DR. FREDERIC M. LORD
Educational Testing Service:

It is appropriate that my discussion should be expressed
in the first person singular—to continually remind you that
I am giving my own opinions, which may be biased, since 1
am not a disinterested party here. There have been many,
many important points made during these sessions. I have
chosen 14 points to emphasize in my discussion.

1. Clff (Note 1) writes: “It is felt that our formulation
will provide the framework for a test theory which is more
appropriate to the interactive case than either the classical
or traceline theories are.” I am sure he would not want this
challenge to ICC theory to go unanswered. Cliff proposes
that the appropriate model for the item responses is the
Guttman scale.

Since the Guttman scale is a special case of the more
general logistic or normal ogive item characteristic curve, 1
cannot see how the Guttman scale can be called a more
appropriate model than the logistic or normal ogive. If the
Guttman scale were the correct model, the fitted logistic or

" normal trace lines would come out in the Guttman form.

The Guttman scale assumes that the tetrachoric correla-
tion between any two items is 1.00. This value may be
approximated for certain attitude test data, but for
aptitude and achievement test data. typical tetrachoric item
intercorrelations are usually less than 0.35. This is so very
different from 1.00 that I cannot see how the Guttman
model can be considered acceptable for aptitude and
achievement tests.

2. Consider the problem of testing and assigning new
armed forces recruits. One recruit, perhaps, should take a
complete battery of tests to determine his suitability for
officer training school. The next recruit, however, should
be quickly extricated from this battery of tests and perhaps
given a battery of mechanical aptitude tests. How can we
use adaptive testing to route a new recruit through many
such batteries of tests efficiently, with a minimum waste of
time? Glenn Bryan raised this important question with me
some years ago. It seems as if adaptive testing should be an
excellent way to deal with this problem. Yet the situation is
so multidimensional that current theory does not tell us
how to proceed. Here is a very important unsolved
problem.

3. Waters has pointed out and documented something
that some of us had overlooked--that an adaptive test
should be expected to take longer to administer than a
conventional test with the same number of items. The
reason is that the conventional test contains items that are
too hard or too easy for each examinee—items that he can
answer (or omit) without need for lengthy consideration.
Studies of adaptive testing will have to take testing time
into account.
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4. There is one situation in which adaptive testing (or
some other unconventional procedure) is really indispens-
able. Suppose it is necessary to have good measurement
over an unusually wide range of ability. As a first step, one
might build a conventional type of test with extra easy
items added at one end and extra hard items at the other,
so as to have some items that are appropriate in difficulty
for each ability level. Of course, the easy items are a waste
of time for the high-level examinees, but that is not the
serious problem. The hard items are not merely a waste of
time for the low-level examinees. The guessing of low-level
examinees on the hard items adds so much noise that the
measurement provided by the easy items is nearly drowned
in random error.

In such situations, it can be shown that the test would
be much improved as a measuring instrument for low-level
examinees if we simply threw away (or refused to score)
the more difficult half or two-thirds of the test. The
situation cannot be remedied simply by adding more easy
items. If we wish to obtain good measurement at low as
well as at high ability levels, some kind of tailoring is
necessary so that hard items are not administered to
low-level examinees.

5. If total testing time is held fixed, adaptive testing
leads to better measurement for some examinees. If
accuracy of measurement is held fixed, adaptive testing
leads to reduced testing time for some examinees. These
two alternatives are not basically different.

Keeping the standard error of measurement fixed across
examinees would be simple if the test were very long or if
we knew the true parameter values, and if all items had
identical characteristic curves. Otherwise there may be
difficulty in finding a good small-sample theory and
method. Gugel and Schmidt have given empirical evidence
of this. This is a problem in sequential estimation (Wald,
1951; Robbins, 1959; Bickel & Yahav, 1968). Except
perhaps for Bayesians, methods of sequential estimation are
not as well settled as are methods of sequential hypothesis
testing. Even sequential hypothesis testing poses unsolved
problems when the items do not all have identical charac-
teristic curves.

6. It is undoubtedly significant that most of the
speakers here are using two- or three-parameter item
characteristic curve models. No one here has urged that
adaptive testing be limited to the one-parameter Rasch
model.

It is sometimes asserted that the Rasch model is the only
one that allows us to estimate examinee ability independ-
ently of the items administered. I would argue that all ICC
models allow us to do this. The unique virtue of the Rasch



model is that it provides a sufficient statistic for estimating
examinee ability. Sufficient statistics are desirable, but they
are not common in statistical work, outside of the usual
normal-curve theory. Statistical inference still proceeds very
effectively in the absence of sufficient statistics.

The objection usually cited against the Rasch model is
that it assumes all items to be of equal discriminating
power. I suspect that an even more serious objection is that
it assumes there is no guessing. Any attempt to modify the
Rasch model to take guessing into account would necessar-
ily destroy the sufficiency properties of the Rasch model
that make it attractive.

7. This brings us face to face with the question whether
to use a two- or a three-parameter ICC model. Waters used a
two-parameter normal-ogive model and the assumption that
ability is normally distributed to estimate the a parameters
(discriminating power) of the 50 verbal items in Form 2B
of SCAT II. By chance, I had available estimates of the
same parameters based on the three-parameter logistic
model, computed by a program called LOGIST (available
on request).

I have plotted Waters’” values against the LOGIST values
in Figure 1. Each point is shown as a digit representing item
difficulty. The larger the digit, the more difficult the item
and the more the examinees’ responses are affected by
guessing. Agreement is good only for the easy items where
there is no guessing.

Many studies comparing different estimation methods
should be carried out. Some should use real data; some
should use artificial data, where the true parameters are
known. I should be glad to run on LOGIST any suitable set
of data that someone here may wish to use for making such
comparisons.

8. In the three-parameter models, the 1CC’s have the
form ¢; + (1 - ¢;)F[a;(6 - b;)] . This mathematical form is
not beyond challenge, as Samejima has pointed out, but it
is relatively easy to defend as a versatile form that fits the
data, so long as we do not suggest that examinees either
know the answer to the item or else guess with probability
of success ¢;. We all know that examinees do not respond
this way. If ICC theory were based on the dichotomy,
knowledge or random guessing, it would not be credible.
For this reason, it may be best not to refer to ¢; as a
‘guessing parameter.” (I confess to violating this good
advice.)

9. When working with real answer sheets, it becomes
necessary to deal with the problem of omitted responses. If
we require the examinee to answer all items, we are
purposely introducing random error into our data. In
addition, we are forcing an examinee who has demonstrated
a certain level of performance by his responses to gamble
on some possibily random events, which may, if he is
unlucky, destroy all the positive evidence of ability that he
has displayed.

If we permit the examinee to omit items, we cannot
properly treat such responses as wrong. To do so would
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penalize the examinee who omits, in comparison to the
examinee who guesses.

It seems at first thought that we might simply treat
omitted items as if they had not been administered at all.
This cannot be correct, however. If we ignore omitted
items, an examinee could win a very high estimate of ability
simply by answering items only when he was completely
sure of his answer.

The fact that an examinee has omitted an item carries
information about his level that cannot be ignored. A
method for using this information efficiently, under certain
assumptions, is outlined in a Psychometrika paper (Lord,
1974).

10. 1 want to take this opportunity to make a correc-
tion. In a 1968 paper (Lord, 1970), 1 wrote:

If a; = 0.333, under the assumptions already made [the]
reliability for a 60-item test will be 0.80; if a; = 0.5, this
reliability will be 0.90; if @; = 1.0, this reliability will be 0.97.
In view of this, we shall choose a; = 0.5 as a typical value and
shall address most of our attention to it.

After seven years of experience with the @ parameter,
these reliabilities sound high. Actually, they are correct,
but, as the assumptions stated, they are for free response,
not multiple-choice items. Urry made this same point this
morning. Since most of the cited paper dealt with multiple-
choice items, it was a mistake to suggest ; = .50 as a typical
value. Although the diagrams presented in that paper
required the reader to supply his own values of g;, the
general impression given was one of only limited enthusi-
asm for adaptive testing.

Current results show that when a; = 0.9, a peaked test
composed of 40 five-choice items should have a KR,
reliability of .90. When ¢; is 0.9, the conclusions supplied
by the diagrams in the cited paper are quite encouraging for
the future of adaptive testing.

11. The purpose of the cited paper was to evaluate
adaptive tests in comparison to conventional tests. To do
this, the situation considered had to be a simple one. This
was the reason for the use of a fixed-step-size up-and-down
branching procedure. Such a procedure is not to be
recommended for practical testing.

When the item parameters have been estimated and a
computer is available for making the calculations, the
choice of the item to be administered next should be made
by checking all unused items (perhaps within a specified
item type) and selecting the item that is expected to give
the most information about the examinee.

If a Bayesian prior distribution of ability is being used,
and if this distribution is normal, this is Owen’s (in press)
procedure, frequently used today. In such a procedure,
except for certain approximations each step is locally
optimal. We cannot expect local optimality to produce
overall global optimality, but the difference may not be of
great importance.

12. When we select the next item to be administered on
other considerations besides item difficulty, we no longer



have an up-and-down branching procedure. The next item
administered after a correct response might be an easier
item, not a harder item.

The recommended procedure means that items with high
a; will be used very frequently and items with low a; will be
used seldom or not at all. The gain from this use of the best

items will probably more than double the gain from any
procedure, such as the up-and-down procedure, that selects
items solely on item difficulty.

Furthermore, the larger the item pool, the greater the
gain. This is not surprising. We always knew that if we
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Figure 1. SCAT 2B. A comparison of estimated a; parameters. The
two-parameter model assumes a normal distribution of
ability. Each item in the plot is located by a digit which
represents item difficulty (b; + 3). The easiest items are
indicated by a 0, the hardest f)y as.
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selected the best items from ten tests, we could build a
single test that would be much more reliable than any of
the original tests.

13. My last point concerns the use of Bayesian inference
in adaptive testing. When we are testing large numbers of
examinees all coming from a single source, we are in a really
exceptionally good position to obtain and use a prior
distribution describing the examinees. It would seem
negligent not to obtain and use such a readily available
prior distribution.

On the other hand, I would like to make a simple point
not often expressed. Bayesian inference based on a prior
distribution will give correct results when the prior corre-
sponds, in some sense, to reality. It is likely to give
incorrect results if the prior itself is incorrect.

In most Bayesian work, it is usually not practicable to
determine whether the prior is correct or incorrect. In our
work, on the contrary, it is fairly easy to do so. We need
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estimates will not be spoiled by an incorrect prior distribu-
tion of ability provided the test administered is long
enough.

This is not the whole story, however. The assumption of
a normal distribution of ability, if false, may lead to
unsatisfactory estimates of item parameters. The usual
formula for biserial r can give absurd results if the
continuous variable, in this case examinee ability, unknown
to the statistician, is far from normally distributed. Unlike
some other effects of Bayesian priors, this difficulty does
not diminish as sample size becomes large.

Two different estimates of the distribution of examinee
ability for one set of data are shown in Figure 2,
reproduced here from Lord (1974). The agreement between
the two estimates, obtained from very different assump-
tions, gives me some confidence in these results. My
empirical results from other sets of data (including a
representative sixth-grade group) are similar. When the
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Figure 2. Distribution of estimated 6 (histogram) and estimated
distribution of @ (curve). Reproduced from Lord (1974)
with permission of Psychometrika.

only estimate the ability of each person tested and then
look at the distribution of estimated abilities.

If we were testing unselected school children in grade
school, a normal distribution of ability might possibly be
found. When we are testing highly selected groups in college
or elsewhere, it seems unlikely that we will find a normal
distribution.

Bayesians point out that the effect of an assumed prior
becomes unimportant as the number of observations
becomes large. In our context, this means that our ability
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ability scale is chosen so that all item characteristic curves
are three-parameter normal ogives, or logistic curves, it
turns out, for my data, that ability is not normally
distributed.

14. Although I an not a market analyst, | will without
much risk venture two assertions. Computer costs—if they
have not already done so--will come down to the point
where computer-based adaptive testing is economical. When
this happens, adaptive testing will come into wide use. The



McKillip and Urry paper provides important details on this
subject.
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