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Abstract

In this paper it is demonstrated that the reliability of a wide
variety of adaptive (tailored) tests can be estimated using data from a
single test administration. The class of tests considered includes all -
testing strategies that are based on item response theory and such that
the test scores are either maximum likelihood or Bayesian minimum-quadratic-
loss estimates of the latent trait 6.

It is shown that for adaptive tests of moderate length (20-35 items)
the asymptotic properties of the maximum likelihood estimator and the
Birnbaum information measure allow estimation of the reliability of
maximum likelihood € estimates with data from a single empirical test
administration. It is also shown that regardless of test length the
reliability of Bayesian minimum-quadratic-loss estimates of 8 can be

determined a priori, without ever actually administering the test.
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Estimating the Reliability of Adaptive Tests

from a Single Test Administration

Estimation of the reliability of adaptive tests (a.k.a. tailored
tests and inidvidualized tests) using data from a single test administration
may not seem possible in view of the fact that different people receive
different items in such tests. However, this paper demonstrates that the
reliability of a wide variety of adaptive tests can be estimated using
data from a single test administration.

The class of tests considered includes all testing strategies that
are based on item response theory (a.k.a. item characteristic curve theory
and latent trait theory; Lord & Novick, 1968) and such that the test scores
are either maximum likelihood or Bayesian minimum-quadratic-loss estimates
of the latent trait 6. It is shown that for adpative tests of moderate
length (20-35 items) the asymptotic properties of the maximum likelihood
estimator and the Birnbaum (1968) information measure allow estimation
of the reliability of maximum likelihood 6 estimates with data from a
single empirical test administration. It is also shown that regardless
of test length the reliability of Bayesian minimum-quadratic-loss
estimates of 6 can be determined a priori, without ever actually
administering the test.

The applicability of the procedures described will be demonstrated
via an analysis of data obtained in computer simulations of several dif-
ferent testing strategies. In addition, the results obtained for one of

the simulated tests will be compared with the results obtained for the



=

same test when it was actually administered to 495 U.S. Air Force Jet
Engine Mechanic Trainees.

It is relevant to note that the procedures presented can also be
applied to conventional tests, in which all examinees receive the same
test items. The methods suggested provide estimates of the reliability
of maximum likelihood and/or Bayesian minimum-quadratic-loss estimates
of 0, regardless of the type of testing strategy that gives rise to these
estimates. However, with conventional tests estimation of the reliability
of maximum likelihood estimates of § will often require somewhat longer
tests than are studied here. This is because moderate length conventional
tests typically do not provide unbiased maximum likelihood estimates of
8 throughout the entire range of 6 in the population of interest. Moderate

length adaptive tests, on the other hand, can achieve this goal.

Definitions
We begin by establishing the following definitions:

Strictly parallel tests = tests for which the conditional dis-

tributions of test scores, given 8, are identical. (Note that
every test is strictly parallel to itself.)

Weakly parallel tests = tests for which the test information

function, I(6), is identical at all levels of 6. (Samejima,
1977c, p. 194).

Reliability coefficient = Pearson product-moment (PPM) cor-

relation between scores on two strictly parallel tests whose
scores are independent at fixed 8 (local independence of test

scores).



L8

Fidelity coefficient = PPM correlation between test scores and

8 (Green, 1976, p, 119).

SSP = strategy-score-population (e.g., SSP reliability coefficient

and/or SSP fidelity coefficient).

(In these definitions, and throughout this paper, it is assumed that the
tests under consideration measure the same trait.)

We may note that strictly parallel tests are interchangeable from
the point-of-view of an examinee. Since the conditional distributions
of test scores on such tests are identical at any given 0, the examinee
must be indifferent (prior to examining the test content) as to which
test she/he is administered. This is not the case for tests whose
conditional score distributions have identical lower order (e.g.,
first and second) moments, since a given examinee may attach great utility
or disutility to some particular score that has a different probability
of occurrence at her/his ability level on the two tests. Thus, tests that
are weakly parallel might be considered interchangeable from the
psychometrician's point-of-view, but they are not, in general, inter-
changeable from the examinee's point-of-view.

Throughout the discussion, I will refer to the SSP reliability
coefficient and/or SSP fidelity coefficient of a particular test in
order to emphasize the fact that such coefficients, like all test-related
correlation coefficients, pertain to a particular item selection strategy
and scoring method, when implemented in a particular examinee population

(Sympson, 1975). A change in the item selection strategy, the scoring
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method, and/or the population of interest will usually change the test

reliability and fidelity coefficients.

Theorems
In Appendix A to this paper, the following theorems are proved:

(1) If Xl =C+e,, X, =C+ eys and e, and e, are independently

s e 1 2
and identically distributed at fixed C, then p(Xl,Xz) = nz(Xl:C) =

n2(x2:c), where p(xl,xz) is the population PPM correlation between Xl

and X2 and nz(Xi:C) is the squared correlation ratio for predicting

Xi (i = 1,2) from C. (This same result is obtained when e and e, are

not identically distributed at fixed C, if the first two conditional

moments of el and e2 are identical.)

(2) As the number of test items increases, the SSP reliability
coefficient D(Bl,ﬁz) = nz(Bl:B) = nz(gz:e) approaches 02(9)/02(5),

~

where 81 and 92 are locally independent maximum likelihood estimates of

6 obtained from two strictly parallel tests. The marginal variance

02(6) is the same for both tests, since they are parallel.
(3) As the number of test items increases, (02(9) - u[l/1(0)])
approaches 02(9), where I(0) is the test information function evaluated

~

at 6.
(4) As the number of test items increases, weakly parallel tests
that utilize maximum likelihood estimates of © become strictly parallel.
(5) For a test of any length, 02(9*,9) = 02(9*)102(9), where 6%

is a Bayesian minimum-quadratic-loss estimate of 6.
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(6) For any two variables Y and Z, pz(Z,Y) = nz(Z:Y) p2(p(Z|Y),Y),
where u(Z|Y) is the conditional mean of Z, given Y, weighted by the marginal

density of Y.

Implications of Theorems (1) Through (6)

Theorem 1, above, implies that a test's SSP reliability coefficient
is not equal to the test's squared SSP fidelity coefficient unless the
regression of test scores on 6 is linear. This is a general result that
applies to all types of test scores, not just é and 6%.

Theorem 2 implies that if the test is long enough, and if 02(8)
and 02(5) can be estimated, the reliability of maximum likelihood esti-
mates of 6 can be estimated with the ratio of these two variance estimates.

When one can specify the distribution of 6 in the population of
interest, 02(6) can be determined analytically or numerically from the
 distribution. In this same situation, 02(5) can be estimated by
executing a computer simulation in which "examinees" are drawn from the
specified 6 distribution and tested. Thus, when the test is sufficiently
long and the population distribution of 6 can be specified, the SSP
reliability coefficient of maximum likelihood 6 estimates can be estimated
by executing a single simulated test administration, without actually
giving the test.

However, if one can specify the distribution of & in the population
of interest, one should probably be generating Bayesian estimates of &
rather than maximum likelihood estimates. The use of maximum likelihood

estimates suggests that the population distribution of 6 cannot be
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specified. When this is the case, estimation of p(él,ez) by executing a
computer simulation is not possible. Under such circumstances, the
result presented as Theorem 3 can be utilized.

After testing an empirical sample of examinees from the population
of interest, the quantitywz(s) = (est. Uz(é) - est. u[l/I(E;)]) can be
calculated, and then divided by est. gz(é) in order to obtain the empirical
1,62). An unbiased estimate of p[l/I(g)] is

provided by the sample mean of the 1/I(6) values for the examinees in the

reliability estimate ap (6

sample. (See Birnbaum, 1968, pp. 460-464, and Samejima, 1977b, pp.
234-235, for formulas to use in calculating I(é) under different test
models and item-scoring rules.)

The asymptotic relationships described in Theorems 2 and 3 have been
utilized previeusly, but without formal supporting arguments, by Samejima
(1977b, p. 243; 1977c, p. 196). These relationships depend, as shown in
Appendix A, sections A-2 and A-3, on the fact that u(é|8) approaches 6
as test length increases. The rapid approach of u(éle) to 6, which is
characteristic of the maximum likelihood estimator, allows use of these
asymptotic results with adaptive tests of moderate length (20-35 items).
See McBride (1975) and Appendix B herein for evidence indicating that 6 is
essentially unbiased over a fairly wide range of 8 in adequately designed

adaptive tests of moderate length.

The number of items needed to achieve approximate unbiasedness of
8 over the interval of 6 of interest will depend on the information
properties of the test available and the way items are assigned to examinees

during the testing process. In general, tests that use items of high

quality and that assign items of appropriate difficulty to each examinee



will not need to be as long as tests that contain poor items and/or
make inappropriate item assignments.

The degree to which a given test provides unbiased 5 values can be
assessed by executing a computer simulation of the testing procedure and
observing the mean value of é at selected 6 levels within the interval of
8 that will ultimately be tested. This type of simulation does not
require one to specify the population distribution of 6. It does require
one to identify the interval of 6 within which the marginal density f£(8)
is likely to be large enough to have an influence of practical consequence
on p(él,éz). Within this interval, several hundred a values can be
generated at each selected § level and their mean used as an estimate of
e |e).

For certaif non-adaptive tests, the expectation of é given 6 can be
derived analytically. In either the computer simulation approach or the
analytic approach to estimating/calculating u(éle), some rule for assigning
finite values to non-convergent (potentially infinite) maximum likelihood
estimates must be specified and the values assigned to such cases included
in the analysis.

Theorem 4, above, implies that the asymptotic formula suggested by
Samejima (1977c, p. 196) for estimating the PPM correlation between
maximum likelihood estimates of 6 obtained from any two weakly parallel
tests is justified because, in fact, the tests she considers are

effectively strictly parallel. This theorem also implies that the SSP

reliability coefficient for maximum likelihood estimates obtained from
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a test éf sufficient length is (approximately) equal to the population cor-
relation of these estimates with maximum likelihood 6 estimates obtained
from any other test that haé an identical test information function.

Thus, another method for estimating the SSP reliability coefficient
of maximum likelihood estimates is to actually construct two tests that
have Il(e) = 12(8) over the range of é spanned by the population of interest,
administer the two tests to a random sample from the population, and cor-
relaté the two sets of 6 estimates. This correlation is an estimate of
the SSP reliability coefficient for both tests, even if they contain dif-
ferent numbers of items, etc. The obtained value can be compared to the
reliability estimates obtained by calculating [mcz(a)/est. Uz(é)] for
each test individually.

Theorem 5 implies that the squared SSP fidelity coefficient for
Bayesian minimum—qpadratic—loss estimates of 6 can be estimated with the
ratio [est. 02(6*)]/02(9) regardless of test length. 02(8) can be
determined analytically or numerically from the Bayesian prior distribution
of 6. 02(8*) can be estimated either by executing a computer simulation
in which "examinees" are drawn from the specified prior distribution
and tested, or by actually administering the test to a sample of examinees
from the population of interest. Again, only one test administration
(simulated or live) is required.

Theorem 6, in conjunction with Theorem 1, implies that the squared
SSP fidelity coefficient is equal to the unsquared SSP reliability
coefficient, multiplied by the squared PPM correlation between the condi-

tional means of the test score and 6. Since both © and 0* are asymptotically
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unbiased, the squared PPM correlation between their conditional means

and 6 approaches 1.0, asymptotically. However, the approach to unbiased-
ness is generally more rapid for the maximum likelihood estimator than
for the Bayesian estimator (McBride, 1975; Sympson, 1977). Thus, for

any given finite test length, the correlation between conditional means
and 6 will usually be higher for the maximum likelihood estimator.

The preceding comments notwithstanding, results to be presented
next suggest that for tests of moderate length, the correlation of
conditional 6% means with 6 is close enough to 1.0 to allow one to use
the squared estimated SSP fidelity coefficient as a lower-bound estimate

of the SSP reliability coefficient.

Application of Procedures to Simulated Test Data

McBride (1975) executed a computer simulation of a 20-item adaptive
test assuming a 3—%arameter item characteristic curve (ICC) model.
During the test, provisional estimates of 8 were generated using Owen's
(1975) Bayesian scoring algorithm under the assumption that 8 was dis-
tributed N(0,1). The ICC difficulty parameter of each item administered
was set equal to the provisional Bayesian ability estimate obtained
following the preceding item. The ICC discrimination and lower asymptote
parameters were set to 1.25 and .20, respectively, for all items. At the
end of each 20-item test, the final 6% value, and a g value based on the

same vector of 20 item responses, were recorded.
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McBride simulated 100 adaptive tests at each of 32 8 levels,
ranging from -3.20 to +3.00 in .20 steps, and reported the conditional
mean and variance of 6% and 5 at each 6 level in an appendix table (p. 56).
With the exception of the data for 8 = -3.20, I used McBride's conditional
means and variances to compute an estimate of the squared SSP fidelity
coefficient for 6%, an estimate of the SSP reliability coefficient for
*, an asymptotic estimate of the SSP reliability of é, and a non-
asymptotic (criterion) estimate of the reliability of é. All of these
estimated coefficients were computed under the assumption that 6 was
distributed N(0,1) in the population of interest.

The results of my analysis of McBride's conditional 6% statistics

are shown in Table 1. The estimate of EB[GZ(G*[B)] shown in Table 1

Insert Table 1 about here

was obtained by computing a weighted average of 31 of the conditional
8* variances reported by McBride, and correcting the bias in the
resulting value (see Section A-7 of Appendix A, herein). In this com-
putation, each conditional variance was weighted by the area under a
standardized normal density function in the interval ranging from .10
below the point at which the conditional variance was generated, to
.10 above that point. These normal curve areas were rounded to three

decimal places.
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The estimate of ve[u(e*la)] shown in Table 1 was computed from the
(weighted) variance of 31 of the conditional 6* means reported by
McBride, with a further adjustment to correct (approximately) for the
bias in the resulting value (see Section A-7 of Appendix A). The esti-
mate of p(6*) is a weighted average of the 31 conditional 6% means, and
the estimate of 02(8*) was set equal to the sum of the first two values
in Table 1 (again, see Section A-7 of Appendix A). The estimated value
of 92(8*,6), the squared SSP fidelity coefficient,. is equal to the esti-
mate of 02(8*), since 02(8) = 1.0 in this population.

The estimate of nz(ﬁ*:e) = p(Bf,BE), the SSP reliability coefficient,
is equal to the ratio of the estimated value of ve[u(e*le)] to the esti-
mated value of 02(6*). This estimate is the "criterion" estimate of the
SSP reliability of 6% for this test. It is a criterion estimate because,
except for the fact that a finite number of observations were made at
each 6 level and only a finite number of 8 levels were observed, it gives
the population value of p(af,eﬁ). Obviously, this estimator cannot be
computed in empirical samples. The estimate of p(Bf,GE) in Table 1
is seen to exceed the estimate of pz(e*,e) by .01, which is consistent
with the known relationship between the two unobservable population
parameters (recall the previous discussion of the implications of

Theorem 6).

Insert Table 2 about here
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The results of my analysis of the conditional 5 statistics from
McBride's simulation are shown in Table 2. The first four parameter
estimates in this table were computed as discussed above in connection
with Table 1. The asymptotic estimator of p(él,éz), the SSP reliability
coefficient, is equal to the reciprocal of the estimate of 02(6), since
02(6) = 1.0. The non-asymptotic (criterion) estimate, nz(éze), is equal
to the ratio of the second and fourth entries in Table 2 and is seen
to be quite close to the asymptotic estimate. While neither of the
reliability estimates shown in Table 2 can be computed using data from
an empirical sample, these resultsldo serve to suggest that the asymptotic
formula derived in Appendix A, Section A-2, can be applied to a well-
designed adaptive test that is only 20 items in length.

McBride and Weiss (1976, Study 4, pp. 18-26) conducted another
computer simulation of Bayesian adaptive testing in the context of a
3-parameter ICC model. 1In this simulation, Owen's Bayesian algorithm
was used to administer 30 items to each of 100 "examinees' at 31 levels
of 6 ranging from -3.00 to +3.00 in .20 steps. As before, the estimation
procedure assumed that 6 was distributed N(0,1). After administering any
given item, McBride and Weiss set the ICC difficulty parameter for the
next item equal to an "optimal" difficulty level for items with ICC
discrimination and lower asymptote parameters of 1.25 and .20,
respectively. "Optimal" difficulty in this study was defined as the
difficulty level which maximized the item information function

(Birnbaum, 1968, pp. 460-464) at the current estimated value of 0.
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Once the difficulty of the next item to administer was determined,
McBride and Weiss set the item's ICC lower asymptote parameter equal to
.20 and the item's discrimination parameter was determined by drawing a
random number from a truncated normal distribution with y = 1.25 and
o = .3 (before truncation). If the resulting random number was less
than .80, the item discrimination parameter was set to .80. Otherwise,
the discrimination parameter was set equal to the obtained random number.
(This description applies only to the condition simulated by McBride and
Weiss in which the item discrimination and difficulty parameters were
uncorrelated. Data from McBride and Weiss' "rab+.?l" and ”rab—.?l“
conditions were not used here.)

McBride and Weiss reported the conditional means and standard
deviations of thie 8% values generated by their adaptive test in two

appendix tables (pp. 33-34). This data was used to obtain the parameter

estimates shown in Table 3. The entries in Table 3 were computed in the

Insert Table 3 about here

same manner as the entries in Table 1. However, contrary to Table 1, the
estimated squared SSP fidelity coefficient obtained was slightly larger
(approximately .0005) than the criterion estimate of the SSP reliability
coefficient, a condition that cannot hold in the population. If more
"examinees" had'been tested at each 6 level, and if a greater number of

6 levels had been observed in the McBride and Weiss simulation, this

slight reversal of the obtained parameter estimates probably would not
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have occurred. We may note that one would expect the two population
parameters to be more nearly equal for a 30-item Bayesian test than for
a 20-item Bayesian test, since the regression of 6* on 6 is more nearly
linear at the longer test length.

Sympson (1979) conducted, along with several other analyses, a
computer simulation of a tailored testing strategy he refers to as the
"Stratified Maximum Likelihood" (STML) strategy. In the STML strategy,

a large item pool is sorted with respect to the value of the item informa-
tion function at each of several 6 levels (e.g., from 8 = -3.00 to

§ = +3.00 in .25 steps). During the test, the most informative item

at the 0 level closest to the current value of 6 is selected for
administration. A good item might appear near the top of several "strata',
but once it is administered, it is removed from all strata simultaneously.

Sympson adopted the 3-parameter logistic ICC model (Birnbaum,

1968, p. 405) and simulated 500 administrations of a 35-item STML test
at each of 101 levels of 6 ranging from -5.00 to +5.00 in .10 steps.

The item parameters of the simulated item pool corresponded to parameter
values observed in a previous empirical calibration of 280 multiple-
choice word knowledge (vocabulary) items. The conditional means and
variances of g that were obtained in the interval from 6 = -3.00 to

® = +3.00 are reported in Appendix B herein. The normal curve areas
(multiplied by 1,000) that were subsequently used in computing the
first three entries in Table 4, and the conditional means of '"examinee"

1/1(8) values in this interval are also shown in Appendix B.
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Insert Table 4 about here

The first six entries in Table 4 were computed in the same manner
as the corresponding entries in Table 2, except the f(8) values shown
in Appendix B were used, since the distance between observed 8 values
was now .10 rather than .20. The value of the asymptotic estimator
of p(él,éz) is again equal to the reciproéal of the estimate of 02(5),
since 02(8) = 1.0, and is seen to exceed the value of the non-asymptotic
(criterion) estimate by .007.

The weighted average, over all levels of 6, of the conditional
mean of l/I(g) was .047. This quantity was subtracted from the esti-
mated value of 02(5) in order to obtain the "empirical" estimator of
the variance of 6, WUZ(B). The latter quantity was used to obtain the
"empirical' reliability estimate mp(él,éz), which is seen to fall approxi-
mately midway between the asymptotic estimator and the non-asymptotic
(criterion) estimator of the SSP reliability coefficient.

Examination of Appendix B of this paper provides convincing
evidence that in the interval from 6 = -3.00 to 8 = +3.00 this 35-item
test is very nearly unbiased, and at each level of 6 the quantity
l/I(é) provides a reasonable estimate of 02(6|8). There is some
indication that at this test length 1/1(5) has a small negative bias
as an estimator of 02(5|8). In 61 comparisons, the mean of 500 l/I(g)

values exceeds v(e[e) only 12 times. Nevertheless, the effect of this
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tendency on the "empirical" estimator mpz(él,éz) is small in the assumed
population, as is seen in the closeness of the empirical estimate to
the asymptotic estimator and the non-asymptotic (criterion) estimator.

Samejima (1977c, p. 197) reported the results of a computer
simulation of a 35 item conventional (non-adaptive) test based on a
graded-response ICC model. In this test, all response characteristic
functions approached either 0 or 1 as 6 decreased toward negative
infinity (i.e., there was no "guessing"). The ICC difficulty values
of the "best response" categories for the test items were uniformly
distributed over the interval from -3.75 to +4.75 in .25 steps. The item
discrimination parameters ranged from 1.40 to 2.00 in .10 steps, with 5
items at each level of discrimination.

Samejima simulated the administration of this test to 5 examinees
at each of 100 6 levels ranging from -2.475 to +2.475, in .05 steps.
Table 5 contains certain parameter estimates reported by Samejima
and other parameter estimates derivable from the values Samejima

reported. In the analyses leading to Tables 1 through 4, 02(8) was 1.0.

Insert Table 5 about here

In Samejima's simulation, on the other hand, 02(8) was 2.083. Com-
parison of this wvalue to mez(e) in Table 5 suggests that 1/I(6) may
have tended to underestimate 02(6|6) somewhat in Samejima's simulation

also.
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The "empirical' estimator mp(gl,gz) differs from the asymptotic
estimator by .008 in Samejima's study, which is somewhat larger than the
difference of .004 observed in the Sympson (1979) simulation. Unfortunately,
Samejima did not report the conditional means and variances of the 5 values,
so a non-asymptotic (criterion) estimate of p(él,éz) could not be computed
for this simulation.

The estimated SSP reliability coefficient for Samejima's 35-item
test is larger than the estimate obtained for Sympson's 35-item STML
test, in spite of the close similarity of the two estimated EB{u(1/1(5)|6)]
= u[l/I(éﬂ values (.046 and .047, respectively). This is because dif-
ferent populations are involved in the two simulations. The value of
02(8) was considerably larger in Samejima's population. This demonstrates
that whenever SSP reliability coefficients are estimated in two dif-
ferent populations, they are not directly comparable.

While the test that Samejima simulated was non-adaptive, its
inclusion in this discussion should not be construed as an argument
for the application of the reliability estimation procedure that has
been described here to typical 35-item conventional tests that
generate maximum likelihood estimates of 6. The test simulated by
Samejima was quite unusual for a conventional test in that it had a
test information function that was relatively high and virtually constant
over the interval from 6 = -3.00 to 6 = +3.00 (Samejima, 1977a, p. 166).
This type of information function is much more typical of well-designed
adaptive tests than it is of non-adaptive tests (Vale, 1975; Sympson,

1977, pp. 21-22).
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While the procedure described here for estimating the SSP reliability
of 6 values does not require a constant test information function, it
does utilize asymptotic approximations that may not be accurate enough
if the level of test information is too low in 6 regions where a sub-
stantial portion of the population to be tested is located. Application
of the procedure described here to typical conventional tests that
generate maximum likelihood estimates of © may require somewhat greater
test lengths than have been studied in this paper.

It should also be noted that the parameter estimates presented
in Tables 1 through 5 above were primarily influenced by psychometric
sampling error (finite test length) and local sampling error (finite
number of cases observed at each 06 level). The effect of population
sampling error ~(deviation of the sample 6 distribution from the popula-
tion 6 distribution) was generally quite small. Thus, the results
presented in these tables are only indicative of the "large sample"

performance of the reliability estimation procedures described here.

Application to STML Live Testing Data

Sympson (1979) also administered his 35-item STML word knowledge
test to 495 U.S. Air Force Jet Engine Mechanic (JEM) Trainees.
The (relative) frequency distribution of © among 489 of these individuals

is shown in Figure 1. (Six cases were eliminated because it was suspected

Insert Figure 1 about here
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they were not really trying to do their best.) Table 6 shows summary

statistics computed from the original (ungrouped) O wvalues.

Insert Table 6 about here

The mean and variance of 6 shown in Table 6 suggest that the values
rw(8) = .00 and 02(6) = 1.0 that Sympson used in his computer simulation of
the STML test do not apply to the population of JEM trainees. (Recall
that 02(6) = 1.0 implies that 02(6)'3 1.0.) However, the skew and
kurtosis of the empirical é distribution are both near zero and examination
of the frequency distribution of g shows the distribution to be unimodal
.and bell-shaped (i.e., quasi-normal in appearance).

Table 7 contains parameter estimates for empirically estimating the
STML test's SSP reliability coefficient in the JEM population. Comparison

of the estimated value of Ea[u(l/I(B)le)] = u[1/1(6)] obtained in the

live testing session with the corresponding estimate obtained in the

Insert Table 7 about here

STML simulation (Table 4) shows the two values to be identical to 3
decimal places (.047). This level of agreement between the two estimates
was not anticipated, since the score information function for the STML
word knowledge'test is not constant over 6 levels (Sympson, 1979).

As before, the value of maz(e) was obtained by subtracting the estimate

of u[1/1(8)] from the estimate of 02(6).
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The empirical estimate of the SSP reliability coefficient from the
live testing session is seen to be somewhat lower than the value obtained
in the STML simulation (.940 vs. 955). However, when the live testing
estimate is corrected for restriction of the range of 6 (Guilford, 1965,
ppP. 342-343, Case I), the resulting estimate of the SSP reliability co-
efficient in a normally distributed population with 02(8) = 1.0 is .995,
which is identical, to 3 decimal places, to the "empirical' estimate ob-
tained in the computer simulation and quite close to the criterion reli-

ability coefficient obtained in the simulation (.952).

Implications of Data Analyses

The results of the data analyses summarized in Tables 1 through 7
seem to suggest that the following generalizations are warranted:

(1) For adaptive tests that utilize maximum likelihood estimates
of 0, if the test is moderately long (20-35 items) and if the available
items are of average quality (or better), the sample quantity
[moz(e)/est. 02(8)] provides a suitable estimate of the SSP reliability
coefficient.

(2) It is possible that the quantity [mcz(e)/est. 02(6)]
tends to overestimate the SSP reliability coefficient by a small amount.

(3) If a test that utilizes Bayesian minimum-quadratic-loss esti-
mates of 8 is moderately long, the sample estimate of the squared SSP
fidelity coefficient provides a reasonable lower-bound estimate of the

unsquared SSP reliability coefficient.
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(4) If a test that utilizes Bayesian minimum-quadratic-loss esti-
mates of 8 is too short, the difference between pz(e*,e) and p(ef,eg) in
the population may be too large to justify lower-bound estimation of the
latter coefficient via estimates of the former coefficient.

In considering the last two generalizations above, it should be
kept in mind that, regardless of test length, both pz(e*,e) and
nz(e*:e) = p(Bf,BE) can be estimated virtually without error by con-
ducting a computer simulation of just one administration of a Bayesian
test. Estimation of pz(e*,e) using an empirical sample to obtain an
estimate of 02(8*) will be somewhat less satisfactory, and lower-bound
estimation of p(ef,eg) via an empirical estimate of 92(8*,6) is least

desirable.

Is the Reliability Coefficient a ''Dead Concept'?

Samejima (1977c) states that "the reliability coefficient ... is

at the mercy of the heterogeneity of the group of examinees, which has
nothing to do with the test itself. We can easily make an erroneoué

test look good by using a heterogeneous group of subjects and obtaining

a large value of the 'reliability coefficient.' Similarly, we can make

a good test look bad by using a homogeneous group of subjects (p. 196)."
These observations lead Samejima (1977b) to state that '"reliability is

a dead concept in test theory since it differs from one group of subjects
to another (p. 243)." Though Samejima did not explicitly mention the

SSP fidelity coefficient in these comments, her criticisms must apply
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with equal force to this coefficient. Like the SSP reliability coefficient,
its magnitude is a function of the variability in 6 in the population of
interest.

It is clear that under item response theory reliability and fidelity
coefficients have been displaced from a central position in test theory.
Population-free concepts such as the information function have taken on a
role of great importance in the evaluation of testing procedures
(Sympson, 1975). But, are reliability and fidelity coefficients really
dead concepts ... without merit or useful application?

- It seems that the fact that reliability and fidelity coefficients
calculated in different populations ('groups'" in Samejima's statements
quoted above) are not directly comparable, a fact that was noted earlier
in this paper, leads Samejima to reject such coefficients altogether.
However, this point-of-view does not give adequate consideration to the
value of these coefficients as indices for comparing different testing/
scoring strategies within a particular population of interest.

Consider a situation in which one of several testing strategies
is to be selected for use in a given examinee population. Unless the
score information function for one of the tests is higher than
the score information functions of all the other tests over the entire
range of 6 spanned by the population of interest, one cannot declare
one test to be superior to the others on the basis of their information
functions alone. Since intersecting information functions are more often

the rule than the exception (Vale, 1975), we need some other mechanism for
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rank-ordering the tests under consideration. (We shall ignore costs and
other non-psychometric considerations in this discussion. See Sympson
(1975) for a brief survey of a variety of criteria that can be considered
in evaluating testing strategies.)

If errors of estimation are considered undesirable throughout the
range of 0 spanned by the population of interest (i.e., one's goal is
measurement of 6 rather than classification of individuals into a small
number of categories), if one's interest is in optimizing measurement for
the great majority of individuals in the population (i.e., one is prepared
to sacrifice precision in regions of low 6 density, if necessary, in order to
improve precision overall), and if a quadratic loss function is reasonable,
it is appropriate to select the test that has the largest SSP fidelity co-
efficient in that population. While the fidelity coefficient measures only
the degree of linear association between an estimator and 6, and is insensi-
tive to shifts in origin and scale, this does not constitute a fatal
objection to the index.

Since the origin and unit of the 8 metric are established through
arbitrary constraints imposed during item calibration, any affine trans-
formation of the ® metric is equally acceptable. In general, under the
conditions specified, we should use the estimator that correlates most
highly with 8, even if the estimator's root-mean-square (RMS) error is
large. (However, estimation of response probabilities via the latent
trait model will require that ICC parameters be transformed in a manner

consistent with the relationship between 6 and such an estimator.)
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Given the potential usefulness of the SSP fidelity coefficient
as an index for selecting among tests to be used within a given popula-
tion, and given the intimate relationship between the SSP reliability
coefficient and the SSP fidelity coefficient that was established via
Theorems 1 and 6, we may conclude that it is probably premature to con-
sider reliability to be a dead concept. However, it does make sense to
restrict comparisons of estimated reliability and fidelity coefficients to
estimates obtained in large random samples from the same population (i.e.,
samples in which 02(8) is essentially constant). A good way to insure
that this condition is satisfied is to draw one large random sample from
the population of interest and then assign each of the competing tests
to a randomly selected portion of the sample. Better still, if one can
obtain repeatedqﬁeasures on each individual 02(6) will be precisely the
same for each test under consideration. (However, the possible intrusion
of warm-up and/or fatigue effects must be considered in the latter case.)

These comments are not intended to suggest that SSP fidelity and
reliability coefficients should be estimated and test/score information
functions ignored. Whenever possible, information functions should be
computed or estimated. The point to be emphasized is that fidelity and
reliability coefficients are far from dead concepts when it comes to
evaluating competing testing strategies within a given population.
This is especially obvious when it is realized that these coefficients
can often be estimated using data obtained in a single test administration,
and without knowledge of the test's information function or (in the case

of maximum likelihood estimates) the population 0 distribution.
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Appendix A

A-1: Demonstration that p(xllgz) = nz(Xl:C) = nz(Xzzc)

It is demonstrated below that the unsquared Pearson product-moment
correlation between two variables that consist of a shared common com-
ponent and individual unique components that are locally independent and
identically distributed is equal to the squared correlation ratio for
predicting either variable from the shared component.

Define Xl = C + ey and X2 =C + e, > where e and e, are independently

and identically distributed at given C. No further assumptions regarding
the distribution of e, (1 = 1,2) are required. From the foregoing definition,

we may conclude that the X, are also independent and identically distributed

i
at given C.

Thus, u(XI[C), the expectation of X, at given C, equals u(X2|C), for all

1

C, and 02(X1|C), the variance of X. at given C, equals 02(X2|C). Note that

1
the marginal expectation of X u(Xl), is equal to EC[u(lec)], where the

outer expectation is taken over levels of C and each u(Xl|C) is weighted
by the associated marginal frequency £(C). Similarly, u(Xz) = EC{p(X2|C)].
Since C has the same marginal distribution with respect to both Xl and X2’
and u(X1|C) = p(lec) for all C, we conclude that u(Xl) =,u(X2). Also,

6” (X)) = Egloe’(x,[0)] + V,u (X, |0)]

Blo” (X, [O)] + Vo u(x,[0] = o*(x,)

where VC is the (weighted) variance operator, (Lord and Novick, 1968,

p- 263). Thus, we may omit subscripts and write u(X) for either variable

and UZ(X) for either variable when desired.
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From the definition of the Pearson product-moment correlation, we

may write

R X)) - u(Xl)u(XZ)
c(Xl)U(Xz)

p(Xl,Xz) = (A-1.1)

Since ]J(Xl) = N(xz) = p(X) and o(xl) = U(XZ) = U(X), (A-1.1) may be written as

Wx X)) - [W1°

p(X,,X,) =
]t g UZ(X)

But,

u(X;X,) = E [n(X;X,[C)]

Eolu(x,|0) u(x,[0)]

E(uxlolh

since Xl and Xz are independent and u(Xl|C) = u(X2|C) for any C. Thus,

E(u&[0]%) - bl

p(X,,X,) =
172 UZ(X)

Since u(X) = EC[u(xlc)} i

E(nx|01%) - (x|’

p(X,,X,)
1272 Uz(x)

v lux|o)]

oz(x)
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UZ(X) - Ec[cz(X]C)]

=

cz(X)

2
=1 - EQEiﬁfflsll » (A-1.2)

o* (%)
2 2
since o”(X) = E [o”(x[0)] + v [u(x|o)].
The definition of the correlation ratio (nz) for predicting any

variable, say Z, from another, say Y, is

B, [0°(2]¥)]

nz(Z:Y) =1 7
a (Z)

(Lord and Novick, 1968, p. 263). Comparison of this definition to (A-1.2)
makes it clear that p(Xl,Xz) = nZ(X:C) = nz(Xl:C) = nz(xz:c). If, and_only
if, the regression of X on C is linear, nz(X:C) = pz(X,C) so that
p(Xl,Xz) = pZ(X,C). If the regression of X on C is nonlinear,
FEX,) > 5X0)

It is worth noting that these same conclusions are reached if we
relax the assumption that e. and e

1 2

C and assume only that the first two conditional moments of el and e,

are equal. A review of the derivation presented will show that the key

are identically distributed at fixed

requirements are that ey and e,

u(x, |0y, and o?(x,]0) = o*(x,|0).

are locally independent, u(X1|C) =



Sog

A-2: Demonstration that p(Gngq) -+ 02(6)/02(6)

It is demonstrated below that as the number of test items increases,
the unsquared SSP reliability coefficient for maximum likelihood estimates
of & approaches cz(e)icz(s).

Let el and 62 be maximum likelihood estimates of 8 obtained from two

strictly parallel tests and such that 61 =06 + e and 62 =0+ e,- We

assume that the test data are collected in a way that allows the independence

of e and e, at given 6. Since the tests that generate Bl and 82 are

strictly parallel, the distributions of e, and e, at given 6 are identical.

Under these conditions, the results of section A-1 apply, and p(el,ez) =
n (6:8) = n (8,:8) = n (6,:0).
1 2
Thus, we may write

- By[o°(8]0)]
p(8,,6,) = 1 - oo

02(6)

o*(8) - Eq4lo”(8]0)]

02(5)
Velu(ele)]

o2 (6)

But, since the maximum likelihood estimator is asymptotically unbiased
(Birnbaum, 1968, p. 457), as the number of test items increases,

p(ele) + 6 and
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P V. (8) 2
bpip - (D) - (S
o (8) o (8)

Note also that u(6|6) - 6 implies asymptotic linearity of the
regression of 6 on 6. Thus, p(6,,6,) »—pz(e,e) = pz(al,e) = 92(82,6),

since n2(8:8) -+ pz(B,B).

A-3: Demonstration that (02(6) - u[l/l(é)]) > 02(3)

It is demonstrated below that as the number of test items increases,
the (positive) difference between the variance of 6 and the expectation of
1/1(8), where I(8) is the test information function evaluated at 6, ap-

2
proaches o  (8).
At any given 6, the maximum likelihood estimator 6 is asymptotically

normally distributed with mean 6 and variance equal to 1/1(8) (Birmbaum,

1968, p. 457). I(6) is the test information function defined for dichoto-

mously scored items by Birnbaum (1968, p. 454) and generalized to other
item scoring methods by Samejima (1977b, pp. 234-235).

The asymptotic unbiasedness of the maximum likelihood estimator
implies that Uz(é) > (02(8) + oz(é - 8)) as test length increases
(Samejima, 1977a, pp. 164-165). Thus, (o2(8) - 02(6 - 8)) + o>(8).
Now uz(é - 0) = Ee[02(6|8) + (ucéle) = 8)2] at any test length. As
test length increases u(é|8) + 8 and Uz(é - 8) » EB[02(5|9)]. Since
o (é|8) = 1/1(6), asymptotically,cz(é - 08) » Ee[lfI(B)] = u[1/1(8)].

Thus, (62(8) - u[1/1(8)1) + 02(6).
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As test length increases, I(6) increases without limit. At sufficient
finite test length, if the test information function does not change too
rapidly in the interval 6 + [9/1(9)]!ﬁ around a given 8, we have I(é) &

I(8), with equality holding asymptotically. Thus, as test length increases,

(0%(8) - wIL/1(®)]) + o (8).

A-4: Demonstration that I(8,6.) = I1(8,8,) Implies Strict Parallelism

It is demonstrated below that if the test information functions for
two tests that utilize maximum likelihood estimates of 6 are identical, the
tests are strictly parallel, asymptotically.

Birnbaum (1968, p. 453) has defined the information function of a

given scoring formula (i.e., the score information function) by the

expression

Jd U X|8 2 2 -1
1(8,X) =:[ B(u )] [o°(x]6)]
If the test score is a maximum likelihood estimate of 6, then X is
replaced by 6 in the foregoing equation. Asymptotically, the score

~

information function for 6 is equal to I(8), the test information function

(Birnbaum, 1968, pp. 455-457).

Let us consider two tests that are constructed to have identical
test information functions. The tests need not contain the same number
of items, need not contain items with the same number of response

alternatives, and need not contain items with matched item parameters.

S —————
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All that is required is that Il(e) 12(8), where Ii(e) is the test
information function for test i (i = 1,2). The tests we are considering

would be termed weakly parallel tests by Samejima (1977c, p. 194).

Since Il(e) = 12(8) for these tests, Il(e,el) = 12(8,82),

asymptotically. This allows us to write the asymptotic equation

ouce, o) , L, . _ 36, |8) .
—5— 12 2@, o017 = [ —2— [6? (8,010 .
Thus,
2 1(6 |6) "
[-++5ﬁ§—— & 02(61|8)
: e , (A-4.1)
au(ez|e) , O (ez|a)
28
asymptotically

Since u(éi|8);+ 6 as test length increases, the partial derivatives
on the left side of (A-4.1) both approach 1.0. This implies that
o“(6,]8)/0°(8,]8) » 1.0, which implies that cz(élls) > o>(8,]6). Thus,
at any given 6, the conditional distributions of é and 6 have identical

1 2
asymptotic means (i.e., 6), and identical asymptotic variances.

But, as mentioned in section A-3, the asymptotic distribution of é
is a normal distribution function. Since any member of this family of
functions is completely determined once its first two moments are
specified, we see that the asymptotic conditional distributions of

Bl and 82 for the tests under consideration must be identical, since

their first two moments are identical.
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Thus, any two tests that utilize maximum likelihood estimates of
6, and which have 11(8) = 12(8) for all 6, are, asymptotically, strictly
parallel tests. For sufficiently long finite length tests, the two tests

can be considered to be effectively strictly parallel. Given that the

tests are effectively strictly parallel, the results obtained in

sections A-1, A-2, and A-3 are applicable.

A-5: Demonstration that pz(a*,e) = oz(eﬁ)fcz(e)

It is demonstrated below that the squared SSP fidelity coefficient
for Bayesian minimum-quadratic-loss estimates of 6 is equal to 02(8*)/02(8),
regardless of test length.
Let X index an item response vector or a single-valued statistic
(i.e., score) derived from the vector. Define 6% = u(BlX). Thus 6%
is a Bayesian minimum-quadratic-loss estimator of 6 (Owen, 1975;
Sympson, 1977). The squared correlation ratio for predicting 6 from 6%

is defined by

Eg,[07(8[6%)]

n(g:0%) = 1 - (A=5.1)

02(8)
2 2 ; .
Note that n”"(0:6%) = p“(8%*,6), since u(6|6*) = 6% (i.e., the
regression of 6 on 8% is linear with unit slope). Thus, substituting

p2 for n2 and rearranging (A-5.1) gives
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o%(8) - Ee*[cz(B[e*)]

2
p (6%,0)
02(8)

Vo, [u(8[0%)]

02(9)
CLTRen s
52 (8) 2 (8)

since o%(6) = Es*[cz(a[e*)] + Vo, [u(e|o%)], and u(e|6*) = 6*. This

result holds regardless of test length.

A-6: Demonstration that pz(Z,Y) = nz(Z:Y) pz(u(2|Y),Y)

It is demonstrated below that for any two variables Y and Z, the
squared Pearson product-moment correlation between Y and Z is equal to
the squared correlation ratio for predicting Z from Y, multiplied by the
squared Pearson product-moment correlation between the conditional Z
means and Y.

We may write pz(Z,Y) in the form

Sy s 1 EY[UZ(ZIY) + (2" - uz|1)?]
P ’ . -3

5 : (A-6.1)
o (2)
where Z' is the least-squares linear regression estimate of Z for given
Y. The quantity (Z' - u(Z[Y)) is the deviation from linear regression
at any given Y. 2Z' is also the least-squares linear regression estimate
of p(Z|Y) that would be obtained if the u(Z|Y) values, each weighted by

the associated marginal frequency of Y, were regressed on Y.
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The quantity EY[(Z'-u(ZlY))z] is the mean squared residual for

linear prediction of u(Z[Y) from Y, so we may write

E,[(2' - u(z[1))?]
vy [ (z[N)] ’

o2 (u(z|V),Y) = 1 -

which implies

E Lz - uz[¥)%] = 1 - o’ (u(z|n), D] vuz|D] . (a-6.2)

Distributing the expectation operator in (A-6.1) and substitution using

(A-6.2) gives

B (072D + [1 - o”(u(z[1), 1] vy [u(z|¥)]

]

pz(Z,Y) 1

o? (2)

02 (@) - Eylo’2]|D)] - [1 - o> (uz|¥),¥] vy [u(z]D)]

o2 (2)

v n(z[D] - 11 - p?(uz|n), 1] vy lu(z[v)

2 (2)

v, Iz [0 2 (u(z]1), 1)

02(2)

since 0°(2) = By lo”(z[1)] + V [u(z|V)].
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But,

B lo”(z|¥)]

o2 (2)

]

nz(Z:Y) 1

Vo [u(z|¥)]

02(2)
Thus,

02(Z,7) = n2(z:1) o2 (u(z]Y),¥)

If, and only if, the regression oﬁ Z on Y is linear, pz(u(Z|Y),Y) = 1.0
and pz(Z,Y) = nz(Z:Y). If the regression of Z on Y is nonlinear,

pz(u(Z|Y),Yj < 1.0 and pz(Z,Y) < nz(Z:Y). In particular, it is possible
to construct data configurations in which nz(z:Y) = 1.0, pz(u(Z|Y),Y) =

0.0, and, thus, szZ,Y) = 0.0.

A-7: Estimating EY[UZ(ZIY)] and VY[u(ZJY)]

In this section, an unbiased estimate of EY[02(2|Y)], where N
values of Z have been observed at each level of the continuous variable
Y, is obtained. An approximately unbiased estimate of VY[u(Z|Y)] is
also derived. It is shown that combining these two estimators in order
to estimate 02(2) is equivalent to estimating 02(2) with the sum of the
sample values EY[V(Z|Y)] and VY[E(ZIY)]. For the moment, it is assumed
that N values of Z are observed at every possible level of Y. This

assumption will be modified later in the development.

T L Y S LS L1 O P L
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At each level of Y, the conditional sample mean, E(Z]Y), and
sample variance, V(Z|Y), of Z can be calculated. For any chosen level
of Y, E(Z]Y) will vary from sample to sample of size N and will have
' expectation u(Z|Y). The variance of E(ZlY) will be GZ(ZIY)I'N. The
sample variance V(Z|Y) will be a biased estimator of 02(Z|Y), but the
bias can be corrected by multiplying V(ZIY) by N/(N - 1).

Now consider the quantity EY[V(Z|Y)]. This is just a weighted
average of the biased conditional variance estimators, where the sub-
script on the expectation operator indicates that the expectation is
taken over levels of Y. Each conditional variance is weighted by the
associated marginal density £(Y). Since the V(Z|Y) are all negatively
biased estimators, EY[V(Z|Y)] is a negatively biased estimator of
EY[02(2|Y)]. However, correcting the bias in V(Z|Y) at each and every
level of Y provides an unbiased estimate of EY[GZ(ZlY)]. Since the
value of N is constant over Y, the value N/(N - 1) is constant over Y
and the correction factor may be taken outside the expectation operation.
Thus, [N/(N - l)]EY[V(Z|Y)] is an unbiased estimate of EY[UZ(ZlY)]. This
shows that EY[V(Z[Y)] tends to underestimate EY[02(2|Y)].

Now consider the quantity VY[E(Z|Y)], where each conditional mean

is weighted by an associated f(Y). We may write
vy [Ez|D] = B ([Ez[D1) - (g lEzDD? . (A-7.1)

Since E(Z|Y) = u(Z|Y) + e, where e is a local error of estimate,
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B ([EZ[D1%) = B (Iu@z[D) + e1?)
= B, ([n(z[D)1%) + 2B, [uz[¥) el + E ()
But,
B u(z|Y) el = EJIE(Iu(z]Y) e][¥)]
= Eg[u(z|Y) ECe|D)]
= Euizlv) 01 =0 ,

since E(Z|Y) is an unbiased estimator of u(Z|Y). Also,

EY(ez) = EY[E(ezlY)] = EY[cz(ZIY)/N]
- WMEICED]
since
o2(Z|T)/N = o2(e|¥) = E(e?|¥) - [Ee|¥)]?
= 5% |v) - [01% = E’|D)
Thus,
B, ([Ez[1%) = B (uz|n1%) + @/mE D] . (4-7.2)

The quantity EY[E(Z|Y)] = E(Z) is an unbiased estimator of
EY[u(ZIY)] = u(z), since each E(Z|Y) is an unbiased estimator of its

local u(ZlY). Thus, we will utilize the approximation
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(B [EZ[DD? = g luznD? (a-7.3)

since E(Z) is unbiased and is based on a very large sample (N times the
number of Y levels used) from the bivariate population of (Y,Z) pairs.
With the foregoing approximation at hand, we can substitute (A-7.2)

and (A-7.3) into (A-7.1) to obtain

WIEED] = B (uz[D1) + A/MEIL @] - G hEnD? . (7.4
Noting that

v luzD] = B (01 - @ heinn?
and rearranging (A-7.4) gives

IuED] = v EEn] - a/mEllen] (A-7.5)

which indicates that VY[E(Z|Y)] tends to overestimate VY[u(Z|Y)].
EY[UZ(ZIY)] may be replaced by its unbiased estimator
[N/(N - 1)]EY[V(Z|Y)] in (A-7.5) without altering the expectation of

the expression over samples. Upon making this substitution, we have
Ve[ = Vo[E@[N] - [1/(N - DIE[V(Z]V)]

Thus, VY[EtZ[Y)] - [1/ (N - 1)]EY[VtZ|Y)] is an approximately unbiased
estimate of VY[u(Z|Y)]. (The completely unbiased estimator of
VY[y(Z|Y)], whigh is a function of the squared marginal Y densities,

is somewhat larger than the estimator suggested here, but still smaller

than VY[E(Z|Y)].)
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In the population,
2 2
07 (2) = Eglo"(z[D)] + v luz[D)] .

Upon substituting the unbiased estimator of EY[UZ(ZlY)] and the
approximately unbiased estimator of VY[u(Z]Y)] on the right side of this

equation, we obtain

N
N-1

1

est. 02(2) S |

(

) E,IV(Z[N)] + V[E@EZ[V)] - ( ) E,[V(z|D)]

[l

E V(Z|D)] + V [EZ|D)] .

This result indicates that while both E/[V(Z|Y)] and V [E(Z|Y)] are
biased estimators of their respective parametric values, their biases
are (approximately) equal and in the opposite direction.

In the development above, it was assumed that N values of Z are
observed at every possible level of Y. 1If, instead, N values of Z are
observed at a number of systematically selected levels of Y, the results
obtained above can be applied to the resulting data in order to improve
estimation of EY[02(2|Y)] and VY[u(Z[Y)]. In order to insure that the
estimates will closely approximate the values that would be obtained if
one sampled Z values at every level of Y, there should be a large number
of closely spaced Y levels actually selected. The levels selected should
cover the entire range of Y in which f(Y) is large enough to have an

influence of practical consequence pn the estimates. At each level of
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Y selected, the conditional mean and variance of Z should be weighted

in the calculations by the area under £(Y) that is contained in an
interval extending from a point halfway between the given level and the
next lower level to a point half way between the given level and the next

higher level.
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Appendix B

Data from STML Word Knowledge Test Simulation

6 £(6) E(80) v(e|e) E(1/1(8))
-3.00 1 -3.0362 .1435 .1419
-2.90 1 -2.9268 .1320 .1278
-2.80 1 -2.8310 .1308 .1407
-2.70 1 -2.7135 .1101 .1023
-2.60 1 -2.6159 .1009 .0937
-2.50 2 -2.5125 .0860 .0855
-2.40 2 -2.4096 .0870 .0795
-2.30 3 -2.2972 .0751 .0734
-2.20 4 -2.2022 .0788 .0699
-2.10 4 -2.1057 .0663 .0660
-2.00 5 -1.9981 .0689 .0631
-1.90 7 -1.9017 .0613 . 0605
-1.80 8 -1.7992 .0691 .0586
-1.70 9 -1.6882 .0601 .0567
-1.60 13 -1.5957 .0574 .0554
-1.50 13 -1.4950 . 0594 .0543
-1.40 15 -1.4013 .0590 .0535
-1.30 17 -1.2904 .0563 .0527
-1.20 19 -1.1942 .0529 .0523
-1.10 22 -1.0930 .0564 .0518
-1.00 24 -.9975 .0544 .0514

-.90 27 -.8938 .0523 .0511
-.80 29 -.7866 .0508 .0506
-.70 31 -.6946 .0556 .0501
-.60 3 -.5951 .0496 .0495
-.50 35 -.4964 .0485 . 0488
-.40 37 -.3956 .0482 .0478
-.30 38 -.2939 .0491 .0468
~.20 39 -.2027 . 0484 .0458
-.10 40 -.1004 . 0466 .0448

.00 40 .0011 . 0434 .0439

.10 40 .1028 .0477 .0435

.20 39 .2146 .0483 .0434

.30 38 .3127 .0443 .0437

.40 37 .4065 .0469 . 0444

.50 35 . 5201 .0501 .0451

.60 33 .6135 .0520 .0460

.70 31 .7136 .0510 .0465

.80 29 .8191 .0458 .0472
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Appendix B (cont'd.)

6 £(8) E(0|0) v(e|e) E(1/1(8))

.90 27 L9144 .0516 L0472
1.00 24 1.0027 .0468 L0471
1.10 22 1.1077 . 0487 .0462
1.20 19 1.2059 .0469 .0451
1.30 17 1.2977 L0415 .0436
1.40 15 1.3992 L0414 .0416
1.50 13 1.4971 .0415 .0395
1.60 11 1.5923 .0395 .0373
1.70 9 1.7029 .0361 .0350
1.80 8 1.7955 .0343 .0333
1.90 7 1.8990 .0314 .0317
2.00 5 2.0003 .0298 .0306
2.10 4 2.1042 .0302 .0300
2.20 4 2.2085 .0319 .0298
2.30 3 2.3044 .0290 .0298
2.40 2 2.4099 .0297 .0301
2.50 2 2.5109 .0306 .0303
2.60 1 2.6056 .0326 .0304
2.70 1 2.7074 .0330 .0306
2.80 1 2.8031 .0310 .0307
2.90 1 2.9056 .0309 .0311
3.00 1 3.0073 .0340 .0323
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Table 1

Results of Analysis of McBride Data (Bayesian Scores)

Parameter Estimated Value Obtained
Ee[cz(e*le)l .079
Velu(ex|e)] .824

u(e%) - .010

o” (o%) .903

o2 (6%) /02 (8) = p?(8%,8) .903
n(6%:0) = p(0%,6%) .913

1°°2




Table 2

Results of Analysis of McBride Data (M.L. Scores)

Parameter Estimated Value Obtained

2 ~
Ee[c (6]e)] .104
ve[u(e|a)] 1.001
n(e) .004

2 ~
o (8) 1.105

2 s s

o7 (8)/c"(6) ~ p(el,ez) .905

2 -~ - -~ ~




Table 3

Results of Analysis of McBride and Weiss Data

Parameter Estimated Value Obtained
EBI02(8*19)] .072
ve[u(e*|e)] .851

u (%) .002

o% (%) .923

o2 (6%) /02(8) = p2(6%,0) .923
n2(0%:8) = p (0%, 0%) .922

1*"2




Table 4

Results of Analysis of STML Simulation Data

Parameter Estimated

Value Obtained

B [o”(8]6)]
Va[u(5|8)]
u(e)
02(5)

6% (0)/5%(8) + p(0,,6,)
nz(éze) - 0(51.52)
Eelu(lfl(é)le)]

v o?(0)

-~

maz(s)/oz(g) =mp(51,9 )

2

.050
.993
.006
1.043
.959
.952
.047
.996

.955




Table 5

Results Reported by Samejima (1977c)

Parameter Estimated

Value Obtained

o%(8)
o?(8)/07(8) + 0(8,8,)
By [M(1/1(0) [0)]
v a?(6)

~ 02 (8) /a2 (0) =rup(él,é )

2

2.148
.970
. 046

2.102

.978

g




Table 6
Summary Statistics for STML Word Knowledge

Ability Estimate Distribution

6 Statistic Value
Mean -.170
Variance .788
Skew -.010
Kurtosis -.043
Minimum -2.559
Maximum 2.620

No. of Cases 489




Table 7

Results of Analysis of STML Live Testing Data

Parameter Estimated Value Obtained
() =.170
52 (8) .788
Ee[u(l/I(6)|8)] 047
mcz(e) .741
2 o e AL 4
o (8) /a7 (6) =mp(el,92) .940

np(6y,0,) if o2(8) = 1.0 .955




