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I.  Objectives

The goal of computerized adaptive testing (CAT) is to tailor a test to each

individual examinee. CAT maintains many advantages in an assessment situation because

it allows the test to hone in on the examinees’ ability levels in an interactive manner.

However, while traditional tests can accomplish assessment goals, such as a ranked

comparison of examinees or grade assignments based on certain criteria, they do not

provide individualized information to teachers or test-takers regarding specific content in

the domain of interest (Chipman, Nichols, and Brennan, 1995). A new approach to

educational research has begun to effloresce in order to address this issue. This research

area, dealing with the application of cognitive diagnosis in the assessment process, aims

to provide helpful information to parents, teachers, and students, which can be used to

direct additional instruction and study to the areas needed most by the individual student.

Current approaches interested in cognitive diagnosis focus solely on the

estimation of the knowledge state, or attribute vector. This study proposes the

combination of the estimation of individual ability levels (

€ 

ˆ θ j ) along with an emphasis on

the diagnostic feedback provided by individual attribute vectors (

€ 

ˆ α j ), thus linking the

current standard in testing technology with a new area of research aimed at helping

teachers and students benefit from the testing process.

By combining the advantages of computerized adaptive testing with the helpful

feedback provided by cognitively diagnostic assessment, this study proposes a method for

customized diagnostic testing.  The technique utilizes the shadow-testing algorithm to

simultaneously optimize the estimation of both the ability level 

€ 

ˆ θ j  and the attribute

vector 

€ 

ˆ α j .
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By combining the traditional IRT-based CAT model with a cognitive diagnosis

model, examinees will be able to obtain both an ability level estimator as well as

feedback concerning their states on the measured attributes instead of just one or the

other.

II. Literature Review

Cognitively Diagnostic Assessment

Several models have been proposed to provide cognitively diagnostic information

in the assessment process. Two of the founding models for cognitive diagnosis are

Fisher’s Linear Logistic Trait Model (1973) and Tatsuoka’s and Tatsuoka’s Rule Space

methodology (1982). A plethora of additional models have used the concepts of these

methods as foundations for new approaches or applications (for details, see Hartz,

Roussos and Stout, 2002). Specifically, the Unified model, developed by DiBello, Stout

and Roussos (1995) is based on the rule space model, and in turn, the Fusion model

(Hartz et al., 2002) is based on the Unified Model. The item response function for the

Fusion model is illustrated below (in Equation 1), as described by Hartz, et al. (2002).

€ 

P Xij =1α j ,θ j( ) = π i
* rik

* −α jk( )×qik Pci θ j( )
k=1

K

∏       (1)

where

€ 

Pci θ j( )  = The Rasch model with difficulty parameter ic .

*
iπ  = The probability of correctly applying all item i required attributes given

that the individual processes all of the required attributes for the item i.
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*
ikr  = 

€ 

P(Yijk =1α jk = 0)
P(Yijk =1α jk =1)

, considered an attribute-based item discrimination

parameter for item i and attribute k.

jkY  = 1 when examinee j correctly applies attribute k to item i, and 0 otherwise.

jkα  = 1 when examinee j has mastered attribute k, and 0 otherwise.

Also, the attribute vector for individual j is denoted as 

€ 

α j , and jθ  is the residual ability

parameter, which deals with content measured by the test that is not included in the Q-

matrix. Though the notation is the same, this is not the single ability score jθ  of the

Three Parameter Logistic model.

A software program called Arpeggio (Stout et al., 2002) is available as a means of

analyzing examinee response data to provide diagnostic feedback in the form of

individual attribute vectors. The next helpful step in the diagnostic process would be to

implement computer adaptive testing technologies to optimize the item selection process

with respect to the estimation process.

Shadow Testing by means of Linear Programming

Shadow testing, a mode for test assembly which utilizes linear programming (LP)

to incorporate constraints into the assembly process, was proposed by van der Linden and

Reese (1998). It is an iterative process in which an ideal “shadow” test is formed before

the administration of each item in an examination. Each shadow test must contain items

already included in the test and must be optimal at the given estimate level while

complying with all of the specified constraints (van der Linden and Chang, 2003). The

best item on the shadow test is then selected as the next item to be administered. Then,
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the response from this item is used in the process of formulating the next shadow test.

The application of this approach results in two major advantages.  First, the items actually

administered in the adaptive test will follow the constraints because each of the shadow

tests meets these specifications. Second, the adaptive test will converge optimally to the

true value of the estimator because the shadow tests are assembled to be optimal for the

current estimate level, and in turn, each selected item is the optimal one from that shadow

test (van der Linden and Chang, 2003).

Once a shadow test is constructed, the best item with respect to the attribute

vector estimate is selected to be the next item administered to the examinee. Two

strategies, Shannon Entropy and Kullback-Leibler Information, are employed for the

selection process as described in Xu, Chang and Douglas (2003).

Shannon Entropy was developed in 1948 as a measure of uncertainty from a

probability standpoint. It is a nonnegative concave function of the probability

distribution. In this context, Shannon Entropy is minimized; that is to say, it is desirable

to have minimal uncertainty. Shannon Entropy is described by

€ 

Sh π( ) = π i
i=1

K

∑ log 1
π i

 

 
 

 

 
 (2)

where iπ  is the probability that the random variable of interest, call it Y, takes on a

particular value yi, and π  is the probability vector containing the iπ ’s for all possible

values of yi (Xu et al., 2003). In the context of diagnostic assessment, where we are

interested in estimating attribute vectors, the function for Shannon Entropy becomes

Equation 3, as described by Xu et al. (2003).

€ 

Sh π n,X j( ) = En π n X j = x( ) P X j = x π n−1[ ]
x= 0

1

∑
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   (3)

€ 

= { En π n X j = x( ) Pj
x αc( ) 1− Pj αc( )[ ]

1−x
π n−1 αc( )

c=1

2M

∑
 

 
  

 

 
  

x= 0

1

∑ }

Kullback-Leibler (K-L) Information was introduced in 1951 as a distance measure

between probability distributions. More recently, K-L Information can be used as a

measure of global information for the purpose of item selection in IRT (Chang and Ying,

1996) and as an index in the item selection process in diagnostic assessment (Xu et al.,

2003).

€ 

K f ,g( ) = log f x( )
g x( )

 

 
 

 

 
 ∫ f x( )µ dx( )    (4)

For the cognitive diagnosis context, K-L Information is used as an item selection

criterion. The integral become a sum because the variables are discrete; then the sum is

taken across all possible attribute patterns. Thus the function becomes

€ 

K j ˆ α ( ) = log
P(X j = x ˆ α )
P(X j = xαc )

 

 
  

 

 
  

x= 0

1

∑ P (X j = x ˆ α )( )
 

 
 
 

 

 
 
 c=1

2M

∑     (5)

where α̂  is the currant estimate for the attribute vector and cα  is the possible candidate

attribute vector generated by the jth item (Xu et al., 2003). This yields an information

index relating our current attribute vector estimate with the possible attribute vector

estimate resulting from the administration of the next item (j) for every possible

remaining item. The item with the largest value of 

€ 

K j ˆ α ( )  is then selected as the next

item.

In this study, maximizing Fisher Information with respect to the current estimate

of the single score, jθ̂ , is used as the optimization function of the LP in the Shadow Test.
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Then the minimization of Shannon Entropy and the maximization of K-L Information

with respect to the attribute mastery vector, jα̂ , are each used in different sub-conditions

to select the best item from the Shadow Test.  Thus, the item selected to be administered

next will be a good item with respect to both theta and attribute mastery estimation an

will obey any specified constraints in the LP.  Van der Linden and Reese (1998) outline

several non-statistical constraints of interest, including content balance, item time

availability, and test length. This study will use a similar approach to applying these non-

statistical constraints.

III. Method

The item parameters are pre-calibrated based on a simple random sample of 2000

examinees of three administrations of a state-mandated large-scale assessment using

Bilog MG and Arpeggio 1.2 to obtain the 3PL and fusion model-based item parameters

respectively.  This large-scale assessment is comprised of a math portion and a reading

portion.  The item parameters from the three administrations are tripled to increase the

size of the item bank.  This results in items banks with 396 items for the math portion of

the test and 324 items for the reading portion.  The examinees’ estimated parameters

(both single score thetas and attribute mastery patterns) are used as true scores in the

CAT simulation.  Out of the 6000 examinees, 3000 are randomly sampled with

replacement to be employed in the CAT simulation.

The study’s design will include three conditions for comparison: one which

selects items based on the θ̂  estimate only, one which selects items based on the α̂

estimate only, and one which selects items based on both estimates. The first condition
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will use the conventional method of focusing solely on θ̂  during item selection, and then

will estimate the α̂  vectors at the end using MLE estimation. The second condition,

focusing solely on α̂ , will mimic the approach outlined in Xu et al. (2003) to select items

and will calculate the θ̂  values afterwards based on the response patterns, also using

MLE estimation.

The third condition first involves the construction of a Shadow Test that is

optimized according to the ability level θ̂  (as outlined by van der Linden and Reese,

1998) before the administration of each item. Then the best item for measuring the

attribute vector α̂  is selected from the shadow test based on the current α̂  using

Shannon Entropy or Kullback-Leibler Information as outlined in Xu et al. (2003).

For conditions 1 and 3, the 5-4-3-2-1 item exposure control method proposed by

McBride and Martin (1983) is implemented.  Results of the three conditions are

compared with regard to the accuracy of both the attribute classification rate and the

ability levels by comparing the estimated values with the true values.

IV. Results

 The evaluation of the information obtained from the various conditions involves

three areas of examination.  First, it is important that the various methods accurately

estimated the values of the single score, theta.  Second, the methods should also

accurately estimate the attribute mastery patterns.  An acceptable method would estimate

both the theta values and the attribute mastery patterns well.  Third, the item exposure

rates of the various methods are examines because item exposure control is an important

issue in test security in computerized adaptive testing.  The following sections deal with
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each of these issues.  Optimally, examinees’ single scores and attribute vectors should be

accurately estimated while maintaining minimal item exposure rates for test security.

Theta Estimation

First, the theta estimates of the different conditions are of particular interest. The

theta estimates are compared with the true theta values to determine how well each of the

methods succeeds in accurately estimating the single score theta.  The comparison

between the true theta and its corresponding estimate is accomplished by examining the

values of the correlation coefficient, the root mean square error, and the bias statistics.

Approaches where the probability of obtaining a correct response is based on the

3PL model are grouped together.  Likewise, approaches where the probabilities for

obtaining a correct response are based on the fusion model are grouped together.  It

would be impractical to compare results across these differences because how the

response patterns are generated is a fundamental aspect of the CAT simulation and it

would be ineffective to discern the differences do to model choice from the differences

due to the various methods and conditions.

Correlation coefficients for all of the item selection methods within each

condition are presented in Table 1 for the response probabilities based on the 3PL model

and in Table 2 for the response probabilities based on the fusion model.  Values of bias

are presented in Table 3 for probabilities based on the 3PL model and in Table 4 for those

based on the fusion model.  The root mean square error values are presented in Table 5

for probabilities based on the 3PL model and in Table 6 for probabilities based on the

fusion model.
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Table 1: Correlations of the true theta values and the estimated theta values for 3PL-

based probabilities.

θ-Based Item Selection θ- & α-Based Item Selection

Fisher K-L Shannon K-L
Math

Blueprint Q-matrix 0.965 0.966 0.969 0.971

Intuitive Q-matrix 0.967 0.967 0.975 0.975

Reading
Blueprint Q-matrix 0.950 0.954 0.960 0.956

Intuitive Q-matrix 0.952 0.950 0.951 0.956

Table 2: Correlations of the true theta values and the estimated theta values for fusion-

based probabilities.

α-Based Item Selection θ- & α-Based Item Selection

Shannon K-L Shannon K-L
Math

Blueprint Q-matrix 0.768 0.782 0.786 0.790

Intuitive Q-matrix 0.795 0.749 0.817 0.812

Reading
Blueprint Q-matrix 0.718 0.763 0.752 0.762

Intuitive Q-matrix 0.203 0.222 0.227 0.230
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Table 3: Bias statistics of the estimated theta values for 3PL-based probabilities.

θ-Based Item Selection θ- & α-Based Item Selection

Fisher K-L Shannon K-L

Math
Blueprint Q-matrix -0.031 -0.036 -0.022 -0.023

Intuitive Q-matrix -0.019 -0.008 -0.017 -0.011

Reading
Blueprint Q-matrix -0.062 -0.057 -0.047 -0.050

Intuitive Q-matrix -0.049 -0.060 -0.055 -0.054

Table 4: Bias statistics of the estimated theta values for fusion-based probabilities.

α-Based Item Selection θ- & α-Based Item Selection

Shannon K-L Shannon K-L

Math

Blueprint Q-matrix 0.103 0.164 0.093 0.073

Intuitive Q-matrix 0.077 0.069 0.078 0.097

Reading
Blueprint Q-matrix 0.160 0.144 0.061 0.081

Intuitive Q-matrix 0.674 0.113 -0.190 -0.426
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Table 5: Root Mean Square Error of the estimated theta values for 3PL-based

probabilities.

θ-Based Item Selection θ- & α-Based Item Selection
Fisher K-L Shannon K-L

Math
Blueprint Q-matrix 0.296 0.298 0.282 0.265

Intuitive Q-matrix 0.295 0.293 0.262 0.258

Reading
Blueprint Q-matrix 0.335 0.324 0.302 0.318

Intuitive Q-matrix 0.324 0.334 0.329 0.317

Table 6: Root Mean Square Error of the estimated theta values for fusion-based

probabilities.

α-Based Item Selection θ- & α-Based Item Selection

Shannon K-L Shannon K-L
Math

Blueprint Q-matrix 0.692 0.685 0.674 0.666

Intuitive Q-matrix 0.689 0.748 0.658 0.667

Reading
Blueprint Q-matrix 0.748 0.681 0.696 0.687

Intuitive Q-matrix 1.351 1.174 1.364 1.345

In Table 1, all the correlations are above 0.9, and the values are similar across

conditions 1 and 3.  Correlations are typically lower for the reading test than the math

test.  Similarly, the bias values in Table 3 are all small and similar across the two

conditions, but are smaller for the math test than the reading test.  The root mean square
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errors also tend to be greater for the reading test.  Notice that in general, the methods

perform more poorly on the reading test than the math test.  Overall the math test seems

to have more accurate estimates than the reading test, which indicates that the reading test

is not as good at measuring a single overall reading score than the math test is at

measuring a single overall math score.

In Table 5, the root mean square error is lower in condition 1 for the math test, but

is lower for condition 3 in the reading test.  Overall conditions 1 and 3 seem to perform

comparably at accurately measuring the single score theta for the examinees when the

3PL model is used for calculating response probabilities.  Within condition 1, item

selection based on maximizing Fisher Information and K-L Information tend to perform

equally well, as do minimizing Shannon Entropy and maximizing K-L Information

within condition 3.

Now the results of the methods using the fusion model to calculated response

probabilities are examined.  As expected, conditions where the probabilities of obtaining

a correct response are based on the fusion model do not estimate the values of the single

score theta very well.  This is intuitive because the value of theta is not present anywhere

in the probability function for the item responses.  Hence, the values of the correlation

coefficients are lower and the root mean square error and bias values are greater than

desired, but what is more interesting for this study is a comparison between the different

methods within this fusion-based model approach.  Higher correlations, lower bias

estimates and lower root mean square error values in Tables 2, 4 and 6 respectively

illustrate that condition 3 performs better than condition 2 at estimating single theta

scores.  This means that an item selection method that takes theta estimates and attribute
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mastery patterns into account yields better theta estimates than the item selection method

that only takes attribute mastery patterns into account.  To evaluate which method(s) are

best overall however, the accuracy of the attribute mastery classifications must also be

considered.

Attribute Mastery Estimation

Optimally, an assessment approach will accurately estimate the attribute mastery

of each attribute as well as the entire attribute pattern for the examinees.  To evaluate the

attribute mastery estimation, the correct classification rates of each measured attribute

and the entire attribute pattern are presented in the following tables.  Tables 7 presents

these correct classification rates, or “hit rates,” of each method using the 3PL to

determine the response pattern probabilities for the math test.  Table 8 holds the same

information for the reading test.  Tables 9 and 10 present the attributes’ correct

classification rates for the fusion model-based probabilities for the math test and reading

test, respectively.  A list of the attributes measured by each Q-matrix for each subject

portion is presented in Appendix A.
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Table 7: The math test’s attribute mastery hit rates using 3PL-based probabilities.

Condition 1 Condition 3

Blueprint Q-matrix: Attribute Fisher K-L Shannon K-L
1 0.797 0.792 0.789 0.795
2 0.712 0.696 0.715 0.703
3 0.686 0.681 0.678 0.710
4 0.710 0.725 0.718 0.703
5 0.783 0.796 0.780 0.794
6 0.833 0.827 0.833 0.816
7 0.808 0.810 0.805 0.816
8 0.814 0.817 0.808 0.818
9 0.557 0.564 0.585 0.556
10 0.807 0.796 0.825 0.823
11 0.746 0.748 0.763 0.770

Mean 1-11 0.750 0.750 0.754 0.755
Whole Pattern 0.169 0.162 0.169 0.176

Intuitive Q-matrix: Attribute Fisher K-L Shannon K-L
1 0.835 0.838 0.863 0.838
2 0.813 0.823 0.804 0.746
3 0.826 0.824 0.834 0.833
4 0.765 0.765 0.706 0.720
5 0.795 0.806 0.772 0.779
6 0.801 0.764 0.797 0.804
7 0.741 0.749 0.711 0.720
8 0.804 0.809 0.778 0.757
9 0.800 0.813 0.848 0.828
10 0.622 0.598 0.672 0.659
11 0.847 0.860 0.790 0.776
12 0.825 0.822 0.767 0.758
13 0.685 0.664 0.646 0.622

Mean 1- 13 0.782 0.780 0.768 0.757
Whole Pattern 0.220 0.211 0.206 0.193
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Table 8: The reading test’s attribute mastery hit rates using 3PL-based probabilities.

Condition 1 Condition 3

Blueprint Q-matrix: Attribute Fisher K-L Shannon K-L
1 0.830 0.830 0.787 0.781
2 0.847 0.850 0.868 0.863
3 0.795 0.779 0.797 0.802
4 0.863 0.861 0.856 0.864
5 0.815 0.824 0.829 0.823

6 0.827 0.834 0.843 0.861
Mean 1-6 0.829 0.830 0.830 0.832

Whole Pattern 0.586 0.590 0.583 0.580

Intuitive Q-matrix: Attribute Fisher K-L Shannon K-L
1 0.758 0.758 0.756 0.754
2 0.814 0.812 0.799 0.808
3 0.751 0.760 0.753 0.723
4 0.753 0.744 0.767 0.754
5 0.787 0.787 0.784 0.792
6 0.766 0.767 0.762 0.769

7 0.792 0.788 0.804 0.803
Mean 1-7 0.774 0.774 0.775 0.772

Whole Pattern 0.468 0.465 0.465 0.443
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Table 9: The math test’s attribute mastery hit rates using fusion-based probabilities.

Condition 2 Condition 3

Blueprint Q-matrix: Attribute Shannon K-L Shannon K-L
1 0.233 0.205 0.797 0.801
2 0.849 0.871 0.800 0.801
3 0.847 0.222 0.688 0.703
4 0.887 0.847 0.781 0.797
5 0.274 0.853 0.882 0.878
6 0.356 0.877 0.890 0.876
7 0.894 0.904 0.879 0.898
8 0.816 0.907 0.883 0.885
9 0.882 0.368 0.643 0.554
10 0.939 0.997 0.937 0.939
11 0.907 0.955 0.813 0.835

Mean 1-11 0.717 0.728 0.817 0.815
Whole Pattern 0.040 0.007 0.160 0.170

Intuitive Q-matrix: Attribute Shannon K-L Shannon K-L
1 0.905 0.242 0.882 0.855
2 0.802 0.159 0.786 0.736
3 0.925 0.876 0.896 0.876
4 0.645 0.222 0.772 0.760
5 0.873 0.916 0.871 0.872
6 0.941 0.896 0.933 0.926
7 0.837 0.261 0.726 0.746
8 0.440 0.339 0.819 0.797
9 0.910 0.978 0.904 0.913
10 0.868 0.307 0.756 0.710
11 0.734 0.260 0.846 0.832
12 0.900 0.279 0.851 0.856
13 0.858 0.265 0.705 0.660

Mean 1- 13 0.818 0.461 0.827 0.811
Whole Pattern 0.090 0.029 0.157 0.141
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Table 10: The reading test’s attribute mastery hit rates using fusion-based probabilities.

Condition 2 Condition 3
Blueprint Q-matrix: Attribute Shannon K-L Shannon K-L

1 0.899 0.833 0.799 0.803
2 0.898 0.923 0.884 0.899
3 0.890 0.822 0.855 0.844
4 0.858 0.868 0.889 0.906
5 0.911 0.807 0.869 0.867
6 0.882 0.928 0.929 0.922

Mean 1-6 0.890 0.863 0.871 0.874
Whole Pattern 0.677 0.686 0.637 0.640

Intuitive Q-matrix: Attribute Shannon K-L Shannon K-L
1 0.929 0.967 0.924 0.941
2 0.882 0.881 0.883 0.887
3 0.888 0.898 0.896 0.889
4 0.908 0.866 0.880 0.859
5 0.900 0.867 0.867 0.868
6 0.919 0.891 0.901 0.896
7 0.893 0.862 0.893 0.885

Mean 1-7 0.903 0.890 0.892 0.889
Whole Pattern 0.711 0.722 0.699 0.708

This information may be more easily compared across the various approaches

through graphical representation.  The correct classification rates of the attribute mastery

estimates are illustrated graphically in the following figures.
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Figure 1: Correct Attribute Mastery Classification for the Math Blueprint Q-matrix using
3PL-based Probabilities.
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Figure 2: Correct Attribute Mastery Classification for the Math Intuitive Q-matrix using
3PL-based Probabilities.
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Figure 3: Correct Attribute Mastery Classification for the Reading Blueprint Q-matrix
using 3PL-based Probabilities.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 All

Attribute

C
o

rr
e
ct

 C
la

ss
if

ic
a
ti

o
n

 R
a
te

Condition 1 Fisher Condition 1 K-L Condition 3 K-L Condition 3 Shannon

Figure 4: Correct Attribute Mastery Classification for the Reading Intuitive Q-matrix
using 3PL-based Probabilities.
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Figure 5: Correct Attribute Mastery Classification for the Math Blueprint Q-matrix using
fusion-based Probabilities.
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Figure 6: Correct Attribute Mastery Classification for the Math Intuitive Q-matrix using
fusion-based Probabilities.
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Figure 7: Correct Attribute Mastery Classification for the Reading Blueprint Q-matrix
using fusion-based Probabilities.
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Figure 8: Correct Attribute Mastery Classification for the Reading Intuitive Q-matrix
using fusion-based Probabilities.

With regard to the approaches based on the 3PL model for determining item

response probabilities, condition 1 and condition 3 for math and reading portion of the
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test on the individual attribute level as well as for the entire attribute pattern.  An

examination of the above figures indicates that within condition 1, the use of Fisher

Information and K-L Information in selecting items optimally for the current theta

estimate both perform equally well.

Results are more irregular for the methods based on the fusion model for item

response probabilities.  Notice that for the math test, condition 2 and condition 3 perform

similarly, but a holistic examination shows that condition 3 more consistently classifies

the examinees as masters or non-masters of the attributes, while the methods in condition

2 show more fluctuation.  Within condition 2, using Shannon Entropy seems to produce

more accurate attribute mastery classifications than using K-L Information.   For the

reading portion, the second condition yields slightly higher correct classifications for

many of the attributes and for the overall mastery patterns, and overall the differences

between the two conditions correct classification rates are quite small.  It is surprising

that condition 2 did not perform much better than condition 3.  Condition 2 only selected

items based on the current attribute mastery pattern estimate, 

€ 

α j , and condition 3 takes

both 

€ 

α j  and 

€ 

θ j  into account, so it is logical that condition 2 would perform quite a bit

better than condition 3 with regard to correct attribute mastery estimation, but the results

were comparable.  Thus, a test administrator would not have to sacrifice much attribute

mastery classification precision in order to obtain higher precision in theta estimates.

Within condition 3, utilizing K-L Information and Shannon Entropy seem to perform

equally well in correctly estimating attribute mastery.
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Item Exposure

In computerized adaptive testing, it is desirable to keep item exposure to a

minimum to assure test security.  But some items are better at measuring the underlying

construct than others, so minimizing exposure control and maximizing measurement

precision have a give-and-take relationship.  Due to the importance of test security, the

items exposure rated for the various methods implemented in this study will not be

examined.  The item exposure rates for the CAT-simulation based on the 3PL model are

presented in Table 11 for the math portion of the test and Table 12 for the reading

portion.  Likewise, the item exposure rates for the CAT-simulation based on the fusion

model are presented in Table 13 for the math portion of the test and Table 14 for the

reading portion.
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Table 11: Item exposure for the math test using 3PL-based probabilities.

Condition 1 Condition 3

Blueprint Q-matrix: Fisher K-L Shannon K-L

Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 114 0.29 153 0.39 137 0.35 147 0.37
0.0 to 0.099 169 0.43 136 0.34 134 0.34 139 0.35

0.1 to 0.199 39 0.10 36 0.09 42 0.11 32 0.08
0.2 to 0.299 29 0.07 28 0.07 46 0.12 23 0.06
0.3 to 0.399 13 0.03 8 0.02 15 0.04 20 0.05

0.4 to 0.499 10 0.03 9 0.02 4 0.01 17 0.04
0.5 to 0.599 10 0.03 12 0.03 5 0.01 6 0.02
0.6 to 0.699 10 0.03 8 0.02 9 0.02 10 0.03
0.7 to 0.799 2 0.01 6 0.02 4 0.01 2 0.01

0.8 to 0.899 0 0.00 0 0.00 0 0.00 0 0.00
0.9 to 1.000 0 0.00 0 0.00 0 0.00 0 0.00

Intuitive Q-matrix: Fisher K-L Shannon K-L
Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 152 0.38 170 0.43 126 0.32 122 0.31

0.0 to 0.099 132 0.33 114 0.29 149 0.38 154 0.39
0.1 to 0.199 31 0.08 33 0.08 39 0.10 40 0.10
0.2 to 0.299 32 0.08 29 0.07 22 0.06 26 0.07

0.3 to 0.399 21 0.05 19 0.05 36 0.09 24 0.06
0.4 to 0.499 11 0.03 12 0.03 16 0.04 18 0.05
0.5 to 0.599 5 0.01 7 0.02 6 0.02 7 0.02
0.6 to 0.699 10 0.03 7 0.02 2 0.01 3 0.01

0.7 to 0.799 2 0.01 5 0.01 0 0.00 2 0.01
0.8 to 0.899 0 0.00 0 0.00 0 0.00 0 0.00
0.9 to 1.000 0 0.00 0 0.00 0 0.00 0 0.00
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Table 12: Item exposure for the reading test using 3PL-based probabilities.

Condition 1 Condition 3

Blueprint Q-matrix: Fisher K-L Shannon K-L

Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 100 0.25 116 0.29 121 0.31 123 0.31
0.0 to 0.099 115 0.29 100 0.25 115 0.29 103 0.26

0.1 to 0.199 32 0.08 37 0.09 22 0.06 34 0.09
0.2 to 0.299 28 0.07 21 0.05 12 0.03 12 0.03
0.3 to 0.399 13 0.03 17 0.04 13 0.03 17 0.04

0.4 to 0.499 14 0.04 9 0.02 18 0.05 5 0.01
0.5 to 0.599 11 0.03 8 0.02 6 0.02 9 0.02
0.6 to 0.699 8 0.02 9 0.02 6 0.02 13 0.03
0.7 to 0.799 0 0.00 4 0.01 5 0.01 5 0.01

0.8 to 0.899 3 0.01 2 0.01 6 0.02 3 0.01
0.9 to 1.000 0 0.00 1 0.00 0 0.00 0 0.00

Intuitive Q-matrix: Fisher K-L Shannon K-L
Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 100 0.25 111 0.28 103 0.26 109 0.28

0.0 to 0.099 115 0.29 106 0.27 115 0.29 114 0.29
0.1 to 0.199 32 0.08 36 0.09 32 0.08 30 0.08
0.2 to 0.299 26 0.07 22 0.06 16 0.04 13 0.03

0.3 to 0.399 8 0.02 13 0.03 14 0.04 19 0.05
0.4 to 0.499 20 0.05 11 0.03 22 0.06 13 0.03
0.5 to 0.599 10 0.03 10 0.03 15 0.04 13 0.03
0.6 to 0.699 8 0.02 6 0.02 1 0.00 10 0.03

0.7 to 0.799 3 0.01 7 0.02 6 0.02 3 0.01
0.8 to 0.899 0 0.00 2 0.01 0 0.00 0 0.00
0.9 to 1.000 0 0.00 0 0.00 0 0.00 0 0.00
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Table 13: Item exposure for the math test using fusion-based probabilities.

Condition 2 Condition 3

Blueprint Q-matrix: Shannon K-L Shannon K-L

Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 156 0.39 311 0.79 160 0.40 181 0.46
0.0 to 0.099 134 0.34 22 0.06 116 0.29 108 0.27

0.1 to 0.199 42 0.11 15 0.04 51 0.13 34 0.09
0.2 to 0.299 11 0.03 8 0.02 29 0.07 19 0.05
0.3 to 0.399 13 0.03 0 0.00 8 0.02 17 0.04

0.4 to 0.499 11 0.03 0 0.00 12 0.03 7 0.02
0.5 to 0.599 13 0.03 2 0.01 3 0.01 17 0.04
0.6 to 0.699 9 0.02 3 0.01 9 0.02 3 0.01
0.7 to 0.799 5 0.01 8 0.02 7 0.02 8 0.02

0.8 to 0.899 1 0.00 6 0.02 1 0.00 2 0.01
0.9 to 1.000 1 0.00 21 0.05 0 0.00 0 0.00

Intuitive Q-matrix: Shannon K-L Shannon K-L
Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 127 0.32 205 0.52 139 0.35 148 0.37

0.0 to 0.099 145 0.37 115 0.29 143 0.36 130 0.33
0.1 to 0.199 50 0.13 21 0.05 43 0.11 44 0.11
0.2 to 0.299 28 0.07 13 0.03 19 0.05 18 0.05

0.3 to 0.399 21 0.05 2 0.01 19 0.05 28 0.07
0.4 to 0.499 17 0.04 0 0.00 19 0.05 9 0.02
0.5 to 0.599 5 0.01 5 0.01 5 0.01 7 0.02
0.6 to 0.699 1 0.00 9 0.02 5 0.01 6 0.02

0.7 to 0.799 1 0.00 16 0.04 4 0.01 5 0.01
0.8 to 0.899 1 0.00 2 0.01 0 0.00 1 0.00
0.9 to 1.000 0 0.00 8 0.02 0 0.00 0 0.00
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Table 14: Item exposure for the reading test using fusion-based probabilities.

Condition 2 Condition 3

Blueprint Q-matrix: Shannon K-L Shannon K-L

Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 93 0.23 200 0.51 131 0.33 134 0.34
0.0 to 0.099 131 0.33 71 0.18 95 0.24 101 0.26

0.1 to 0.199 51 0.13 7 0.02 35 0.09 25 0.06
0.2 to 0.299 7 0.02 4 0.01 10 0.03 20 0.05
0.3 to 0.399 2 0.01 1 0.00 11 0.03 3 0.01

0.4 to 0.499 7 0.02 1 0.00 13 0.03 8 0.02
0.5 to 0.599 7 0.02 2 0.01 10 0.03 2 0.01
0.6 to 0.699 13 0.03 2 0.01 3 0.01 9 0.02
0.7 to 0.799 9 0.02 6 0.02 9 0.02 17 0.04

0.8 to 0.899 3 0.01 7 0.02 7 0.02 2 0.01
0.9 to 1.000 1 0.00 23 0.06 0 0.00 3 0.01

Intuitive Q-matrix: Shannon K-L Shannon K-L
Exposure Rate Freq. Prop. Freq. Prop. Freq. Prop. Freq. Prop.
Not Exposed 87 0.22 194 0.49 102 0.26 114 0.29

0.0 to 0.099 135 0.34 81 0.20 112 0.28 117 0.30
0.1 to 0.199 48 0.12 7 0.02 44 0.11 31 0.08
0.2 to 0.299 12 0.03 2 0.01 9 0.02 10 0.03

0.3 to 0.399 6 0.02 0 0.00 16 0.04 7 0.02
0.4 to 0.499 2 0.01 0 0.00 18 0.05 7 0.02
0.5 to 0.599 10 0.03 0 0.00 15 0.04 17 0.04
0.6 to 0.699 9 0.02 2 0.01 2 0.01 13 0.03

0.7 to 0.799 13 0.03 11 0.03 6 0.02 7 0.02
0.8 to 0.899 2 0.01 2 0.01 0 0.00 1 0.00
0.9 to 1.000 0 0.00 25 0.06 0 0.00 0 0.00

An example of desirable item exposure would have all of the items exposed to

less than twenty percent of the examinees and would have no items that were not

administered at all.  The 5-4-3-2-1 exposure control method did not perform as ideally as

this, but the exposure tendencies can be compared across the various methods.  For

instance, the method in condition 2 based on maximizing K-L Information has between

two and six percent of the items exposed to al least ninety percent of the examinees.  This
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is an unacceptably high exposure rate.  Condition 3 tends to have better exposure rates

than condition 2, and tends to have comparable exposure rates to condition 1.  The

different methods within condition 1 and within condition 3 also tend to be comparable

with regard to exposure control. If these item exposure rates are greater than desired for a

particular assessment, alternative exposure control techniques might be an interesting

area of future research.

Overall Performance

Evaluation of the different techniques encompasses an evaluation of theta

estimation accuracy, attribute mastery estimation accuracy, and item exposure control.

Overall results should thus be considered across all of the areas.  With regard to

estimating theta, conditions 1 and 3 produce comparable results, and condition 3

performs better than condition 2.  Surprisingly, conditions 1 and 3 also produce

comparable results with regard to the attribute mastery estimates.  Condition 3

outperforms condition 2 with regard to theta estimation, attribute mastery pattern

estimation, and item exposure control.  But between condition 1 and condition 3, there is

no clear-cut winner.  Both methods perform well and similarly with regard to theta

estimation, attribute mastery estimation, and item exposure control.

Notice that the results for the intuitive Q-matrix for the reading test are quite poor

with respect to all three of the discussed criteria, and certainly performed more poorly

than the corresponding results based on the Blueprint Q-matrix.  This emphasizes the

importance of Q-matrix construction.  It would be inappropriate to underestimate the

significance of Q-matrix development.  Therefore, great care should go into this
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important initial step in the cognitive diagnosis process.  Additional precautions could be

taken, such as asking a content expert to review a Q-matrix before the cognitively

diagnostic analysis.

In sum, selecting items based on current theta estimates or based on both theta

and attribute mastery estimates by means of shadow test are both good methods with

regard to single score estimation, attribute mastery estimation and item exposure control.

Determining which of these two to implement then depends on other issues the test

administrator may be facing.  If other constraints are necessary in the testing process,

then the shadow test approach that selects items based on both single score and attribute

mastery estimation is better because it can easily and efficiently incorporate the

additional requirements.  Such constrains include content balancing, item type

constraints, testlet constraints, among others. Van der Linden and Reese (1998) and van

der Linden (2000) expound on incorporating such constraints.

On the other hand, if a test administrator prefers a more simple approach to item

selection and does not have access to special software like CPLEX, nor the need for

additional constraints, then an item selection method based on the current single score

estimates would suffice.  Furthermore the different approaches within these item

selection techniques (i.e. Fisher Information versus K-L Information and Shannon

Entropy versus K-L Information) seem to have little difference in the results of this study,

so a test administrator may have their choice between these.
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V. Educational Implications

This study compares the accuracy of three possible item selection methods in a

computerized adaptive testing situation focused on estimating diagnostic attribute

information in addition to the conventional single score estimation. This simulation study

is important in an educational context because it explores the accuracy of these methods

with regard to these to assessment approaches. Test administrators can also use

simulation studies like this one to determine how well the various attributes of interest are

being measured.  For instance, in Figures 1 and 2, the mastery status for attributes 9 and

10, respectively, are not estimated as accurately as the other attributes.  Notice that both

of these attributes deal with the students’ ability to estimate a reasonable solution to the

item.  Test administrators could use this information to evaluate poorly measured

attributes or to examine items measuring the attribute to try to better assess what they

originally had in mind for this attribute.   In addition, the attribute-based item difficulty

parameter, 

€ 

π *, and attribute-based item discrimination parameters, r*, for the poorly

estimated attribute(s) in this evaluation process.  The results of this study also stress the

importance of the construction of the Q-matrix in cognitively diagnostic assessment.

Cognitive diagnosis is important in educational assessment because it provides

helpful feedback to students about specific elements of the measured content domain.  It

is rapidly becoming a requirement of effective, educationally beneficial test development

(No Child Left Behind Act, 2001).  The challenge then becomes how to adapt the methods

developed within the CAT framework to enable this new approach.  This study proposes

the application of the Shadow Test procedure to achieve the best of both worlds.  While

this study was conducted using the Fusion model’s framework for cognitive diagnosis,
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the procedure can be generalized to any diagnostic model which estimates the attribute

states of the examinees, such as the Noisy Inputs Deterministic ‘And’ gate (NIDA) model

(see Maris, 1999), the Generalized Latent Trait Model (GLTM) (Embretson, 1984), or the

Rule Space method (Tatsuoka and Tatsuoka, 1982).
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APPENDIX A
List of Attributes Measured by Each Test

Blueprint Q-matrix for the math test:
1. Demonstrate an understanding of number concepts.
2. Demonstrate an understanding of mathematical relations.
3. Demonstrate an understanding of geometric properties and relationships.
4. Demonstrate an understanding of measurement concepts using metric and

customary units.
5. Demonstrate an understanding of probability and statistics.
6. Use the operation of addition to solve problems.
7. Use the operation of subtraction to solve problems.
8. Use the operation of multiplication and/or division to solve problems.
9. Estimate solutions to a problem situation and/or evaluate the reasonableness of a

solution to a problem situation.
10. Determine solution strategies and analyze or solve problems.
11. Express or solve problems using mathematical representation.

Intuitive Q-matrix of the math test:
1. Understanding representation
2. Counting
3. Multiplication
4. Division
5. Addition
6. Subtraction
7. Understanding geometric shapes
      (turning, flipping, draw a line of symmetry, etc.)
8. Read a chart
9. Set up an arithmetic calculation from verbal information
10. Estimation
11. Read a table of numbers
12. Using standard units of measure
13. Understanding and forming order of magnitude

Blueprint Q-matrix for the reading test:
1. Determine the meaning of words in a variety of written texts.
2. Identify supporting ideas in a variety of written texts.
3. Summarize a variety of written texts.
4. Perceive relationships and recognize outcomes in a variety of written texts.
5. Analyze information in a variety of written texts in order to make inferences and

generalizations.
6. Recognize points of view, propaganda, and/or statements of fact and opinion in a

variety of written texts.
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Intuitive Q-matrix of the reading test:
1. Chronology
2. Causality (determining why)
3. Word Meaning
4. General Summary
5. Observing/Remembering Details
6. Knowing Fact versus Opinion
7. Speculating from Contextual Clues
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