endpoints of a region, and either approach can be 
specified to occur at the cutscore or θ estimate.  Even mutual information, which evaluates 
information across any number of points on θ, can be specified with points relative to cutscore(s) 
or a θ estimate.  For this reason, item selection methods in CCT can be broadly categorized as EB 
or CB.  This categorization is outlined in Table 1. 
 Moreover, the three constrained methods are essentially equivalent, and tend to select the 
same item.  All three assess the information provided by an item at the evaluative locale, cutscore 
or estimate, and simply difference in the calculation used to perform the evaluation.  For example, 
suppose a CCT is designed to use CB item selection at the cutscore θc = 0.5.  FI will select the 
item with the highest information at 0.5, which is the item with the greatest ai, and bi nearest to 
0.5.  This same item will also provide the highest average information across a region around 0.5.  
Additionally, an item with these characteristics will also produce the greatest difference P(θ2) – 
P(θ1) for a θ1 below the cutscore and θ2 above the cutscore, which maximizes Lin and Spray’s 
(2000) criterion. 
 Consider the following example with three items, shown in Table 2.  These three items 
have similar IRT parameters.  Item 1 represents an appropriate item for administration at θc = 0.5; 
the location parameter matches exactly, and the discrimination parameter is moderately high.  
Item 2 is also appropriate, but the location parameter is not exactly the same, while item 3 has the 
same location parameter as item 1 but slightly less discrimination.  Even though the item 
parameter differences are quite small, the rankings of the items on the three item selection criteria 
are equivalent because they are assessing the same concept.  Moreover, the values are 
proportionate with each method.  

It is because of this fact that very little difference has been found in empirical studies.  
Eggen (1999) compared several formulations of FI and KLI, and found that the best formulations 
of each method were approximately equal in terms of ATL and PCC.  Lin and Spray (2000) 
found that the log-odds ratio also performed similarly.   

Weissman (2004) found that mutual information had higher PCC but lower ATL than FI, 
but used EB FI rather than CB FI.  As described below, this is an unfair comparison when the 
SPRT is the termination criterion, as it was in the study.  Furthermore, the difference was only 
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evident for very short tests such as a maximum test length of 10, in which case EB FI selection is 
inefficient because the test does not have a chance to obtain an accurate θ estimate (Chang & 
Ying, 1996).  Even so, the difference was only two to three items in terms of average test length. 

In the interests of parsimony, since the three approaches produce the same ranking of 
items, the method with the least computational burden and specification of parameters should be 
used when designing a CCT. 
 
Termination Criteria and Item Selection 

As previously mentioned, there are three termination criteria available for CCT, with the 
SPRT and ACI the most commonly used in application.  ACI classifies an examinee by 
estimating θ after each item in the test and constructing a confidence interval around the estimate 

 using the conditional standard error of measurement (SEM), if maximum likelihood estimation 
is applied, or the square root of the Bayesian posterior variance, if Bayesian estimation is applied.  
The confidence interval is represented mathematically as  

θ̂
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where zα is the normal deviate for a 1-α confidence interval, such as 1.96 for a 95% interval.   
If the confidence interval falls completely above the cutscore, the examinee can be classified as 
“pass.”  If the confidence interval falls completely below the cutscore, the examinee is classified 
as “fail.”  If the confidence interval contains the cutscore, another item is administered.  

The SPRT structures the decision as a hypothesis test with H0: θ = θ1 and H1: θ = θ2.  
The likelihood of each hypothesis is compared in the form of a likelihood ratio: 
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This ratio is then compared to two decision points A and B.  Wald (1947) suggested the following 
as approximations, assuming a nominal Type I error rate of α and Type II rate of β: 
 

Lower decision point = B = β/(1 − α)    (11) 
 
Upper decision point = A = (1−β)/α .    (12) 

 
If L > A, the examinee is classified as above the cutscore and the test is terminated.  If L < B, the 
examinee is classified as below the cutscore.  If B < L < A, another item is administered.  Note 
that  is not involved. θ̂
 The SPRT was originally applied to CCT with classical test theory item parameters 
(Ferguson, 1969).  Reckase (1983) developed a procedure to apply item response theory to the 
specification of Pi and Qi.  Reckase suggested that two points θ1 and θ2 be chosen on the θ metric, 
where the value of θ1 represents the lowest level that the test developer is willing to pass, while θ2 
represents the highest θ that the test developer is willing to fail.  The space between the two is 
called the indifference region, and is often specified by adding and subtracting a user-defined 
value δ from the cutscore.  For example, if the cutscore is 1.0 the test user could define, according 
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to their interpretation of the testing situation, a small indifference region with δ = 0.1 (θ1 = 0.9 
and θ2 = 1.1) or a large indifference region with δ = 1.0 (θ1 = 0.0 and θ2 = 2.0). 
 This introduces a certain amount of arbitrariness into the procedure, which is notable 
because the size of δ has a direct effect on the performance of the termination criterion.  Because 
an IRT item response function is strictly increasing, a large value of δ will lead to a greater 
disparity between Pi (θ1) and Pi (θ2) if the item was answered incorrectly or Qi (θ1) and Qi (θ2) if 
the item was answered incorrectly.  This in turn causes the value of the likelihood ratio to depart 
from 1.0 with fewer items. 
 The same reasoning applies to the efficiency of item selection criteria.  Because the 
SPRT operates with regards to the cutscore only, while ACI is constructed with regards to , their 
respective information needs differ.  With the SPRT, a decision is made more quickly when L is 
maximized or minimized by items that maximize the difference P(θ

θ̂

2) – P(θ1).  As demonstrated 
previously, this is equivalent to selecting items with the greatest FI at the cutscore.  Conversely, 
ACI makes a decision more quickly when an accurate estimate of θ is obtained.  This occurs 
when the conditional SEM or Bayesian posterior variance is minimized.  As the SEM is inversely 
related to information at the current θ estimate (Embretson & Reise, 2000), ACI makes a decision 
more quickly when information is maximized at  rather than the cutscore. θ̂
 
Simulation Study 
 This interaction between item selection method and termination criterion was evaluated 
with a brief monte carlo simulation.  CCTs were simulated for 10,000 examinees that were 
randomly generated from a N(0,1) distribution.  The item bank consisted of 400 dichotomously 
scored items, with a ~ N(1,0.2), b ~ N(0,1), and c = 0.25.  Because the SPRT introduces the 
additional arbitrariness in the parameter of IR width, the simulation was completed for the two 
ACI conditions, and then the IR width systematically varied until an approximately equivalent 
PCC was obtained.  This allows a more direct comparison between ACI and the SPRT in terms of 
ATL.  The IR width for the CB condition was 0.40, and the width for the EB condition was 0.39. 
 The interaction is evident in the ATL for each condition, presented in Table 3.  For the 
SPRT, CB item selection used 1.44 fewer items on average.  For ACI, CB item selection required 
9.66 more items, on average, while also having slightly less classification accuracy.   
 No item exposure constraints were employed in this simulation, as past research is 
conclusive that this simply decreases differences between competing methods of other CCT 
aspects, or has negligible effects (Spray, Abdel-fattah, Huang, and Lau, 1997; Lau, 1998; Eggen, 
1999; Eggen & Straetmans, 2000; Lin & Spray, 2000; Jiao, Wang, & Lau, 2004).  This 
simulation followed Lin and Spray (2000), who specifically did not include constraints because 
they reduce the visibility of comparisons among other variables.    
 
 
 
Discussion 
 This simulation, as well as the previous examples, demonstrates how a single item 
selection method is not the most efficient for all uses.  Contrary to initial perception, cutoff item 
selection is not always appropriate in variable-length CCT.  Because of the way that the SPRT 
and ACI utilize information differently in the classification of examinees, the most appropriate 
item selection method can vary.  Specifically, CB item selection is more efficient when the SPRT 
is the termination criterion, and EB item selection is more efficient when ATL is the termination 
criterion.  While it may be initially intuitive that CB item selection is more appropriate for all 
two-classification CCT because the test is only interested in if the examinee is above or below the 
cutoff, this is not true.  
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 No previous research has made an even comparison with a complete crossing of item 
selection and termination criterion methods, but this simulation is supported by two earlier 
simulation studies.  Eggen and Straetmans (2000) found that ATL was two to three items lower 
for EB selection than CB selection, with ACI as the termination criterion.  Spray and Reckase 
(1994) supported CB selection with the SPRT but found little difference between CB and EB 
selection in terms of ATL with ACI.  However, PCC was not investigated in that study. 
 Also note that CB item selection entails greater exposure of items with location 
parameters near the cutscores.  Item exposure is less of an issue with EB selection; only the first 
few items tend to be the same for every examinee when no restrictions are imposed, whereas the 
entire set is the same for CB selection.  If item exposure constraints were used in the current 
study, they would have a greater effect on ATL for CB selection than EB selection, for this 
reason.  This would lead to more similar ATL for CB and EB selection with the SPRT, and 
increase the ATL advantage for EB selection with ACI.  An evaluation of the extent of this effect 
offers a good target for future research, given the widespread use of exposure constraints in high-
stakes testing. 
 Additional independent variables also offer opportunities for future research.  Because of 
the different information needs of ACI and the SPRT, the shape of the item bank function must be 
appropriate.  Namely, there must be sufficient information near the cutscore for CB selection with 
the SPRT, and there must be sufficient information across θ for EB selection with ACI.  
Efficiency would decrease with an inappropriate item bank. 
 Because item selection method has a direct effect on the efficiency of the examination, 
the specification of this aspect of CCT as argued herein has direct significance for practitioners.  
Depending on the remaining parameters of the CCT design, application of an item selection 
algorithm that is more appropriate for a given termination criterion will reduce the ATL for 
examinees, thereby modestly reducing test seat time and the required size of the item bank.  
Given that this is the intent of variable-length CCT, proper design of CCTs that enhances this 
effect is of practical importance.   
 Conversely, correct specification of item selection method increases the accuracy of 
decisions if test length is held constant.  In high-stakes testing, accuracy is more important than 
efficiency, as an examinee is likely to be more upset with a perceived misclassification than with 
being administered more items.  Because the utilization of information is important for 
maximizing classification accuracy, it should be given substantial consideration when a CCT is 
designed. 
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Table 1: Classification of item selection methods 
 
 

Approach Point (FI) Region (KLI) 

Estimate-Based 1.  Maximum FI at current 
estimate (Reckase, 1983) 

1.  KLI  or MI in region around current 
estimate (not used yet) 

 
2.  Log-odds ratio around current estimate 

(not used yet) 

Cutscore-Based 
1.  Maximum FI at 

cutscore(s) (Spray & 
Reckase, 1994) 

1.  KLI or MI in region around cutscore(s) 
(Eggen, 1999; Weissman, 2004) 

 
2.  Log-odds ratio (Lin & Spray, 2000) 
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Table 2: Example calculations 
 

Item a b c P(θ = 0.0) P(θ = 0.5) P(θ = 1.0) FI KLI P(θ = 1.0) - 
P(θ = 0.0) 

1 1.00 0.50 0.25 0.5332 0.6250 0.7168 0.0844 0.0307 0.1836 
2 1.00 0.60 0.25 0.5158 0.6063 0.6990 0.0824 0.0301 0.1832 
3 0.90 0.50 0.25 0.5420 0.6250 0.7080 0.0683 0.0251 0.1660 
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Table 3: ATL results from simulation 
 
Termination Criterion Item Selection ATL PCC 

CB 13.63 96.61 SPRT 
EB 15.07 96.70 
CB 43.61 96.55 ACI 
EB 33.95 96.82 
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