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Updated Item Parameter Estimates Using Sparse CAT Data1  

 

A computerized adaptive test (CAT) strongly depends on items being well modeled by 
the probability (IRT) model that underlies item selection and test scoring.  The testing 
process will be less efficient and test scores both less precise and more biased to the 
extent that the IRT model fails to fit.  Unfortunately, model parameters are usually 
calibrated from data collected under less than ideal circumstances.  For example, some 
calibration data is collected from paper-and-pencil administrations despite the items’ 
intended use on computer.  Even when data is collected on computer, the calibration data 
is often collected in a linear administration although the items will be administered 
adaptively.  Context effects (Kingston & Dorans, 1984) can undermine the validity of 
scores when items perform differently under pretest and operational conditions.  

The ideal calibration data set would have items administered to large examinee samples 
under realistic testing conditions.  Better item parameter estimates might be obtained if 
information from the adaptive administration could be incorporated into each item’s 
calibration.  However, while these conditions of delivery would help minimize context 
effects and reduce random error in the parameter estimates, CAT data may also introduce 
bias into the parameter estimates.  

How best to incorporate CAT response data into the parameter estimates is not clear.  A 
Bayesian IRT approach is one possibility for allowing CAT data to strengthen existing 
pretest parameter estimates.  This may provide a mechanism for incorporating 
information about CAT item variation into the parameter estimates.  

The goal in this study was to investigate whether augmenting the calibration of items 
using CAT data matrices produced estimates that were unbiased and improved the 
stability of the existing item parameter estimates.   

Method 

Design 

Item parameter estimates from four pools of items constructed for operational use were 
used in the study. After allowing for some redundancy across pools, the final number of 
unique items was 1,392.  All items had been previously calibrated using a three-
parameter logistic model (3PL) from either paper-administration data or by seeding 
pretest items in a linear manner (i.e., first item first, second item second, etc.) within a 
CAT.  Original calibration sample sizes varied from 600 to 1,500 test takers.  All items 
had been calibrated using PARSCALE (Muraki & Bock, 1995).  As a result, item priors 
were available for each item.  The item prior in PARSCALE is composed of the 
parameter estimates, the means of the priors, and a variance-covariance matrix based on 
the slope, guessing and intercept parameters.  The variance covariance matrix was 
                                                           
1 The authors would like to thank Charlie Lewis and Tim Davey for many fruitful discussions and Kathy Sheehan for 
providing the specifics for the intercept-to-threshold transformation in PARSCALE. 
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transformed to include the slope, guessing and threshold prior to “true” item parameter 
generation. 

 Fifty sets of “true” parameter estimates were generated from the base item prior 
information.  Each “true” set served as the parameter estimates for a CAT simulation that 
incorporated content constraints (Stocking & Swanson, 1993) and exposure control 
(Stocking & Lewis, 1998).  The scored data matrices from each set of simulations (see 
below) were assembled into a sparse matrix that was then input to PARSCALE.  Items 
were calibrated using the original (base) item priors.  Fifty calibrations were performed, 
one for each set of simulations.  The item (re)calibration produced posterior estimates for 
each set of parameters.  The item characteristic curves (ICCs) and the parameters 
themselves were compared to the “true” estimates to determine whether root mean 
squared errors (RMSE) were reduced and whether any detectable bias was introduced 
into the parameter estimates.  

Covariance transformation. 

 As noted above, the item parameters had been calibrated using PARSCALE.  The 
item  parameter covariance matrix for an item produced by PARSCALE is based on the 
slope, asymptote, and the intercept rather than the threshold parameter.  Prior to 
parameter generation, the covariances including the intercept were transformed to the 
threshold (b) scale using the following procedure.   

Let X=[intercept, a, c] be the vector of item parameter estimates and let XXΣ be the 
posterior covariance matrix for an item.  The elements of XXΣ  are denoted as indicated 
below, 

ii ia ic

XX ia aa ac

ic ac cc

s s s
s s s
s s s

 
 Σ =  
  

 

Let Y=[b, a, c].  The transformation function, g, from X to Y is defined as: 

g(int)=(-1/a) int = b 

g(a) = a 

g(c) = c 

 A transformed matrix, defined below, is obtained,  

bb ba bc

YY ba aa ac

bc ac cc

s s s
s s s
s s s

 
 Σ =  
  

, 
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by applying the delta method as follows: 

var( ( )YY XXg X A A′Σ = = Σ  

where A  is the matrix of partial derivatives of g(X).   

After simplification the transformed covariance matrix, YYΣ , may be written as, 

2

2

2

                            

                            

ii ia aa ia aa ic ac

ia aa
YY aa ac

ic ac
ac cc

s bs b s s bs s bs
a a a

s bs s s
a

s bs s s
a

 + + − − − −
 
 
− − Σ =  
 
− − 
  

 

 

Data generation. 

 Fifty sets of item parameters were generated for each item from the transformed 
item priors.  This was accomplished by first drawing a random vector rz from a standard 

multivariate normal distribution with mean and variance ( ), i0 I , where iI  is a square 

matrix with 1s in the diagonal and zeros in the off-diagonals.  This uncorrelated vector of 
draws was then transformed to the scale of the item with appropriate item covariances 
using the variance-covariance matrix YYΣ  and the vector of parameter means using the 
following: 

iµ= ⋅ +r i rd v z  

where iv  is a Choleski factor from the decomposition of the transformed variance-
covariance matrix YY i i′Σ = v v  

Simulations. 

 Item responses were simulated for each pool to be included in the subsequent item 
calibration.  Four simulations (one for each pool) were run for each calibration.  Each set 
of four simulations used one set of the 50 sets of generated item parameters.  Simulations 
were based on the weighted-deviation model (Stocking & Swanson, 1993) simultaneously 
taking into account content, item exposure and statistical criteria.  The multinomial 
version of the Sympson-Hetter approach (Stocking & Lewis, 1998) was used to control 
item exposure.  Items were selected to maximize information at the provisional ability 
estimate given the other constraints of the model.  
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 One-thousand test takers were simulated (simulees) at each of 41 points2 on the 
ability scale between ± 4.0 for a total of 41,000 simulated test takers.  Prior to calibration 
this uniform distribution was sampled down to approximate the distribution of ability in 
the test-taking population.  All 1,000 simulees were sampled at the highest point in the 
ability distribution; other abilities were proportionally less.  This yielded 12,960 simulees 
per pool or 51,840 across the four pools for a given calibration.  

Item calibrations. 

The item responses from the sampled down simulations from the four pools were 
assembled in a sparse matrix as input for item calibration.  A separate calibration was run 
for each of the 50 sets of generated parameters using PARSCALE.  The original (base) 
item priors were used as priors for the item calibrations.   

Evaluation. 

Item parameter estimates were available from three sources: the base (original) 
parameters on which the generating priors are based; the generated parameter estimates 
(50 sets); and the posterior parameter estimates following the calibration of the simulated 
CATs (50 sets).  Three comparisons are possible, the original item parameters (or ICCs) 
vs. the generated item parameters (or ICCs), the generated item parameters (or ICCs) vs. 
the calibrated item parameters (or ICCs), and the original item parameters (or ICCs) vs. 
the calibrated item parameters (or ICCs).   

 The primary interest is in the first two comparisons (generated-original, generated 
calibrated).  The comparison of the original item parameters (or ICCs) with the generated 
parameters provides a measure of the expected variation in the parameter estimates prior 
to the inclusion of CAT information.  This serves as a baseline unencumbered by CAT 
information.  The second comparison of interest is between the generated (true) and the 
calibrated item parameters (ICCs).  This comparison gives an assessment of the influence 
of incorporating CAT data into the item parameter estimates.  However, there are a 
number of intervening factors that also come into play in this comparison.   

Since CAT items are not delivered uniformly, sample size will have an influence on how 
(and why) the item parameters are changed.  Items that are administered large numbers of 
times will have likelihoods that overpower the priors.  In these cases, the influence of the 
item prior will be small.  For items that are administered a relatively small number of 
times, the likelihood for an item will be overpowered by the prior for that item.  In the 
most extreme case where the item is not administered to anyone, the parameter estimates 
for the calibrated item will equal the item parameters (and ICC) of the prior.  This 
comparison, thus, reduces to the comparison between the generated and the original 
parameter estimates in this case.  

                                                           
2 All operational items had been calibrated based on 41 quadrature points.  Simulations were conducted at the same 
number of quadrature points so that there was agreement between the number of abilities in the simulations and in the 
calibrations.  
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Comparisons between ICCs were evaluated with a root mean squared difference (RMSD) 
between two ICCs.  Item parameter comparisons were assessed using the root mean 
squared error (RMSE).  In addition, bias analyses were conducted on the parameter 
estimates.  The RMSD for the ICC for the generated-original comparison was defined as: 

( ) ( )
4 2

4
| , , | , , ]go tr tr tr o o oRMSD P a b c P a b c dθ θ θ

−

 = −  ∫ , 

where t stands for the true parameter, r stands for the replication, o stands for the original 
parameter.  The integral is approximated based on 41 quadrature points.  Similarly, the 
RMSD for the ICC for the generated-calibrated comparison was defined as: 

  ( ) ( )
4 2

4
[ | , , | , , ]gc tr tr tr cr cr crRMSD P a b c P a b c dθ θ θ

−

 = −  ∫ , 

where t stands for the true parameter, r stands for the replication, c stands for the 
calibrated parameter.   

Unweighted RMSE were computed3.  In the generated-original comparison, the mean 
ICC for the generated curves was compared to the single original ICC from which they 
were generated. 

 The impact of CAT data on the a-, b-, and c-parameter estimates was assessed 
through root mean squared error (RMSE) and bias, where RMSE for the generated-
original comparison is defined as, 

( ) ( )
50 2

1

1ˆ ˆ ,
50i tr o

r
RMSE β β β

=

= −∑  

where iβ  is the parameter for item i on replication r.  The subscript t stands for the true 

(generated) parameter, while o stands for original parameter.  The RMSE for the 
generated-calibrated comparison is defined as, 

( ) ( )
50 2

1

1ˆ ˆ ,
50i tr cr

r
RMSE β β β

=

= −∑  

where iβ  is the item parameter of item i on replication r.  The subscript t stands for the 

true (generated) parameter, while c stands for calibrated estimate using CAT data.  
Similarly, the bias for the parameter estimates in the generated-original comparison is 
defined as, 

                                                           
3 Both weighted and unweighted RMSDs were computed, however, only the unweighted RMSDs is reported.  The 
weighted form of the RMSD tended to mask differences that were present.  Even if these effects later proved to have 
little substantive impact, we wanted to know they were present.   
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( ) ( )
50

1

1ˆ ˆ(
50i tr o

r
Bias β β β

=

= −∑ , 

and bias for the parameter estimates in the generated-calibrated comparison is defined as, 

( ) ( )
50

1

1ˆ ˆ(
50i tr cr

r
Bias β β β

=

= −∑ . 

Results 

 Prior to examining the influence of CAT data on the parameter estimates or ICCs, 
it is important to establish that the generated parameters did not contain bias from the 
start.  Figures 1-3 show the spread of estimates around the original (base) value by item 
difficulty.  Figures 4-6 show the relationship between the original (base) and generated 
parameters.  The b-parameter mean differences tend to be evenly distributed about zero 
with greater spread as item difficulty increases, but the b-parameters do not appear to be 
biased here.  Similarly, the a-parameter differences tend to be evenly distributed about 
zero with greater spread for easier and more difficult items.  The c-parameters also do not 
show any bias, though there is less spread in the c-parameters for more difficult items.  
This is supported by the means bias for the a-, b-, and c-parameters found in Table 1 
which is very close to zero.  Finally, there is good correspondence between the mean of 
the 50 generated parameters and the original parameters as shown in the diagonal plots 
(Figures 4-6). 

 Comparing the original estimates to the generated values gives a measure of the 
expected variation in the estimates.  Figure 7 shows the variation in ICCs as a function of 
item difficulty.  Items with difficulties between ± 2  tend to be less variable than easier or 
more difficult items, with the greatest variation found for the most difficult items.  Figure 
8 shows a similar pattern for the b-parameters.  B-parameters of middle difficulty (± 2) 
also tend to be less variable than easier or more difficult items.  For the a-parameters, 
again, more difficult items tend to have larger RMSEs than easier items (Figure 9).  The 
c-parameters of more difficult items appear better estimated than the c-parameters for 
easier items (Figure 10).  These patterns are common for standard calibration designs 
where pretests are randomly assigned to test takers. These plots serve as a baseline against 
which to compare item parameter estimates that have incorporated CAT variation.      

 Our primary comparison of interest is between the true (generated) estimates and 
the estimates after CAT data has been incorporated (post calibration estimates).   These 
comparisons should show what influence, if any, CAT data has on the parameter estimates 
or the ICC as a whole.  Table 1 presents average RMSEs between the original and the 
mean of the generated parameters and between the mean-generated and mean-calibrated 
parameters (or ICCs).  The RMSDs for the ICCs appear to be smaller for the generated-
calibrated comparison which contains CAT information, than the baseline generated-
original comparison, suggesting overall error is reduced with the inclusion of CAT 
information (compare Figure 11 with Figure 7).  At the parameter level, there is a sizeable 
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decrease in the RMSE for the b-parameter suggesting that inclusion of the CAT data has 
“improved” the b-parameter estimates (see Figure 12, compare with Figure 8).  The 
RMSEs for the a-parameters also appear to be slightly smaller when CAT data is 
incorporated into the parameter estimates.  

 The improved precision appears to be at the expense of some increase in the bias 
for both the a- and b-parameter estimates, however.  Figure 13 shows the bias in the 
generated versus calibrated b-parameter estimates.  Both the easiest and most difficult 
items tend to be downwardly biased (compare with Figure 2 for the generated versus 
original differences).  Figure 14 shows that the bias in the a-parameter estimates appears 
related to the difficulty of the item (compare with Figure 1).  Items with difficulties below 
0 do not appear to be biased.  Items from 0 to 2.0 tend to be downwardly biased, while 
those above 2.0 tend to be upwardly biased.  Figure 15 shows the bias in the c-parameter.  
These too, are somewhat downwardly biased particularly for items of middle difficulty 
(compare with Figure 3). 

Sample size, RMSE and bias. 

 As mentioned above, the number of exposures that an item receives will affect the 
relationship between the prior and the likelihood of a calibrated item.  Consequently, there 
was interest in examining whether there was   a relationship  between sample size and 
RMSE or bias.  Presumably, if CAT data introduces bias, larger amounts of CAT data 
should introduce larger amounts of bias.  Similarly, if CAT data reduces error in the 
estimates, then larger amounts of CAT data should reduce the RMSE.  Table 2 shows the 
correlation between the average calibration sample size for an item with the average 
RMSD for the ICCs, and with the RMSE and average bias for each of the parameters.  
Moderate negative relationships are observed between sample size and RMSD for the 
ICCs (-.47), and between the RMSE for the b-parameters (-.35) and  c-parameters (-.21), 
suggesting that error in the estimates is reduced with increased sample size for the ICCs 
and the b- and c-parameter estimates.  The plot of the RMSD for the ICCs for the 
generated-calibrated comparison also appears to show this reduction  across all sample 
sizes when compared with the (generated-original) base RMSE plot (see Figures 16 and 
17, respectively) as do the plots for the b-parameter estimate (Figures 18 and 19).  The 
plots for the c-parameter show larger RMSEs following the incorporation of CAT data 
into the estimates, but it does not appear related to the number of exposures (Figures 20 
and 21).  The RMSE for the a-parameters also appears unaffected by sample size (Figures 
22 and 23).  

 Figures 24-26 graphically display the relationship between mean bias and average 
sample size for the item parameters for an item.  While it appears that mean bias decreases 
with increased sample size for the b-parameter, mean bias appears to increase with 
increased sample size for the a- and c-parameter estimates.   

 There is one caveat about the impact of sample size that suggests it should be 
interpreted cautiously.  In a CAT there is a relationship between items that receive high 
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exposures (even with exposure control) and item difficulty.  Items of middle to high 
difficulty tend to receive greater exposure than items that are below middle difficulty as 
shown in Figure 27.  Thus, increased precision or reduced bias may be more a function of 
an item’s difficulty than the number of times it is administered.  

Discussion 

 The present study sought to examine the influence of CAT data on IRT 3PL item 
characteristic curves overall and on item parameter estimates for the 3PL model in a 
Bayesian context.  The error in the ICC as a whole and in the estimates of item difficulty   
appears to be reduced when CAT data information is incorporated into the estimation of 
this parameter.  However, bias also seems to be increased for the item difficulty 
parameter, particularly for the easiest and most difficult items. 

 CAT data also appears to introduce bias into the slope parameter.  However, the 
amount and direction of the bias appears related to item difficulty.  Easy items (item 
difficulties below 0) do not appear to be biased, while those with difficulties between 0 
and 2.0 appear downwardly biased and those with difficulties above 2.0 appear upwardly 
biased.  The incorporation of CAT information into the a-parameter estimate also seems to 
decrease the precision in the slope parameter estimate. 

 There is some evidence that error is reduced in the threshold (b-parameter) and 
asymptote (c-parameter) estimates as an item receives more exposure.  Also, bias in the b-
parameter estimates appears to decrease as an item receives more exposure, while it seems 
to increase for the a-parameter and c-parameter estimates.  However, one must be 
cautious about attributing this merely to the number of exposures because there is a 
relationship between the “number of hits” an item receives and item difficulty.  Since 
items of middle to high difficulty receive more exposures than extremely easy items, and it 
may be characteristics related to difficulty rather than number of exposures that causes this 
to happen.  As seen earlier, there is less bias for the middle difficulty items than for either 
the extremely easy or the extremely difficult items. 

 These results suggest that the error in estimating ICCs may be reduced by 
incorporating CAT information into the calibration process.  It appears that much of this 
improvement can be attributed to the increased precision in the estimation of the b-
parameter.  There does not appear to be much improvement in the estimation of the slope 
and asymptote parameters.  The b-parameters appear to show some bias for the easy and 
more difficult items.  Bias in the a-parameters appears related to item difficulty with 
difficult items biased downward and extremely difficult items biased upward.  The c-
parameters also appear to be biased downward, particularly for items of middle difficulty.  
Given this, perhaps the inclusion of CAT data might prove most fruitful when the Rasch 
model is used.  In the future, however, the issue of whether the influence of CAT data on 
item parameter estimates translates into real score differences needs to be further 
examined.  
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Table 1 
RMSE and bias statistics by comparison group and estimate 

 Generated -Original Generated -Calibrated 
  RMSE Bias RMSE Bias 

Estimate   Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 
 ICC .035 .011 - - .027 .008 - - 

 a .120 .057 .000 .019 .115 .048 -.019 .031 
 b .173 .109 .000 .028 .121 .090 -.016 .036 
c .037 .012 .000 .005 .039 .014 -.005 .007 

 
 
 
 
 
 
 
 

Table 2 
Correlation between RMSD (ICC), RMSE, and average bias (parameters) with average 
calibration sample size (generated-calibrated comparison) 

Estimate RMSD/RMSE Bias 
ICC -.47 - 

a .01 -.43 
b -.35 .22 
c -.21 -.24 
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Figure 1. Scatterplot showing the relationship between a-parameter bias (generated – 
original) and item difficulty. 
 

 

Figure 2. Scatterplot showing the relationship between b-parameter bias (generated – 
original) and item difficulty. 
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Figure 3. Scatterplot showing the relationship between c-parameter bias (generated – 
original) and item difficulty. 
 

 

Figure 4. Scatterplot showing the relationship between original a-parameter and the mean 
of the generated a-parameters. 
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Figure 5. Scatterplot showing the relationship between original b-parameter and the mean 
of the generated b-parameters. 
 

 

Figure 6. Scatterplot showing the relationship between original c-parameter and the mean 
of the generated c-parameters. 
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Figure 7. Scatterplot showing the relationship between the RMSD in ICCs for the b-
parameter (generated – original) and item difficulty. 
 

 
 
Figure 8. Scatterplot showing the relationship between the RMSE for the b-parameter 
(generated – original) and item difficulty. 
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Figure 9. Scatterplot showing the relationship between the RMSE for the a-parameter 
(generated – original) and item difficulty. 
 

 
Figure 10. Scatterplot showing the relationship between the RMSE for the c-parameter 
(generated – original) and item difficulty. 
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Figure 11. Scatterplot showing the relationship between the RMSD in ICCs (generated – 
calibrated) and item difficulty. 
 

 
Figure 12. Scatterplot showing the relationship between the RMSE for the b-parameter 
(generated – calibrated) and item difficulty. 
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Figure 13. Scatterplot showing the relationship between b-parameter bias (generated – 
calibrated) and item difficulty. 
 

 
 
Figure 14. Scatterplot showing the relationship between a-parameter bias (generated – 
calibrated) and item difficulty. 
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Figure 15. Scatterplot showing the relationship between c-parameter bias (generated – 
calibrated) and item difficulty. 
 

 
Figure 16. Scatterplot showing the relationship between the RMSD for the ICCs 
(generated – calibrated) and the average number of administrations for an item.  
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Figure 17. Scatterplot showing the relationship between the RMSD for the ICCs 
(generated – original) and the average number of administrations for an item.  
 

 

Figure 18. Scatterplot showing the relationship between the RMSE (generated –

calibrated) for the b-parameter and the average number of administrations for an item. 

 

 

0

0.03

0.06

0.09

0.12

0.15

0 1000 2000 3000 4000 5000

Average number of administrations

A
ve

ra
ge

 R
M

SD
 in

 IC
C

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000
Average number of administrations

R
M

SE
 (b

)



 20 

 

 
Figure 19. Scattergram showing the relationship between the RMSE (generated – 
original) for the b-parameter and the average number of administrations for an item. 
 
 
 

 
Figure 20. Scatterplot showing the relationship between the RMSE (generated –
calibrated) for the c-parameter and the average number of administrations for an item. 
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Figure 21. Scattergram showing the relationship between the RMSE (generated – 
original) for the c-parameter and the average number of administrations for an item. 
 

 
 
Figure 22. Scatterplot showing the relationship between the RMSE (generated-calibrated) 
for the a-parameter and the average number of administrations for an item. 
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Figure 23. Scattergram showing the relationship between the RMSE (generated – 
original) for the a-parameter and the average number of administrations for an item. 
 
 
 

 
Figure 24. Scatterplot showing the relationship between the bias (generated –calibrated) 
for the a-parameter and the average number of administrations for an item. 
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Figure 25. Scatterplot showing the relationship between the bias (generated –calibrated) 
for the b-parameter and the average number of administrations for an item. 
 

 
Figure 26. Scatterplot showing the relationship between the bias (generated –calibrated) 
for the c-parameter and the average number of administrations for an item. 
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Figure 27. Scatterplot showing the relationship between the average number of 

administrations for an item (generated – calibrated) and item difficulty. 
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