
 
 
 
 
 
 
 
 
 
 

Methods for Item Set Selection in Adaptive Testing1,2 
 
 
 

Ying Lu 
University of Massachusetts Amherst 

 
Saba Rizavi 

Educational Testing Service 
 
 
 
 
 
 
 
 
 
 
 

- April 13, 2003 - 
 

 
 
 
 
 
 
 
 
 

                                                 
1 Paper presented at the annual meeting of the National Council on Measurement in Education, Chicago. 
2 Center for Educational Assessment Research Report No. 487. Amherst, MA: University of Massachusetts, 
School of Education. 

 1



Introduction 

 

Recent advances in technology have expedited the development of a more 

efficient testing format – computer adaptive testing (CAT), which tries to match item 

difficulty to the examinee’s estimated ability at each step of the exam.  When items are in 

individualized format, i.e., items are not bundled or grouped through their relationship to 

a common stimulus, CAT reaches its optimum efficiency.  On the other hand, however, 

when items are in set format, e.g., when a number of items are based on a common 

reading passage in a verbal test, the level of adaptation that CAT can achieve is more 

limited. This is because whenever a set has been selected, CAT algorithm is restricted to 

selecting from the remaining items in the set, which may not be desirable, either 

statistically or cognitively.   

Discussions started long ago over CAT algorithm designs aiming to alleviate the 

degree of inefficiency brought about by the special format of set items.  The CAT 

algorithm for set-based items usually involves two steps repeatedly: deciding upon the set 

to be selected, and subsequently upon the items to be selected within the set.  While there 

is not much adaptation possible in the latter step, an efficient algorithm for entering a new 

set becomes especially important.  Intuitively, we would want to take into account set 

properties while making the decision over the set to be selected.  Theunissen (1986, 

p.387) suggested that sets of items could be incorporated into a maximum information 

adaptive testing paradigm by using a set information function, which is the sum of the 

item information functions for the items within that set.  Alternatively, the specific 

information item selection, in contrast with the maximum information selection, can be 

considered for the CAT of item sets.  For a description of the specific information 

selection method, see Davey and Fan (2000).  When applied to item sets in CAT, specific 

information selection method selects a new set that has expected set information values 

matched most closely to the target information value, where information value is 

obtained by numerically integrating the information function over the posterior ability 

estimate of the examinee.  See Thompson & Davey (1999, 2000) for the application of 

specific information item selection to a passage-based test.  The problem with using 

expected set information function or set information values is that very often the number 
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of items to be administered from each set is not known in advance, and even when it is 

known, it usually differs from the number of items available in the set.  Besides, with 

other complicating factors, e.g., mixed item format, and large number of test construction 

rules both at the set level and the item level, the efficiency of incorporating expected set 

information function/value into the algorithm is not known.   

Stocking & Swanson (1993) proposed the use of a weighted deviations model 

(WDM) and an algorithm for item selection.  Particularly in dealing with the item set 

format, they suggested assigning a conceptual partition of the item pool (a block) to each 

set, and entering a block by the selection of an item in that block that contributes the most 

to the satisfaction of all other constraints (p. 282).  Once within a block, items continue to 

be selected adaptively for administration based on their contribution to the satisfaction of 

all constraints and overlap, until the number of items to be administered from that block 

is reached.  This is the item set selection method most testing programs are implementing 

now.  The weighted deviations model has been found to be quite satisfactory in its 

capability of handling large number of constraints on intrinsic item features.  The 

efficiency of this methodology, in dealing with set-based items, however, is threatened by 

the negligence of set attributes at the selection of a set, as set selection is determined 

solely by the characteristics of one single item.  It is possible that, after an examinee has 

been administered the first item of a set, none of the remaining items in the set match the 

examinee’s interim ability estimate well.  As a result, items are administered without 

being able to obtain useful information about the examinee.  

Theoretically, if item sets with different item difficulty distributions could be 

administered at different stages of CAT administration, it would allow for more 

efficiency under this special item format condition.  At earlier stages when the ability 

estimates for the examinees have considerably large standard errors, a set of items with 

heterogeneous difficulties is preferred as it leaves space for estimation errors and 

provides more flexibility.  At later stages when the ability estimates become increasingly 

accurate, a set of items with homogeneous difficulties is preferred as it improves 

precision within a fine range of ability estimates.  The purpose of this paper is to examine 

the effect over ability estimation accuracy of making variations to the WDM to take into 
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consideration the item difficulty distributions within sets for tests comprised primarily of 

item sets.   

 

Method 

 

Conventional test construction usually needs to take into account test specifications.  

And accordingly, various rules are built into the CAT algorithm to constrain the 

automatic item selection process.   Stocking and Swanson (1993, p. 278) put test 

specifications into four categories: (1) constraints on intrinsic item properties; (2) 

constraints on item features in relation to all other candidate items (overlap); (3) 

constraints on item features in relation to a subset of all other candidate items (item set); 

(4) constraints on the statistical properties of items as derived from pretesting.   

Below is a brief review of how constraints are built into WDM.  For a detailed 

introduction, readers are referred to Swanson, L., & Stocking, M. L. (1993), Stocking and 

Swanson (1993). 

The basic form of WDM is intended to find the item that minimizes the function of 

weighted sum of deviations (WSD): 

1 1
j j

J J

j L j U
j j

w d w d w dθ θ
= =

+ +∑ ∑ ,                                                                  (1) 

where j = 1, …, J indexes the item properties associated with the content 

constraints,  denotes the weight assigned to constraint j, jw wθ  denotes the weight 

assigned to the information constraint,  
jLd and denote the non-negative deviations 

from the lower and upper bounds respectively for content constraint j if the item is 

selected, and 

jUd

dθ  denotes the non-negative deviation from the lower bound on test 

information if the item is selected. 

This weighted deviation model where the weighted sum of deviations is defined 

by equation (1) is used as the baseline method for item and set selection in this paper, 

which is implemented in simulation study one.  In this method, a set is selected due to a 

single item within the set that has desirable content and information properties, as 

demonstrated by smallest weighted sum of deviations defined in equation (1).   After a set 
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is selected, items continue to be selected adaptively within the set.  Here, we make the 

assumption that item review by examinees is not allowed, thus making adaptive testing 

within a set possible.  

In second and third simulation studies, we build into the WDM the extra constraint 

concerning item difficulty distributions within sets, to enhance the model’s capability to 

deal with statistical properties in the context of set format.  The extra constraint is 

intended to minimize the difference between standard deviation of item difficulties within 

a set and the standard error of the interim ability estimate.  The standard error of the 

interim ability estimate for examinee i at the rth CAT stage (Hambleton, Swaminathan & 

Rogers, 1991) is known to converge to: 

( )
( )
1ˆ

ˆir

ir

SE
I

θ
θ

= ,  

where îrθ  is the interim θ  estimate for examinee i after the preceding r-1 items, and 

( îrI )θ  is the sum of  the item information functions at îθ  for the preceding r-1 items. 

Let  denote the standard deviation of item difficulties within set s.  The 

constraint of minimizing 

( )sSD b

( ) ( )îr sSE SD bθ −  is intended to take into account the 

uncertainty of the ability estimate when selecting a set.  For this constraint there is no 

lower and upper bounds. The closer the value of ( ) ( )îr sSE SD bθ −  approaches 0, the 

better the item set is matched to the interim adaptive testing stage.  Now, let  denote 

the value of 

SDd

( ) ( )îr sSE SD bθ − , and let  denote the weight assigned to the new 

constraint.  The modified weighted sum of deviations is defined as 

SDw

1 1
j j

J J

j L j U SD SD
j j

w d w d w d w dθ θ
= =

+ + +∑ ∑                                                                        (2) 

The minimization of this weighted sum of deviations can be used as a criterion for 

selecting items to be administered.  When the selection of an item determines the new 

block of item set to be entered, this minimization function takes into account item set 

difficulty distribution to allow for the maximum efficiency.  When items are selected 
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adaptively within a set,  serves as a dummy function that does not play any role 

in the item selection process, as it takes the same value for items within the same set.  

SDw SDd

This variation of WDM is used in the second simulation study. The procedure 

followed for set selection in this study is similar to that in the first study, except that 

desirable item properties now include the compatibility of the item difficulty distribution 

within the set to which the item belongs with the SE of the interim ability estimate.  In 

other words,  is integrated as a term in the weighted sum of deviation.   SD SDw d

The third simulation study utilizes more set properties including the expected set 

content attributes and expected set information while selecting a set.  This is an 

adaptation of Theunissen’s suggestion of using a set information function, and is only 

viable with the assumption that the number of items to be administered from each set is 

known in advance, the expected set information at îθ  is computed as  

( )( ) ( )
1

ˆ ˆ
sn

s
s i k

ks

mE I I
n iθ θ

=

= ∑ , 

where sn  is the number of available items in set s, sm  is the number of items to be 

administered from set s, ( ˆ
k iI )θ  is the item information for the kth item in set s.  

Similarly, the expected set content attribute is computed by multiplying the sum of item 

content attributes within the set by /s snm . 

In this study, when a new set of items needs to be administered, the function of 

weighted sum of deviations is redefined over sets instead of items.  The form of the 

function stays the same, but the parameters in it take different denotations: 

1 1
j j

J J

j L j U SD SD
j j

w d w d w d w dθ θ
= =

+ + +∑ ∑  

where 
jLd and denote the expected non-negative deviations from the lower and 

upper bounds for content constraint j when the particular SET is selected, and d

jUd

θ  denotes 

the expected deviation from the lower bound on test information when the SET is 

selected.  A set is selected when it has the smallest set-based WSD.  After the set to be 

administered is determined, items are selected adaptively within the set, based on the 

item-level WDM. 
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Simulation Design 

The simulations utilize an item pool of 438 dichotomous items (64 sets with at 

least 6 items in each set) from several paper and pencil forms of a large-scale test 

comprised of passage related sets.  Item parameters were obtained from PARSCALE 

calibration using three-parameter logistic model.  These item parameters are treated as 

true parameters, which is a realistic assumption since they were estimated from a 

considerably large sample of examinees, and in most CAT situations this is the case.  The 

decision of using real test data against simulated item parameters for the item bank was 

made so that the study would be operationally based, and with realistic significance.  

Table 1 summarizes the means and standard deviations of the item parameter estimates 

for the pool.  Figure 1 displays the histogram of b-parameters in the Pool.  The table and 

the figure show that the distribution of b-parameters of items in the pool is slightly 

negatively skewed, with the mode around 0.0, but mean at –0.31.  The guessing 

parameters are relatively high with mean at 0.28. 

 
Insert Table 1 about here 

 

 
Insert Figure 1 about here  

 

Figure 2 shows the histogram of the within-set item difficulty standard deviations 

for all the 64 sets in the pool.  It is noticed that the SDs have a pretty condensed 

distribution, where most values gather between 0.35 to 1.40.  

  
Insert Figure 2 about here  

 

A fixed length of 35 questions (seven, five-item sets) is determined for the 

adaptive test.  To reflect typical assessment where the balance between psychometric 

properties and content specifications need to be met, the simulation studies take into 

account content specifications.  Table 2 lists the six content specifications used in the 

simulations.  Content specifications are set in terms of minimum and maximum number 

of items per content category, and proportion of test items within each content category 
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for the fixed test length of 35 questions, which, in Table 2, is denoted as target 

proportion.  The chosen content specifications are so devised to approximate those used 

in practice.   

 
Insert Table 2 about here 

 

 

Content attributes for items in the pool are generated according to the target 

proportion, under the assumption that attributes are independent across content 

categories.  For a particular content category and for a specific item, a random number is 

drawn from uniform distribution with intervals 0 to 1.  If this number is larger than the 

target proportion for this content category, the content attribute for the item is set to 0; if 

it is smaller than the target proportion, the content attribute is set to 1.  Content attributes 

are so simulated based on the belief that tests are condensed forms of the pool, and mean 

content attributes for items in the pool should more or less reflect the target proportion.  

After the content attributes are simulated for all the items, proportions of test items in the 

pool having the specific content attributes are computed and summarized also in Table 2.  

An equal weight of 1.0 is assigned to all the content constraints showing that content 

categories are equally important.  In practice, however, the weights might be different for 

different content constraints depending on the content and psychometric experts’ 

judgment. 

Data for 500 simulees are generated at 15 ability levels, resulting in a total of 

7,500 simulees.  The ability levels are unequally spaced to approximate the N (0, 1) target 

population distribution (Robin, 2001): -1.93, -1.28, -0.96, -0.72, -0.52, -0.33, -0.16, 0.0, 

0.16, 0.33, 0.52, 0.72, 0.96, 1.28 and 1.93.   The 500 replications at each ability level are 

judged to be necessary for obtaining stable estimates of conditional results. 

For examinee ability estimation, expected a posterior (EAP) is used because of its 

capacity to produce estimates for candidates who score the highest on all items, or the 

lowest on all items.  In dichotomous CATs, the EAP estimates have been shown to  

produce smaller mean square error terms over the population than MLE or MAP (Chen, 

et al, 1997). To avoid estimation bias, a weak prior is used, with mean set at 0, and SD set 

at 2.0.   
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 To insure fair comparisons among the three set selection methods, which is to say, 

no method should be found superior than the other method in terms of measurement 

precision because less importance is attached to the satisfaction of content constraints, the 

proportion of total weights assigned to the content constraints is fixed across the three 

methods.  Initial simulations have been run to examine the effect of different partitions of 

WDM weights between content constraints and item information over measurement 

precision and satisfaction of content specifications.  It is found that with a weight of 25.0 

assigned to item information, and a total weight of 6.0 assigned to the content constraints 

(1.0 for each content category), there is a reasonable balance between measurement 

precision and content constraint violations (see result section).  Therefore, this 

assignment of weights is used in the baseline simulation study.  In the second and third 

simulation studies, the weight of non-content constraints, which in study one is all 

assigned to item information, would be shared between information function and d , 

which means 

SD

 , 
6

1

6j
j

w
=

=∑

 . 25SDw wθ + =

Within the 2nd and 3rd set selection methods, simulations are conducted using several 

partitions of weight of non-content constraints into wθ  and .  Combinations include 

21/4 (

SDw

wθ / ), 17/8, 13/12, 9/16. Details of WDM weight assignment in this study are 

summarized in Table 3.  

SDw

 
Insert Table 3 about here 

 

Simulations were run using SETSIM (Lu & Robin, 2003), a program developed 

for CAT simulation of set-based items.  Simulation results are evaluated according to 

measurement and content criteria.  Evaluation of content is based on the extent to which 

content specifications are satisfied.  Measurement results are evaluated in terms of 

conditional bias (CB), conditional standard error of measurement (CSEM), and 

conditional root mean squared error (CRMSE).  Let r index the replication, where r = 1, 
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…, 500.  Let θ̂  denote the mean estimated ability across replications for the true ability 

level θ .  CB, CSEM, and CRMSE are computed at 15 levels of θ  

( ) ˆCB θ θ θ= − , 

( ) ( )500 2

1

1 ˆ ˆ
500 r

r

CSEM θ θ θ
=

= −∑ , 

( ) ( )
500 2

1

1 ˆ
500 r

r

CRMSE θ θ θ
=

= −∑ . 

These three evaluation criteria are related through . 2 2CRMSE CB CSEM= + 2

 

Results 

 The average percentage of content constraint violations is reported for each 

content category for the baseline simulation (See Figure 2) to examine whether content 

aspects are given adequate consideration.  The average percentages of violations range 

from 0.104 to 0.342, with the mean being 0.237, which is regarded as quite reasonable.  

The percentages are relatively small for constraints 1, 2 and 3, and relatively large for 

constraints 4, 5 and 6.  This difference in content violation percentages is mostly due to 

the difference in the interval lengths for satisfactory content attributes, i.e., the difference 

between lower and upper bounds. The proportion of violations tends to be small, when 

there is a larger interval and satisfaction of this particular content specification is defined 

on a more flexible basis.     

 
Insert Figure 3 about here 

 

 

Other simulation studies have produced similar content results, as the proportion 

of weights assigned to content constraints is the same across all simulations.  Therefore, 

we will not elaborate further on the content results.  Assuming content specifications are 

reasonably satisfied with all simulation studies, we will compare measurement precisions 

across simulations. 

 Measurement results are summarized in terms of CB, CSEM, and CRMSE, and are 

compared across the three simulation designs for different WDM weights allotment.   
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Figures 3a to 3c display the conditional measurement results for methods 1, 2 and 

3, with a weight of 21 assigned to information and a weight of 4 assigned to compatibility 

of within set difficulty distribution and SE of interim ability estimate in method 2 and 3.  

As can be seen in Figures 3a, across the three simulations, there is small positive bias 

before 0.96 on the true ability scale, and negative bias after that.  This is mostly due to 

the  prior distribution used in the EAP estimation.  Method 3 has slightly larger 

biases than method 1 and 2.   With regard to CSME and CRMSE, method 3 gives similar 

performance with method 1 and 2 at the middle range of ability levels, but less good 

performance at the lower and upper end of the ability scale.  Method 1 and 2 are giving 

similar results. 

(0, 2.0)N

 
Insert Figures 4a to 4c about here  

 

Figures 4a to 4c display the conditional measurement results for methods 1, 2 and 

3, with a weight of 17 assigned to information and a weight of 8 assigned to compatibility 

of within set difficulty distribution and SE of interim ability estimate in method 2 and 3.  

Note that compared with the previous simulation conditions, wθ  has decreased by 4.0, 

while  has increased by 4.0.  Still, method 3 has slightly larger biases than method 1 

and 2.   With regard to CSME and CRMSE, the three methods are giving more similar 

results compared to those in the previous simulation conditions.  Noticeably, method 2 is 

giving slightly better results above ability level of 0.16, and method 3 is performing least 

well at the lower and upper end of the ability scale. 

SDw

 
Insert Figures 5a to 5c about here  

Figures 5a to 5c display the conditional measurement results for methods 1, 2 and 

3, with a weight of 13 assigned to information and a weight of 12 assigned to 

compatibility of within set difficulty distribution and SE of interim ability estimate in 

method 2 and 3.  In this simulation study, information and within-set b distribution are 

almost taking the same weight.  As can be seen, method 1 performs slightly better than 

the other 2 methods.  Method 2 has lost the edge it has shown in the 2nd combination of 
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weights, and method 3 performs less well at the two ends of the ability scale.  But still, 

the difference among the three methods is small. 

 
Insert Figures 6a to 6c about here  

 

Figures 6a to 6c display the conditional measurement results for methods 1, 2 and 

3, with a weight of 9 assigned to information and a weight of 16 assigned to compatibility 

of within set difficulty distribution and SE of interim ability estimate in method 2 and 3.  

As expected, since the weights for information are considerably reduced in method 2 and 

3, which cannot be compensated by the increase in the amount of weight to , method 

1 is consistently giving better CB, CSME and CRMSE results along all ability levels.  It is 

also interesting to note that in this particular combination of weights, method 3 is 

performing better than method 2. 

SDd

 

Insert Figures 7a to 7c about here  

 

 

Discussion and Conclusion 

 

Since the special feature of set format allows for only partial adaptation, the 

constructed test comprised primarily of set-based items may not have the desired 

measurement properties.  Whenever a set has been selected, the CAT algorithm is 

restricted to selecting the remaining items in the set, which may not be desirable, either 

statistically or cognitively.  It is believed that the problem of having to use statistically 

dissatisfactory items is exacerbated when a set is selected based on a single item within 

the set that is considered the most desirable.  The problem is partly due to the neglecting 

of set properties when the decision on set selection is being made.  

One of the set properties that simulations in this paper have included is the within-

set item difficulty standard deviation.  However, how much adding the constraint that 

selects sets with SD of difficulties matched to the SE of interim ability estimate could 

alleviate the inefficiency problem depends on many factors.   
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One factor is the weight assigned to this extra constraint.  In this study, we have 

found that neither too much nor too little weight would help improve measurement 

precision.  Too much weight puts the information function, which is the most important 

determinant of measurement error, at a less important position, and doing so greatly 

threatens the efficiency of CAT.  Even though the extra constraint is expected to play a 

significant role in measurement precision, its role is far less important than the 

information function, and therefore, should be given correspondingly less weight.  At the 

same time, too little weight is not effective to the point that the extra constraint would be 

able to have a significant impact on set selection.  As is demonstrated in the study in this 

paper, of the four weight combinations, the second method gives the best results in the 

weight combination of 17 assigned to information and 8 assigned to the extra constraint, 

although the edge is small.  Consequently, in testing practice, when it is decided that the 

extra constraint is to be used, simulation studies need to be conducted to identify the most 

efficient allotment of weights among content specifications, information, and d  to 

achieve the balance of content specification satisfaction and measurement precision.  

SD

The second factor affecting the use of the extra constraint is the distribution of 

within-set item difficulty SDs.  When the variance is small, which is to say, there is not 

much variability among the ( )sSD b ’s, there is little sense adding this extra constraint as 

it will not differentiate sets.  A follow-up simulation study that would be of interest is to 

use simulated item parameters with ( )sSD b  being a varying factor.  It would be of 

practical significance to identify the borderline of the variance of ( )sSD b ’s, above which 

adding the extra constraint would make significant improvement in ability estimation, 

and below which it would not.   

Another interesting finding of this paper is about the performance of method 3.  

Method 3 is taking into account in CAT administration more set properties than the other 

two methods.  However, our results have found that utilizing expected set information 

function while deciding on a new set to enter does not significantly improve 

measurement precision.  On the contrary, it gives slightly larger BIAS and CMSE at the 

lower and upper ends of the ability scale.  Giving a second thought on it, the value of the 

expected set information being high at θ̂ , on most occasions, means that the items within 
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the set have the most overlap of item information at θ̂ , and that their b values average 

pretty much around θ̂ .  However, an average b value around θ̂  does not necessarily 

mean that items within the set can differentiate well around θ̂ , as neither items with b 

values considerably above θ̂  nor items with b values considerably below θ̂  could well 

serve to give refined estimate around θ̂ , yet they could comprise a set producing 

relatively high information at θ̂ . 

This study is critical for CAT administration of tests comprised of primarily item 

sets, where full adaptation of item selection is not possible.  Besides collecting more 

empirical evidence about the effectiveness of utilizing the within-set item difficulty SDs, 

future research could also compare the methods used in this study with the specific 

information item selection method, which is also a promising research direction for CAT 

of set based items. 
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Table 1. Item Parameter Estimates for the Item Pool for Simulations 
 
# Items #Sets a-Parameters b-Parameters c-Parameters 
  Mean SD Mean SD Mean SD 

438 64 0.7 0.26 -0.31 1.19 0.28 0.08 
 
 
Table 2. Content Constraints and Pool Content Attributes 
 

Content WDM Specifications Target Pool 
Area LB* UB* Weight Proportion Proportion 

1 8 12 1.0 0.29 0.28 
2 4 8 1.0 0.17 0.16 
3 7 10 1.0 0.24 0.24 
4 6 9 1.0 0.21 0.19 
5 5 7 1.0 0.17 0.21 
6 10 12 1.0 0.31 0.29 

* Lower and upper bounds. 
 
 
Table 3. WDM Weights in Simulation Studies 
 

   WDM Weights 
  Content Information SDd  

Method 1  6 25 N/A 
 comb. 1 6 21 4 

Method 2 comb. 2 6 17 8 
 comb. 3 6 13 12 
 comb. 4 6 9 16 
 comb. 1 6 21 4 

Method 3 comb. 2 6 17 8 
 comb. 3 6 13 12 
 comb. 4 6 9 16 
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Figure 1: Histogram of b-parameters in the Pool  
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Figure 2. Histogram of the Within-set Item Difficulty SDs for Sets in the Pool 
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Figure 3. Proportion of Content Constraint Violations for the Six Content Categories 
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Figure 4a. Conditional Bias across the Three Methods with 21wθ =  and  4SDw =
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Figure 4b. Conditional Standard Measurement Error across the Three Methods with 

 and  21wθ = 4SDw =
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Figure 4c. Conditional Root Mean Squared Error across the Three Methods with w 21θ =  
and  4SDw =
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Figure 5a. Conditional Bias across the Three Methods with 17wθ =  and  8SDw =
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Figure 5b. Conditional Standard Measurement Error across the Three Methods with 
 and  17wθ = 8SDw =
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Figure 5c. Conditional Root Mean Squared Error across the Three Methods with w 17θ =  

and  8SDw =
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Figure 6a: Conditional Bias across the three methods with w 13θ =  and  12SDw =
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Figure 6b: Conditional Standard Measurement Error across the Three Methods with 
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Figure 6c: Conditional Root Mean Squared Error across the Three Methods with w 13θ =  
and  12SDw =
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Figure 7a: Conditional Bias across the three methods with w 9θ =  and  15SDw =
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Figure 7b: Conditional Standard Measurement Error across the Three Methods with 
 and  9wθ = 16SDw =

 

0

0.1

0.2

0.3

0.4

-1.
93

-1.
28

-0.
96

-0.
72

-0.
52

-0.
33

-0.
16 0.0

0
0.1

6
0.3

3
0.5

2
0.7

2
0.9

6
1.2

8
1.9

3

Ability

C
SE

M

method 1
method 2
method 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7c: Conditional Root Mean Squared Error across the Three Methods with w 9θ =  

and  16SDw =
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