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ABSTRACT 

Unidimensional IRT (UIRT) models are usually used in 

computerized mastery testing (CMT) to assist in item 

parameter calibration, theta estimation, item selection, 

test administration, and mastery decision making. However, 

in almost all practical testing situations, the 

unidimensionality assumption will be violated to some 

degree. When it is violated, the accuracy of the pass/fail 

decision procedure may be adversely affected. The primary 

purpose of this study was to investigate the accuracy of one 

specific procedure for making pass/fail decisions in CMT 

when the unidimensionality assumption is violated. 

Specifically, the accuracy of the sequential probability 

ratio testing (SPRT) procedure was of interest. 

Monte Carlo simulation techniques were used to examine 

the robustness of the SPRT procedure. Two-dimensional 

dichotomous test data were generated and calibrated by UIRT 

models. Four factors (type of UIRT model, correlation 

between ability estimates, test length constraint, & cut-

score) were manipulated and 60 combinations of conditions 

were examined. The outcomes of interest included 

classification accuracy (false positive, false negative, & 
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total classification error) and test efficiency (number of 

items used). 

Based on the results of this study, it was concluded 

that: (1) the SPRT procedure was useful for making mastery 

decisions in CMT with parameters estimated by either the 

UIRT three-parameter logistic (3-PL) model or the UIRT one-

parameter logistic (1-PL) model even when the 

unidimensionality assumption was violated; (2) the use of 

the UIRT 3-PL model leads to greater test efficiency than 

the use of the UIRT 1-PL model; (3) the impact of a test 

length constraint on classification accuracy and efficiency 

depends on which unidimensional model is used; and (4) 

violation of the unidimensionality assumption may cause bias 

in the estimation of the cut-score on the theta scale, which 

in turn may cause differential classification errors. 
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CHAPTER I 

INTRODUCTION 

Achievement tests serve a variety of educational 

purposes. They can be used to help determine if students 

have the prerequisite knowledge at the beginning of 

instruction, to monitor students' learning progress during 

instruction, to diagnose students' learning difficulties 

during instruction, and to evaluate students' accomplishment 

at the end of instruction (Gronlund & Linn, 1985).  

In many professional fields, when students finish their 

training, their knowledge, skill and competence must be 

evaluated before they are allowed to practice their 

specialty. Achievement tests designed for this purpose are 

frequently labeled certification or licensure tests. Such 

tests are used to classify the test takers into one of two 

categories: qualified (pass) or unqualified (fail). The 

examinee who has the minimal required knowledge and/or 

skills deemed essential passes the test; otherwise the 

examinee fails. The main function of a certification or 

licensure test is to certify that the examinees who pass the 

test have the minimum required knowledge and skills to 

practice their specialty properly (Jaeger, 1988). 
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As stated in the Standards for Educational and 

Psychological Testing (American Psychological Association, 

1985): 

The primary purpose of licensure or certification 
is to protect the public. Licensing requirements 
are imposed to ensure that those licensed possess 
knowledge and skills in sufficient degree to 
perform important occupational activities safely 
and effectively. The purpose of certification is 
to provide the public with a dependable mechanism 
for identifying practitioners who have met 
particular standards (p. 63). 

Certification or licensure testing is an important part 

of our society. It plays the role of "gatekeeper" to assure 

the quality of the professional practitioners in many 

professions. This type of testing is discussed in more 

detail in the next section. 

Certification or Licensure Testing 

Generally, there are four main components in 

certification or licensure testing: (1) test development, 

(2) setting the passing score, (3) test administration, and 

(4) mastery decision making. These components are related to 

each other and are discussed below. 

Test Development 

In developing a test, the purpose that the test will 

serve is always the primary concern. For certification or 

licensure testing, the purpose is to classify the examinees 

into one of the two categories: qualified (pass) or 
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unqualified (fail). In order to do this, test developers 

have to prepare test specifications, construct a related 

item pool, select a set of items, establish a passing score, 

and validate the test results.  

Setting the Passing Score 

Based on certain criteria, the passing score (or cut-

score) is set at a point on the achievement continuum to 

separate the unqualified examinees from the qualified ones. 

Traditionally, an examinee whose score is at or above this 

score is classified as passing, while an examinee whose 

score is below the score is classified as failing.  

There are two main types of procedures used to set 

passing or cut-scores: (1) procedures based on judgments 

about test questions, and (2) procedures based on judgments 

about individual test-takers. Nedelsky's method (Nedelsky, 

1954), Angoff's method (Angoff, 1971), and Ebel's methods 

(Ebel, 1972) are based on judgments about test questions 

while the borderline-group (Nedelsky, 1954) method, the 

contrasting-groups method (Nedelsky, 1954), and the up-and-

down method (Livingston & Zieky, 1982) are based on 

judgments about individual test-takers. Among these methods, 

Angoff's is one of the most commonly used. In the Angoff 

procedure, judges are asked to estimate the probability that 

a minimally qualified person can answer each item correctly. 

For each item, the average judges’ rating is computed. The 
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cutting point is the sum of these average ratings across 

items (Crocker & Algina, 1986). 

Test Administration 

There are three main methods used to administer 

certification or licensure tests: (1) a conventional paper-

and-pencil test format, (2) a computer-administered test 

format, and (3) a computerized adaptive test (CAT) format. 

Until recently, the conventional test format was used almost 

exclusively. However, in recent years, the CAT format has 

been used more frequently because of its convenience and 

efficiency, and because the costs of computer equipment have 

decreased markedly.  

When the conventional test format is used, all 

examinees are administered the same test at the same time. 

The test length and time limit are fixed. 

The computer-administered test format involves the 

administration of the conventional test by means of a 

computer instead of by paper and pencil. 

The computerized adaptive test format also administers 

the test by means of a computer. However, when the CAT 

format is used, the test is tailored to fit either different 

individual examinees or decision points. The items for an 

individual examinee are either selected on the basis of the 

individual’s responses to previous items or on the basis of 

the amount of information at the cutting point. The length 
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(number of items) of the CAT varies by examinee as does the 

time limit (Wainer, 1990). In certification or licensure 

testing, the computerized adaptive testing format is 

referred to as computerized mastery testing1 (CMT) (Way, 

Lewis, & Smith, 1995). For convenience, this term 

(computerized mastery testing or CMT) will be used in this 

paper.  

Mastery Decision Making in CMT 

The mastery decision in CMT is based on either ability 

(theta) estimates or a likelihood ratio test. When either 

the examinee’s estimated ability (theta) or the likelihood 

ratio test meets the preset criterion, the test is stopped. 

Thus, the length of CMT can vary for different examinees. 

Two procedures can be used to make this decision: (1) 

sequential Bayes (SB), or (2) sequential probability ratio 

test (SPRT). These procedures are briefly described below. 

Additional details about these procedures are presented in 

Chapter II.  

Sequential Bayes Procedure 

With the sequential Bayes procedure, item responses are 

scored using a sequential Bayes estimation procedure. A 

                     
1 Computerized mastery testing is a generic term used 

in this study to refer to mastery tests administered in a 
computerized testing format. 
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confidence interval (e.g., 90%) is then computed for the 

theta estimation. If the passing score is greater than the 

upper bound of this confidence interval, the decision is 

“fail”. If the passing score is less than the lower bound of 

this confidence interval, the decision is “pass”. Otherwise, 

testing continues (Weiss, 1985).  

Sequential Probability Ratio  

Testing Procedure 

The sequential probability ratio test (Wald, 1947) is 

used to decide which of two simple hypotheses (i.e., fail or 

pass) is more likely to be correct. In this procedure the 

likelihood of a response to an item under each of two 

alternative hypotheses is determined. If the likelihood is 

sufficiently larger for one hypothesis than for the other, 

that hypothesis is accepted and the test stops (Spray, & 

Reckase, 1987). 

Spray and Reckase (in press) concluded that the SPRT 

procedure required fewer test items to achieve the same 

level of classification accuracy as the sequential Bayes 

procedure. In other words, the SPRT procedure appears to be 

more efficient and more powerful than the sequential Bayes 

procedure for making the pass/fail decision. 
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Item Response Theory Models  

Used with CAT 

In CMT, the item presented to an examinee, at any point 

after the first item, is either selected on the basis of the 

responses to previous items or on the information at the 

cutting point. The selection of items is typically done 

using item parameter estimates to find the optimal item to 

administer to the examinee. The item parameter estimates are 

obtained from fitting previous item responses to a 

particular IRT model.  

IRT models can be distinguished in terms of the 

dimensionality of the domains or latent traits thought to be 

measured by the test. Unidimensional IRT (UIRT) models 

assume that a single ability adequately accounts for the 

item/test performance, while multidimensional IRT (MIRT) 

models assume that more than one ability is necessary to 

account for the item/test performance. Within each of these 

two domains, there are a variety of models that can be used. 

Items used in CMT are usually calibrated with UIRT 

models rather than MIRT models due to the availability of 

the unidimensional software for item calibration and the 

simplicity of the unidimensional models. 

The Problem 

Certification or licensure testing serves an important 

role in professional fields. Such tests promise to maintain 



8 

the quality of the people who are certified to practice the 

profession. In recent years, computerized mastery testing 

has been found quite promising in such tests because it is 

convenient and efficient. 

When the computerized mastery test format is used, the 

items in the item pool are usually calibrated using a 

unidimensional item response theory (UIRT) model. However, 

the unidimensionality assumption is usually violated to some 

degree in most applications. If the assumption of 

unidimensionality is violated, there will probably be some 

adverse impact on the accuracy of the pass/fail 

classifications. The issue is whether the CMTs with UIRT 

models are still useful for making a dichotomous 

classification decision when the unidimensionality 

assumption is violated.  

Another issue of interest in the use of the CMT format 

is the range of the test length. The range of the test 

length is usually preset in order to cover the test content 

specifications on the one hand and control the item exposure 

rate on the other. That is, the examinees must respond to a 

minimum number of items and not exceed a maximum number of 

items. If the range of test length varies, what will be the 

impact on the dichotomous classification decision? 

An additional factor of interest is the level of 

difficulty of CMT. Certification or licensure testing may be 
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easy, medium, or difficult. In other words, the passing 

score may be set at different points along with the ability 

continuum in CMT. If the passing score varies, what will be 

the impact on the dichotomous classification decision? 

The unidimensionality assumption, the range of the test 

length, and the location of the passing score are important 

features that can impact the classification decision. Only a 

few studies have examined the use of the SPRT when the 

unidimensionality assumption is violated (e.g., Abdel-

fattah, Lau, & Spray, 1995, 1996). 

The Purpose of Study  

This study focused on the robustness of the SPRT 

procedure using UIRT models when the unidimensionality 

assumption was violated. Specifically, the impact of the 

violation of the unidimensionality assumption on the 

classification errors was of concern in this study. 

When a mastery decision is made, two types of 

classification errors can occur: (1) type one error - an 

unqualified examinee is classified as qualified (false 

positive); and (2) type two error - a qualified examinee is 

classified as unqualified (false negative).  

In this study, the effects of the following factors on 

these error rates were considered: 

1. The type of UIRT model used to calibrate the items. 
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2. The degree of correlation between the two dimensions 

assumed to underlie the test responses. 

3. The range of the test length. 

4. The level of the cut-score. 

In general, the major purpose of this study was to 

consider the impact of a number of factors on the robustness 

of the UIRT models used in a computerized mastery testing 

situation. 
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CHAPTER II 

LITERATURE REVIEW 

An Overview 

As indicated in Chapter I, certification or licensure 

tests are used to control the quality of professionals 

entering a particular field. Computerized adaptive testing 

has been found to be more efficient than paper-and-pencil 

conventional testing because it provides individualized item 

selection for examinees of different abilities (e.g., Green, 

1983; Hambleton, Swaminathan, & Rogers, 1991). When a 

certification or licensure test is administered in 

computerized adaptive format, it is frequently called a 

computerized mastery test (CMT). Item response theory plays 

a central role in CMT. It is used for managing the item 

pool, selecting items, estimating ability, and making the 

mastery decision. Unidimensional IRT (UIRT) models are 

usually adopted in CMT because of their simplicity and the 

availability of software. However, the unidimensionality 

assumption of UIRT is always violated to some degree. 

Therefore, it is critical to gain knowledge about the 

robustness of UIRT models used in CMT. 
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This chapter discusses computerized mastery testing in 

some detail. Its rationale and components, in particular its 

relationship with item response theory, are considered. Two 

procedures, sequential Bayes and sequential probability 

ratio testing are discussed and compared. In addition, 

important issues in IRT modeling such as dimensionality are 

considered and previous studies investigating the robustness 

of UIRT models are reviewed.  

This chapter contains six sections. In Section I, 

computerized mastery testing is introduced. In Section II, 

the relationships between CMT and unidimensional item 

response theory are discussed. The assumptions and models of 

UIRT are also described. Additional details about CMT 

components are described in Section III. In Section IV, two 

procedures commonly used in CMT: sequential Bayes and 

sequential probability ratio testing are described and 

compared. Issues about dimensionality are discussed in 

Section V. In this section, previous research about the 

robustness of UIRT models is reviewed. The final section is 

a summary. As a whole, this chapter provides the rationale 

and the background for this investigation.  

Section I. Computerized Mastery  

Testing: An Introduction 

Computerized mastery testing is a special kind of 

computerized adaptive testing (CAT). The primary purpose of 



13 

CMT is to determine if the examinee has reached a certain 

required level of achievement. CATs are characterized by two 

distinct features that are not present in paper-and-pencil 

conventional testing: (1) scoring occurs during the testing 

process, and (2) items are selected and/or administered 

according to the examinee’s responses to the previously 

administered items. 

Weiss and Kingsbury (1984) identified six basic 

components of a CAT application: 

1. An item response model. 

2. An item pool. 

3. A method for selecting the first item to administer. 

4. A method for scoring and ability estimation at each 

step. 

5. A method for selecting the subsequent items at each 

step. 

6. A method for terminating the test.  

In the context of computerized mastery testing, the 

testing procedures are similar to CAT. Thus the components 

for designing a CMT are almost the same as those for 

designing a CAT. The additional component needed for CMT is 

a method to set the cut-score. In CMT, only pass-fail 

distinctions are required so that precise measurement across 

a wide range of proficiency is not necessary (Thissen & 

Mislevy, 1990). 
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Advantages and Disadvantages of  

Computerized Mastery Testing 

An examinee is measured most effectively when the test 

items are neither too difficult nor too easy for her or him 

(Lord, 1980). The primary goal of CMT (and CAT in general) 

is to “tailor” the test to fit each individual. According to 

Linacre (1988), the major advantages of CAT are: (1) 

improved test security, (2) shorter testing times, (3) 

quicker availability of results, and (4) reduced guessing 

and other undesirable test behavior. These advantages are 

achieved as a result of the individualized administration 

procedure. As noted above, this procedure matches the 

difficulty level of the items to the ability level of the 

examinee. 

On the other hand, some potential disadvantages of the 

CAT procedure relative to the traditional paper-and-pencil 

procedure include: (1) greater costs - both developmental 

and administrative, (2) the need for larger item pools and 

for larger samples to calibrate the items, and (3) test 

security problems if the CAT is not administered in a proper 

way.  

Section II. Unidimensional Item Response  

Theory and Computerized Mastery Testing 

In the context of computerized mastery testing, 

unidimensional item response theory models are usually 
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applied to calibrate the items, to estimate abilities, to 

select the items to administer, and to make the mastery 

decision. Thus, UIRT is an important element of CMT.  

Item response theory is in fact a collection of 

mathematical models that define how the item response 

depends on the ability level of the examinee. It describes 

the interaction between an examinee and a test question 

using the probability of a correct response to the test 

question as the dependent variable. The relationship between 

the probability of correct response and the corresponding 

ability is described by the item response function. The 

performance of an examinee on a test question can be 

predicted on the basis of the item characteristics and the 

ability level of the examinee. Common unidimensional IRT 

models are discussed below. 

Unidimensional IRT Models 

For the unidimensional IRT models, the three-parameter 

logistic (UIRT 3-PL), two-parameter logistic (UIRT 2-PL) and 

one-parameter logistic (UIRT 1-PL) are commonly used 

(Hambleton & Swaminathan, 1985). 

The UIRT 3-PL model defines the probability of a 

correct response as 

( )[ ]
P P x c

c
Da b

i j i ij j i
i

i j i
( )

exp
θ θ

θ
= = = +

−
+ − −

1 1
1

, 
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where 

Pi(θj) is the probability that an examinee with 

ability θj answers item i correctly, 

xij is the dichotomous (1/0) response to item i by 

person j, 

ai is the item i discrimination parameter, 

bi is the item i difficulty parameter, 

ci is the item i “guessing” parameter, and 

D is a scaling factor applied to make the logistic 

model as close as possible to normal ogive 

model, in general, D=1.7. 

The UIRT 2-PL model and UIRT 1-PL model are special 

cases of the UIRT 3-PL model. For the UIRT 2-PL model, the 

“guessing” parameter is set equal to zero for all items. For 

the UIRT 1-PL model, the discrimination parameter is 

constant across all items and the “guessing” parameter is 

set equal to zero for all items. 

Among these three models, the 1-PL model is the most 

restrictive: correct guessing is assumed not to occur and 

the discrimination parameters are assumed to be equal across 

items. Only the difficulty parameter varies for the 1-PL 

model. The 3-PL model is the least restrictive among the 

three models. This model allows for correct guessing and 

permits both the discrimination and the difficulty 

parameters to vary. 
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In CMT, items are selected to be administered according 

to the item information either at the previous estimated θ 

or at the cutting point: the greater the information, the 

greater the probability of selection. More information means 

more accuracy or less error in the ability estimation. 

However, the amount of information given by an item varies 

with ability level. Information at a given ability level 

varies directly as the square of the item discriminating 

power, ai (Lord, 1980). The item information function, 

Ii(θ), can be stated as follows (Lord, 1980): 

Ii(θ) = 
P

P Q
i

i i

,2

,  

where 

Pi = Pi(θ) is the item response function, 

Qi = 1 - Pi, and  

Pi
, is the derivative of Pi with respect to θ. 

The Unidimensionality and Local  

Independence Assumptions 

Unidimensionality means that only one ability is 

measured by a set of items in a test. Local independence 

means that the item responses of examinees with same ability 

level are statistically independent. Local independence can 

be obtained when all the ability dimensions influencing 

performance have been taken into account (Hambleton & 
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Swaminathan, 1985). The property of local independence can 

be stated as follows: 

Prob(U1,U2,...,Un|θ) = P(U1|θ)P(U2|θ)...P(Un|θ), 

where 

Ui is the response of a randomly chosen examinee 

to item i(i=1,2,...,n), and 

P(Ui|θ) is the probability of the response of a 

randomly chosen examinee with ability θ.  

When the assumption of unidimensionality is true, local 

independence is also obtained. However, local independence 

can be obtained even when the data set is not 

unidimensional.  

If the assumptions are satisfied and the data fit the 

specific UIRT model being used, two desirable features are 

obtained. One of these is the invariance of ability 

estimation (Lord, 1980; Hambleton & Swaminathan, 1985). This 

invariance feature implies that the ability parameters can 

be estimated with different items. In other words, 

examinees’ ability estimates are not test-dependent. The 

other feature is the invariance of item parameters. This 

invariance feature implies that the item parameters can be 

estimated with different ability level groups. In other 

words, item parameter estimation is not group-dependent. If 

these two features hold, many practical measurement problems 
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can be easily solved. Specifically, in the CMT context, 

invariance of ability estimation means that no fixed set of 

items is needed to estimate an examinee’s ability. Without 

this capacity, computerized adaptive testing would not be 

possible.  

Section III. Components of CMT 

Lord (1980) suggested the following steps in the design 

of a mastery test for a unidimensional skill with a single 

cut point, θc: 

1. Obtain a pool of items for measuring the skill 
of interest. 

2. Calibrate the items on some convenient group by 
determining the parameters ai, bi, ci for each 
item. 

3. Consider the entire item pool as a single test; 
determine what true-score level, ξc or levels ξ1 
and ξ2, will be used to determine mastery. This 
decision is a matter of judgment for the subject-
matter specialist. 

4. Using the item parameters obtained in step 2, 
find θc (or θ1 and θ2) from ξc (or from ξ1 and ξ2) 
by means of the relation ξ ≡ ∑iPi(θ). 

5. Compute Pi(θc) for each item. 

6. Evaluate I{ θi,ui} ≡ Pi’2/PiQi at θc for each 
item. 

7. Decide what length confidence interval for θ 
will be adequate at θc. Find the required Ic{ θ}. 

8. Select items with the highest information,    
I{ θ,ui}, at θc. Continue selecting until the sum 
∑nIc{ θ,ui} equals the required Ic{ θ}. 

9. Compute scoring weight w  = Pi
c

i
’/PiQi|θ=θc for 

each selected item. 
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10. For each examinee, compute the weighted sum of 
item scores Y = ∑iwiui. (In practice, an 
unweighted score may be adequate.) 

11. Compute the cutting score Yc ≡ ∑iPi’(θc)/Qi(θc). 

12. Accept each examinee whose score Y exceeds Yc; 
reject each examinee whose score is less than Yc 
(pp. 174-175). 

In summary, according to Lord, there are four main 

components in computerized mastery testing: (1) developing 

the item pool and calibrating the items, (2) setting the 

cut-score, (3) selecting the items to administer, and (4) 

making mastery decision and test termination rules. 

Typically, item pool development and cut-score setting are 

done by the content-experts in the related field. Item 

selection is usually implemented according to the IRT 

information function. The termination of CMT is based on: 

(1) the accuracy of the ability estimation, or (2) the 

number of items that have been administered. These four 

components of CMT are discussed below.  

Item Development and Calibration 

Content experts are typically used to write test items 

for CMT situations. Usually, the specifications for the test 

are very well defined and most items are developed within a 

multiple-choice format. 

After a sufficiently large number of items are written, 

items are administered to some representative groups and 

then, based on the responses, the items are calibrated. A 
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particular UIRT model is usually adopted for the item 

calibration (e.g., Hambleton, Swaminathan, & Rogers, 1991). 

Setting the Cutting Point 

A primary purpose of mastery testing is to determine 

whether or not an examinee has reached a certain required 

level of achievement. In latent trait test theory, the level 

of achievement can be denoted by θ. Presumably, there is a 

cutting point, θc on the θ continuum that divides certified 

from non-certified examinees. That is, if the θ for an 

examinee is equal to or greater than θc, the examinee is 

considered certified; however, if the θ is less than θc, the 

examinee is considered non-certified. The cutting point is 

typically set by the experts in the content area. Several 

methods can be adopted to set the cut-score and are briefly 

described below.  

Nedelsky (1954) developed a method of setting the cut-

score that applies only to tests using multiple-choice 

items. In this procedure, a panel of experts determines the 

number of distractors that a minimally successful student 

would know to be incorrect choices for each item. A cut-

score is then computed from the expected scores based on 

these judgments about the distractors. 

Angoff’s (1971) method is similar to Nedelsky’s but it 

can be applied to test formats other than multiple-choice. 

In the Angoff method, experts examine each item and judge 
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the probability that a minimally competent student would 

correctly respond to the item. 

Ebel’s (1972) method requires the experts to classify 

each item according to its relevance and its difficulty. 

This technique uses a two-dimensional grid (relevance and 

difficulty) to categorize each item. The items are first 

categorized into the cells of the grid, and then the judge 

estimates the percentage of these items that a minimally 

successful student would be expected to answer correctly. 

The cut-score, xc, is calculated using the formula: 

xc = ∑ P(m),  

where 

xc is the cut-score in terms of the raw score 

scale, 

P is the proportion of items in the cell that a 

minimally qualified student should response 

to correctly, and 

m is the number of items in the cell. 

If there is more than one judge, the final passing 

score is based on the average of all judges’ cut-scores. 

Nedelsky’s (1954) method, Angoff’s (1971) method, and 

Ebel’s (1972) method are based on judgments about individual 

items. Other methods for setting the cut-score are based on 

judgments about individual examinees. Among the most common 
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of these methods are: (1) the borderline group method 

(Nedelsky, 1954), (2) the contrasting group method 

(Nedelsky, 1954), and (3) the up-and-down method (Livingston 

& Zieky, 1982). 

With the borderline group method, a group of minimally 

successful students is identified and administered the test. 

The cut-score is set at the median of their scores. 

The contrasting group method assumes that the test-

takers can be divided into two contrasting groups, a 

qualified group and an unqualified group. After 

administering the test to both groups, the cut-score is set 

at the intersecting point of the smoothed score 

distributions of these two groups. Crocker and Algina (1986) 

have identified the specific steps in this procedure: 

1. Select qualified judges who are familiar with 
the examinee population. 

2. Allow the judges to discuss and, if possible, 
agree on what constitutes minimally competent 
performance. 

3. Use the judges to identify examinees who are 
competent or incompetent performers (excluding any 
who appear to be borderline). 

4. Test both groups of examinees. 

5. Plot the score distribution for each group on 
the same continuum. 

6. Set the performance standard at the 
intersection point of the two distribution curves. 

The up-and-down method is a variation of the 

contrasting group method. An examinee whose test score is 
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thought to be at the proper passing score is selected and 

her/his competency is judged. If the examinee is judged to 

be qualified, then an examinee with a test score lower than 

this examinee is selected and her/his competency is judged. 

If the examinee chosen is judged to be not qualified, then 

an examinee with a test score higher than this examinee is 

selected and her/his competency is judged. This process is 

continued by choosing each examinee based on the judgment of 

the previous examinee. This process can be stopped when 

several direction-changes have been observed. That is, the 

direction is changed from up to down or vice versa. The cut-

score is set as the average of the qualified-and-unqualified 

(up-and-down) scores.  

Item Selection and Administration 

In the context of computerized mastery testing, items 

may be selected based on different criteria, depending on 

the particular procedure being applied. Two procedures, 

sequential Bayes (SB) and sequential probability ratio 

testing (SPRT), are frequently used (e.g., Reckase, 1983; 

Kingsbury & Weiss, 1983).  

With the SB procedure, the first item(s) for 

administration is/are usually of average difficulty because 

the ability level of the examinee is unknown. After 

obtaining the first estimate of ability, items with the 

greatest information at this estimation of the examinee’s θ 
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are selected. With the SPRT procedure, items with the 

greatest information at the cutting point are selected.  

Mastery Decision and Test  

Termination Rule 

The mastery decision is based on the cut-score. The 

basic idea is as follows: if the examinee’s θ estimate is at 

or above the cut-score, then the examinee is classified as a 

master; otherwise, the examinee is classified as a 

nonmaster. Because the scores or abilities of the examinees 

are estimates, the degree of accuracy of these estimates is 

usually considered.  

Two kinds of errors can happen in such dichotomous 

classification systems: (1) classifying an examinee whose 

true θ is below θc as a master, and (2) classifying the 

examinee whose true θ is equal to or above θc as a 

nonmaster. The following notation is used to represent the 

probabilities of these two types of errors: 

α = prob(classify as a master | θ < θc) 

β = prob(classify as a nonmaster | θ  ≥  θc ) 

where 

θc is the cutting point on the theta scale. 

Generally, two criteria are imposed to terminate the 

CMT administration. First, if the degree of accuracy of 

estimation reaches a certain preset degree, a 

mastery/nonmastery decision can be made and the test 
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administration stops. Second, if the maximum permitted 

number of items has been reached, the test administration 

stops.  

Section IV. SB and SPRT Procedures in CMT 

Assuming that a cut-score has been established, two 

procedures can be used to select items to be administered, 

to make the mastery decisions, and to terminate the test. 

One of these is the sequential Bayes procedure and the other 

is the sequential probability ratio testing procedure. These 

two procedures are discussed in more detail below. 

Sequential Bayes Procedure 

The basic rationale of the SB procedure is to match the 

item difficulty with the examinee’s ability so that the 

estimation can be more accurate. For this purpose, items are 

always ranked on the amount of information at a posterior 

estimate of an examinee's latent ability or theta. With the 

SB procedure, the first administered item(s) is/are usually 

of middle difficulty. The item selected next is the one 

which is predicted to provide the greatest amount of 

information about a particular examinee, given an estimate 

of that examinee’s θ level. This procedure is called 

restricted Bayesian updating (Owen, 1975) and requires that 

the prior distribution of θ be assumed to be normal before 

the first item administration. In this procedure, the 
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posterior distribution of θ, following the administration of 

the ith item, is also assumed to be normal.  

With this procedure, testing continues until the 

confidence interval of the examinee’s estimate θ does not 

contain θc, the cutting point on the ability scale. If the 

lower bound of the interval is above θc, the examinee is 

categorized as a master. If the upper bound of the interval 

is below θc, the examinee is categorized as a nonmaster. If 

the confidence interval contains θc, the testing will 

continue with the next item using the restricted Bayesian 

updating procedure. 

In summary, the procedures for selecting items, making 

a mastery decision and terminating the test with SB are 

summarized as followed: 

1. Establish a cut-score. 

2. Administer the first item(s) (middle difficulty). 

3. Select items from the remaining items in the pool 

according to the information function. The item 

with the greatest information at the examinee’s 

estimated θ is selected. 

4. Administer the selected items and estimate the 

ability parameter of the examinee. 

5. When the estimation reaches the preset degree of 

precision, compare the examinee’s estimated θ with 

the cut-score. 
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If the lower bound of the interval is above θc, 

categorize the examinee as a master and 

terminate the test.  

If the upper bound of the interval is below θc, 

categorize the examinee as a nonmaster and 

terminate the test. 

If the confidence interval contains θc, continue 

testing with the next item using the 

restricted Bayesian updating procedure. 

6. If the maximum permitted number of items has been 

reached, terminate the testing. When this occurs, 

the mastery/nonmastery decision must be made on the 

basis of the policies established by the 

professional organization administering the tests. 

One common practice in this situation is the 

following: if the estimated θ is equal to or greater 

than the θc, categorize the examinee as a master; 

and if the estimated θ is less than the θc, 

categorize the examinee as a nonmaster.  

Sequential Probability Ratio  

Testing Procedure 

The sequential probability ratio testing (SPRT) 

developed by Wald (1947) can be used to classify examinees 

into two categories (mastery/nonmastery). Ferguson (1969) 

was the one of the first researchers to apply the SPRT 
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procedure to criterion referenced testing. Reckase (1983) 

noted that the SPRT procedure could be modified and applied 

to adaptive mastery testing with UIRT models. 

Wald’s SPRT theory makes use of the local independence 

assumption of IRT through the formulation of the likelihood 

functions under H0 and H1 as products of probabilities. SPRT 

theory does not require the probabilities to be constant 

from item to item within the pool (Spray & Reckase, 1987). 

The SPRT procedure is based on the binomial model. The 

practical advantages of this model are: (1) it is relatively 

simple to implement in a computer-based testing system; and 

(2) it requires no prior data collection on test item 

parameters (Frick, 1990).  

With the SPRT procedure, the test items are selected to 

be administered to each examinee according to the amount of 

information at the cutting point. The test items are ranked 

at the cutting point with respect to the amount of 

information provided. That is, the greater the information, 

the greater the priority of administration. The use of the 

SPRT procedure in computerized mastery testing has not been 

widespread. The general procedure of SPRT is outlined below 

(Spray & Reckase, 1987). 

Suppose an examinee has ability θj. The decision about 

the examinee’s status (pass or fail) is made on the basis of 

a consideration of two simple hypotheses: 
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   H0: θj = θ0  

     versus 

   H1: θj = θ1  

where 

θj is an unknown parameter, and 

θ0 and θ1 represent decision points that 

correspond to lower and upper limits, 

respectively, of the passing criterion, δ, 

where θ0 < δ < θ1. 

If P(θj) is the probability that examinee j responds 

correctly to an item, and Q(θj) = 1 - P(θj) is the 

probability that examinee j responds incorrectly to an item, 

then,  

π(θj)= Prob(X=x | θ=θj) = P(θj)
x
Q(θj)

1-x
, 

where  

x = 1, correct response, and  

x = 0, incorrect response.  

The functions, π(θ1) and π(θ0), are called likelihood 

functions of x, and a ratio of these two functions, L(x) = 

π(θ1) / π(θ0), is called a likelihood ratio and 

L(x ,x ,...,x  | , ) =
( ) ( )... ( )
( ) ( )... ( )

 1 2 n 0 1
1 1 2 1 n 1

1 0 2 0 n 0
θ θ π θ π θ π θ

π θ π θ π θ
. 
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The likelihood ratio is compared to the boundaries, A 

and B,  

where  

A = (1-β)/α, and 

B = β/(1-α),  

where α and β are the error probabilities defined as 

follows: 

Prob(choosing H1 | H0 is true) = α  (false positive) 

Prob(choosing H0 | H0 is true) = 1 - α  (correct 

decision) 

Prob(choosing H0 | H1 is true) = β (false negative) 

Prob(choosing H1 | H1 is true) = 1 - β  (correct 

decision) 

For example, if α and β are preset at .05, then 

A = (1-.05)/.05 = 19, and 

B = .05/(1-.05) = .053. 

The mastery decision and test termination rules in SPRT 

are as follow: 

If L(x1,x2,...,xn | θ0,θ1) > A, then H1 is accepted. In 

this case, the examinee is classified as a master 

and the test administration is stopped. 

If L(x1,x2,...,xn | θ0,θ1) < B, then H0 is accepted. In 

this case, the examinee is classified as a 

nonmaster and the test administration is stopped. 
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If B < L(x1,x2,...,xn | θ0,θ1) < A, then no decision is 

made and another item is selected to be 

administered. 

The region from θ0 to θ1 is the indifference region. 

The distance, |θ0 - θ1| is the width of the indifference 

region. Test length is a function of this region.  

The procedures for selecting items, making a mastery 

decision and terminating the test with SPRT are summarized 

below: 

1. Establish a cut-score. 

2. Administer the first item with the greatest 

information at the cutting point. 

3. Compute the likelihood ratio. 

If the likelihood ratio function is at or above the 

preset upper bound, classify the examinee as a 

master and terminate the test. 

If the likelihood ratio function is below the 

preset lower bound, classify the examinee as a 

nonmaster and terminate the test. 

If the likelihood ratio function is between the 

preset lower and upper bound, administer the 

next item according to the information 

functions of the remaining items at the 

cutting point. 
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4. If the maximum permitted number of items has been 

reached, terminate the test. When this occurs, the 

mastery/nonmastery decision must be made on the 

basis of the policies established by the 

professional organization administering the tests. 

One common practice in this situation is to make 

decision based on some “distance rule”. That is, 

compare the logarithm value of the likelihood 

function to the logarithm values of the boundaries, 

A and B. If the |log{L(x1,x2,...,xmax)}-log A| 

smaller than |log{L(x1,x2,...,xmax)}-log B|, 

categorize the examinee as a master; and vice versa 

(Spray, 1993). 

Comparison between SB and SPRT Procedures 

In 1980, Lord suggested that:  

when similar groups of examinees are tested year 
after year, the psychometrician knows, in advance 
of testing, the approximate distribution of 
ability in the group to be tested. In this case, a 
sequential Bayes approach is appropriate. If, on 
the other hand, the distribution of ability in the 
group to be tested is unknown, what is needed is a 
way of evaluating the testing procedure that does 
not depend on the unknown distributions of ability 
in the groups to be tested (pp. 162-163).  

Compared with the SB procedure, the SPRT procedure does 

not necessarily require an assumption about the ability 

distribution. Usually, having fewer assumptions implies that 
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the model/procedure can be applied in more situations. From 

this perspective, SPRT seems a better procedure than SB. 

Several studies have compared the accuracy of the SPRT 

procedure with that of the SB procedure. However, these 

studies have not produced consistent results.  

A study by Kingsbury and Weiss (1983) supported the use 

of SB procedure relative to SPRT. However, seven years 

later, Frick (1990) observed that the SPRT formulation used 

by Kingsbury and Weiss (1983) could not be algebraically 

transformed into Wald’s original formulation. 

In addition, for the SPRT procedure, Kingsbury and 

Weiss (1983) applied the random item selection procedure 

instead of selecting items with the greatest information at 

the cutting point.  

Frick (1990) also compared the SPRT and SB procedures 

and found that the SB procedure was superior. However, Frick 

also used a random item selection procedure as part of SPRT. 

In order to compare SB and SPRT procedures in terms of 

efficiency, Spray and Reckase (in press) performed a 

simulation study. A unidimensional IRT 3-PL model was 

adopted. The decision criterion, δc, was set to -.5, .0, and 

1.5 respectively. Simulated examinees with known θj were 

administered items from a previously calibrated pool of 200 

items. The maximum number of items that could be 

administered was set to 50.  
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For the SPRT procedure, the items were ranked and 

administered according to the information at the cutting 

point. The nominal error rates, α and β, were set at .05 and 

the width of indifference region was fixed at 1.0. For the 

SB procedure, items were administered according to the 

information at the estimated theta level of a particular 

examinee. The results of this study indicated that to 

achieve approximately the same level of classification 

accuracy, the SPRT procedure usually required fewer items 

than the sequential Bayes procedure. Thus, they concluded 

that the SPRT procedure was more efficient than the SB 

procedure. 

Section V. Dimensionality Issues 

Item response theory models can deal with both single 

dimensional or multiple dimensional data. If there is only 

one single ability required to correctly respond to a test 

question, then the unidimensional IRT (UIRT) models can be 

adopted. If, on the other hand, there is more than one 

ability required to respond correctly to a test question, 

multidimensional IRT (MIRT) models should be applied. The 

UIRT models and their assumptions have been discussed 

previously. MIRT models are discussed below.  
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Multidimensional Item Response  

Theory Models 

Multidimensional item response theory (MIRT) models are 

used with response data that occur as a result of more than 

one ability dimension. Basically, there are two major kinds 

of multidimensional IRT models: compensatory and 

noncompensatory. Compensatory models permit high ability on 

one dimension to compensate for low ability on another 

dimension. Noncompensatory models do not permit this. That 

is, for noncompensatory models, weakness in one ability 

dimension cannot be compensated for by strength in another 

dimension. 

McKinley and Reckase (1983) proposed a compensatory 

multidimensional IRT (COMIRT) three-parameter model (COMIRT 

3-PL) that permits high ability on one dimension to 

compensate for low ability on the others. This model defines 

the probability of a correct response as: 
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where 

xij is the dichotomous (1/0) response to item i by 

person j, 
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ai = (ai1,ai2,...,aim) is the vector of item 

discrimination parameters for item i, 

di is a scale parameter that is related to the 

difficulty parameter for item i, 

ci is the guessing parameter for item i, 

D is a scaling factor applied to make the logistic 

model as close as possible to normal ogive 

model, in general, D=1.7, 

θj = (θj1,θj2,...,θjm) is the vector of ability 

parameters for person j, and 

m is the number of dimensions. 

Sympson (1978) proposed the following noncompensatory 

multidimensional IRT 3-PL model: 
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where 

ai is a vector of discrimination parameters, and 

bi is the vector of difficulty parameters. 

Which one should be applied? If a test consists of 

several dimensions and if the items in the test can be 

grouped within each dimension, then a compensatory model 

might be appropriate. However, if the items require 

simultaneous application of several dimensions to be 
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answered correctly and if an examinee’s ability is below a 

certain threshold on one dimension, then no amount of 

strength in other abilities can offset this weakness. In 

this situation, a noncompensatory model would seem to better 

fit the data.  

A Special Case: rθ 1 θ 2 = 1 

When the correlation between two sets of θ-values is 

equal to one, the compensatory MIRT 3-PL model is in fact, a 

unidimensional 3-PL model. The 2-D COMIRT 3-PL model can be 

written as: 

( )pi j jθ θ1 2,  
([ )]
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  (a), 

If rθ1θ2 = 1, then θj1 = θj2, assuming θ 1 = θ 2  and SDθ1 = 

SDθ2, 

where 

θ 1 and θ 2  are the means of θ1 and θ2 respectively, 

and  

SDθ1 and SDθ2 are standard deviations of θ1 and θ2 

respectively. 

Then, equation (a) can be written as a unidimensional 

model: 
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where 

(ai1+ai2) is the item discrimination parameter, and 

d
a a

i

i i1+ 2  is the item difficulty parameter. 

Relation between Dimensionality and  

Computerized Mastery Testing 

As noted above, item response theory plays a central 

role in computerized mastery testing. Most computerized 

mastery tests available now are based on unidimensional item 

response theory models because of their simplicity. The 

unidimensionality assumption of UIRT will not be met 

absolutely in most testing situations. When this assumption 

is violated, it will have some negative impact on item 

parameter calibration and ability estimation (e.g., Ansley & 

Forsyth, 1985). Thus, the accuracy of the mastery/nonmastery 

decision may be impacted. It seems reasonable to assume that 

classification errors may increase as the “degree” of 

multidimensionality increases.  

Robustness of UIRT Models 

Unidimensional item response theory models are an 

important element of CMT. Compared with multidimensional IRT 

models, unidimensional IRT models are simpler and require 

smaller sample sizes to estimate the item parameters. 

However, the unidimensionality assumption of UIRT is 

probably violated to some degree in any application.  
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Ansley and Forsyth (1985) noted that the violation of 

the assumption of unidimensionality impacted the parameter 

estimation for the modified (fixed c-parameter) 3-PL 

logistic model. They suggested that parameter estimates had 

to be interpreted carefully when a unidimensional IRT model 

was applied to two-dimensional data. 

On the other hand, Drasgow and Parsons (1983) found 

that unidimensional IRT models provided good descriptions of 

multidimensional data sets when the dominant latent trait 

was sufficiently “strong”. They suggested that researchers 

should be more concerned with the robustness of estimation 

techniques to minor violations of dimensionality assumptions 

than with measuring all latent abilities in a particular 

content domain. 

Reckase, Ackerman, and Carlson (1988), using both 

simulated and real data, demonstrated that sets of items 

which require more than one ability for a correct response 

still meet the unidimensionality assumption of most IRT 

models. These items can be selected to construct a test 

based on UIRT models. They showed that the unidimensionality 

assumption required only that the items in a test measure 

the same composite of abilities, rather than a single 

ability.  
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Correlation between θ 1 and θ 2 

Ansley and Forsyth (1985) used two-dimensional item 

sets with Sympson’s noncompensatory three-parameter 

multidimensional item response theory model. (The guessing 

parameter was fixed at .2.) They noted that, as the 

correlation between the ability dimensions increased, the 

average absolute differences between values of the true 

ability parameters and the estimated ability parameters 

decreased. They concluded that the unidimensional estimate 

of the a-value (discrimination parameter) seemed best 

considered as the average of the multidimensional a-values, 

that the estimated b-value (difficulty parameter) seemed to 

be an overestimate of the multidimensional b-values, and 

that the ability values were best considered as the average 

of the true multidimensional abilities. They also observed 

that sample size and test length had very little effect on 

these interpretations.  

Folk and Green (1989) used two-dimensional simulated 

item sets with a compensatory MIRT model in both adaptive 

and nonadaptive testing format to study the effects of the 

correlation between thetas on item parameter estimates. The 

UIRT 3-PL model was used to do the calibration. They found 

that as the correlation between ability dimensions 

decreased, the estimated a-parameter increasingly emphasized 

either a1 or a2. The average estimated a-parameter values 
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were highest when the correlation between theta 1 and theta 

2 was 1. They suggested that if the data did not deviate 

greatly from unidimensionality, the UIRT model can provide 

reasonable approximations. If, however, the correlation 

between θ1 and θ2 is low, the data sets are better 

characterized as multidimensional and they cannot be 

approximated with a unidimensional model.  

Using simulated two-dimensional data with both 

compensatory and noncompensatory MIRT models and different 

correlations between the abilities, Ackerman (1987) found 

that as the correlation between the two-dimensional 

abilities increased, the response data appeared to become 

more unidimensional. Using simulated two-dimensional data 

with compensatory MIRT model, Ackerman (1991) again found 

that the orientation of the unidimensional scale in 

relationship to the two-dimensional ability plane appears to 

be a function of the multidimensional composition of the 

items administered in the test. (This conclusion is 

consistent with Wang (1986).) It was also found that it can 

be determined whether a test is measuring mostly ability 

one, mostly ability two, or both ability one and ability two 

equally by examining the relationship of the projected 

contours of the plane of two-dimensional estimated abilities 

and the corresponding angles. For instance, if both 
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dimension one and dimension two are equally dominant, the 

corresponding angle is 45 degrees. 

In summary, on the basis of the above studies, it seems 

reasonable to conclude that as the correlation between 

thetas in the two-dimensional case increases, the response 

data “act” more like a unidimensional data set.  

Studies about Dimensionality in  

Computerized Mastery Testing 

Within the context of CMT, relatively few studies have 

investigated the impact of using unidimensional item 

response theory models when the item pool is 

multidimensional. One study by Abdel-fattah, Lau, and Spray 

(1995) used the UIRT 3-PL model to estimate the item 

parameters of two-dimensional data set and used the SPRT 

procedure to make the mastery decision. The following 

conditions were manipulated: (1) rθ1 θ2 was set either equal 

to .00 or .50; (2) two test length constraints (min=40, 

max=360; min=1, max=360) were applied; and (3) the 

correlation between first and second discrimination 

parameters was either .25 or .50.  

Abdel-fattah et al. concluded that: (1) under certain 

conditions, UIRT 3-PL models can be used in computerized 

mastery testing even when the unidimensionality assumption 

is violated; and (2) when the unidimensionality assumption 

is violated, the false negative error (type II error) rates 
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are consistently higher than false positive error (type I 

error) rates. More specifically, they observed the 

following: 

1. The type I error and the number of items used to 

make the mastery decision were less when rθ1 θ2=.50 

than when rθ1 θ2=.00. No specific pattern was apparent 

for the type II and total error rates. The 

difference in the number of items used was 

significant. However, the type I, type II, and 

total error rates were relatively similar in both 

cases. 

2. The total error rates generally decreased when the 

minimum length of the test was increased from 1 to 

40 items. However, the differences were very 

slight. 

3. As the correlation between a1 and a2 increased, the 

total error rate decreased. However, this decrease 

was not significant. 

Different Levels of the Cutting Point  

Within the context of CMT, Abdel-fattah, Lau, and Spray 

(1996) investigated the impact of using an UIRT model when 

the item pool was multidimensional and when different 

difficulty levels were used for the cut-score. 

In this study, the UIRT 3-PL model was adopted to 

calibrate two-dimensional data. The cut-score was set at .5, 
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.6, and .7 respectively. The other manipulated conditions 

were: (1) rθ1 θ2 was set either equal to .00 or .50; (2) two 

test length constraints (min=40, max=360; min=1, max=360) 

were applied; and (3) the correlation between the first and 

second discrimination parameters was either .25 or .50. 

Again, the UIRT 3-PL model was found useful in mastery 

decision making with two-dimensional data. More 

specifically, Abdel-fattah et al. observed the following: 

1. As the level of cut-score increased, the number of 

items used to make the dichotomous decision 

decreased. 

2. As the level of cut-score increased, the type I 

error rates generally decreased. However, there was 

no consistent pattern for the total error rates. 

3. Type II error rates were greater than type I error 

rates at each cutting point.  

4. The results of the other manipulations were 

consistent with their 1995 study.  

Section VI. Summary 

Certification or licensure testing presumably helps to 

guarantee that professional practitioners have met a minimum 

standard. If the certification or licensure testing is 

administered in a computerized adaptive format, it is called 

computerized mastery testing. CMT is more efficient than 

conventional testing because of the individualized 
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administration procedure. The four main components of CMT 

are: (1) item pool development and calibration, (2) cut-

score setting, (3) item selection to administer, and (4) 

mastery decision and test termination.  

For item writing and cut-score setting, content experts 

are usually employed. For item selection, mastery decision 

and test termination, two procedures, sequential Bayesian 

and sequential probability ratio testing, can be applied in 

CMT. The SPRT procedure has been found more efficient and 

more powerful than the SB procedure (Spray & Reckase, in 

press). 

Compared with multidimensional IRT models, 

unidimensional IRT models are simpler and require smaller 

sample sizes to estimate the item parameters. For these 

reasons, UIRT models are usually adopted in the context of 

CMT to do the item calibration and ability estimation. 

However, the unidimensionality assumption of UIRT is 

probably violated to some degree in any application. If the 

unidimensionality assumption is violated, there may be some 

negative impact on the item calibration, ability estimation, 

and mastery/nonmastery decisions. 

Previous studies have noted the following about the use 

of unidimensional IRT models with multidimensional data: (1) 

unidimensional models provide a good description of the 

multidimensional data set when the dominant latent trait is 
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sufficiently potent (Drasgow & Parsons, 1983); (2) as the 

correlation between the dimensions or abilities increases, 

the usefulness of the unidimensional models increases (e.g., 

Ackerman, 1987; Folk & Green, 1989); and (3) if the items in 

a test measure the same composite of abilities, 

unidimensional models are robust (Reckase, Ackerman, & 

Carlson, 1988). 

Only a few studies investigated the effects of 

violation of the unidimensionality assumption within the CMT 

context. Specifically, the impact of the violation of the 

unidimensionality assumption on the use of the SPRT 

procedure has not been extremely studied. Abdel-fattah, Lau, 

and Spray (1995, 1996) did provide some evidence that the 

UIRT 3-PL model could be useful. 

The purpose of this study was to further examine the 

use of SPRT procedures for computerized mastery testing when 

the unidimensionality assumption is violated. 

The simplest multidimensional situation is the one 

involving two dimensions. Two-dimensional data provide a 

good starting point to study the “robustness” of UIRT 

models. Within a two-dimensional situation, there are a 

variety of conditions that can be considered: the type of 

UIRT model used, the correlations between the two latent 

traits needed to respond correctly to the items, the range 

of test length, and the level of cutting point. This study 
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was designed to provide information about the effects of 

these factors on the accuracy and efficiency of decision 

making using the SPRT procedure in a CMT setting. 
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CHAPTER III 

METHODOLOGY 

The primary purpose of this study was to examine 

whether the unidimensional item response theory models used 

in making mastery decisions with the sequential probability 

ratio test (SPRT) procedure produced acceptable accuracy in 

terms of type I errors (false positive) and type II errors 

(false negative) when the assumption of unidimensionality 

was violated. Monte Carlo simulation techniques were used to 

assess the robustness of the UIRT models under a variety of 

testing conditions. In this study, a model is defined as 

robust if the model provides acceptable classification 

accuracy even when the assumptions of the model are 

violated. 

There are four sections in this chapter. In Section I, 

the research questions are defined. The simulation 

procedures are described in Section II and the research 

design is given in Section III. The final section describes 

the data analysis procedures. 

Section I. Research Questions 

This study addressed the following research questions: 
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1. Does computerized mastery testing using the 

sequential probability ratio testing procedure 

based on UIRT models have acceptable accuracy in 

terms of type I and type II error rates when the 

true IRT models underlying the responses are two-

dimensional? 

2. Is the accuracy of the UIRT model-based procedures 

affected by the  

(1) use of different UIRT models such as the 

three-parameter model or the one-parameter 

model? 

(2) correlation between the two sets of ability 

parameters? 

(3) range of test length?  

(4) level of the cut-score?  

Section II. Simulation Procedure 

This study was based on simulated data rather than the 

responses of actual subjects. The reasons for using 

simulated data were: (1) the factors of interest could be 

manipulated more efficiently; (2) large response data sets 

could be generated; and (3) the true item parameters could 

be fixed.  

The basic simulation procedure used in this study was 

to generate two-dimensional dichotomous data (i.e., 1/0) and 

then calibrate the items, estimate the thetas, and choose 
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items to administer with UIRT models under different 

conditions. The robustness of UIRT models was then 

investigated by comparing the false positive classification 

rates, the false negative classification rates, and the 

numbers of items administered for classification under the 

different conditions. 

Computer Programs 

As this study used simulation, several computer 

programs were needed. Some of the these programs had been 

developed for general uses, others were developed 

specifically for this study. A brief description of these 

programs follows. 

NOHARM 

Developed by Fraser (1983, 1986), Normal Ogive Harmonic 

Analysis Robust Method (NOHARM) applies the generalized 

multidimensional normal ogive item response model. This 

program was used to calibrate a set of actual items in order 

to identify a set of two-dimensional MIRT parameters that 

could be used in the simulation. (See Figure 1.) 

GENMIRT 

Developed by Spray (1995) and modified by the author, 

GENMIRT was used to generate dichotomous data (1/0) based on 

a two-dimensional compensatory three-parameter model (2-D 

COMIRT 3-PL). The correlation, ρ, between θ1 (ability one) 
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and θ2 (ability two) could be manipulated in this program. θ1 

and θ2 were randomly selected from a bivariate normal 

distribution. Two thousand “examinees” were created. (See 

Figure 2.) 

BILOG 3 

With 1/0 data generated by GENMIRT on a sample of 2,000 

“examinees”, BILOG 3 (Mislevy & Bock, 1990) was used to 

calibrate the two-dimensional item parameters using either 

the UIRT 3-PL model or the UIRT 1-PL model. The marginal 

maximum likelihood estimation procedure was used in BILOG. 

One thousand randomly drawn respondents were used to do the 

item calibration. 

UTCC 

UTCC is a program developed by the author. With item 

parameters calibrated by BILOG, this computer program was 

used to map the cut-score (i.e., P(θc)=0.4, 0.6, and 0.8) 

onto the UIRT theta scale. (See Figure 3.) The curve in 

Figure 3 is based on the test characteristic function. The 

formula is as following: 

P n PT i

i

n

( ) ( )θ θ≡
=

∑1
1

, 

where 

Pi(θ) is the item characteristic function, and 
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n is the number of items. 

MIRTSPRT 

Developed by Spray (1995) and modified by the author, 

this computer program was used to determine the false 

positive rates, false negative rates, and average number of 

items used to make the mastery decision under different 

conditions. (See Figure 4.) 

Data Simulation 

Item Pool 

In this study, the two-dimensional item parameters used 

to create the simulated data were based on actual test data. 

The actual test data were the examinees’ responses for six 

test forms of ACT Assessment Mathematics tests. Each form 

contains 60 multiple-choice items that require students to 

use their reasoning skills to solve practical problems in 

mathematics. For each form, the responses of 2,000 randomly 

selected examinees were used to calibrate the items with the 

computer program NOHARM (Fraser, 1983) in which the 

generalized multidimensional normal ogive item response was 

applied. NOHARM provides estimates of a1, a2, d, and c for 

each item.  
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Dichotomous Response Data Generation 

With the set of two-dimensional item parameters 

obtained from NOHARM and with pairs of thetas (θ1,θ2) drawn 

from a bivariate normal distribution with a specific 

correlation (.00, 0.30, 0.60, 0.90 or 1.00), the computer 

program GENMIRT was used to generate dichotomous scores 

using the two-dimensional compensatory three-parameter IRT 

(2-D COMIRT 3-PL) model:  

P x a a d ci ij i i i i j j= 1 1 2 1 2, , , ; ,θ θ  

( )[ ]
= +

−
+ − + +

c
c

D a a d
i

i

i j i j i

1
1 1 1 2 2exp θ θ

. 

If the value of the probability of correct response to 

the item with a specific pair of ability thetas, P(θ1,θ2), 

was less than a value randomly drawn from a uniform (0,1) 

distribution, a wrong response (i.e., 0) would be recorded. 

If the value of P(θ1,θ2) was equal to or greater than the 

value drawn from the uniform distribution, a correct 

response (i.e., 1) would be recorded. Two thousand 

“examinees” were generated to respond to the 360 items. 

Thus, a 2,000 (examinees) by 360 (items) 1/0 matrix was 

obtained. 

Figures 1 and 2 summarize how the data were generated 

under these different conditions. 
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Section III. Research Design 

In order to answer the research questions, a 2x5x2x3 

crossed factorial design was used. The manipulated 

conditions are identified below: 

1. UIRT models:  

(1) UIRT 3-PL model. 

(2) UIRT 1-PL model. 

2. Correlation between θ1-values and θ2-values: 

(1) 0.00. 

(2) 0.30. 

(3) 0.60. 

(4) 0.90. 

(5) 1.00. 

3. Range of test length:  

(1) min=15, max=50. 

(2) min=1, max=360 (no constraint). 

4. Passing score:  

(1) p=0.4. 

(2) p=0.6. 

(3) p=0.8. 

Thus, a total of 60 different combinations of 

conditions based on UIRT models were investigated. 

Section IV. Data Analysis Procedures 

Given the simulated 1/0 response data generated by 

GENMIRT, the computer program BILOG, which applies a 
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marginal maximum likelihood estimation procedure, was used 

to calibrate these two-dimensional dichotomous response data 

with both a UIRT 3-PL model and a UIRT 1-PL model. As 

mentioned previously, one thousand randomly drawn 

respondents were used for the item calibrations. The 

estimated item parameters from the UIRT 3-PL and the UIRT 1-

PL models were obtained and used for the mastery tests. 

With item parameters calibrated by BILOG, the computer 

program UTCC was used to obtain the different cut-scores on 

the theta scale: P(θc)=0.4, 0.6, and 0.8.  

Definition of True Master/Nonmaster 

In order to distinguish between true pass and true fail 

in the true model, a threshold function, f(θ1,θ2), was 

defined as: 

f(θ1,θ2) = 
1
360

1 1 2 1 2

1

360

P x a a d ci ij i i i i j j

i

=
=

∑ , , , ; ,θ θ  - cutting  

           point, 

where 

cutting point = 0.4, 0.6, and 0.8. 

If f(θ1,θ2) ≥ 0, the examinee truly passes. 

If f(θ1,θ2) < 0, the examinee truly fails. 

It should be noted that the function, f(θ1,θ2) may or 

may not be linear, depending on the item parameters. Figure 

5 shows the projected functions at different cutting points. 



57 

At the cutting point .6, the function was near linear. 

However, at the other two cutting points, .4 and .8, the 

functions were nonlinear. 

Input of MIRTSPRT 

After the threshold function was established, the 

“true” parameters together with the threshold function, 

f(θ1,θ2) of the 2-D COMIRT 3-PL model, and the “false” 

parameters from the UIRT model together with the cut-score 

theta, θc mapped from P(θc)= 0.4, 0.6 or 0.8 of UIRT (either 

UIRT 3-PL or UIRT 1-PL) were used as input to the computer 

program MIRTSPRT. MIRTSPRT was used to simulate a SPRT-CMT 

and to estimate the type I error rates, type II error rates, 

and number of items used to make the mastery decision under 

different combinations of conditions.  

For each of the 60 combinations of conditions, the 

range of θ-value was set from -3 to +3 and 13 equally spaced 

values were used (-3.0, -2.5,..., 2.5, 3.0). A total of 169 

pairs of θ1 and θ2 values were created (e.g., θ1=-3.0 and 

θ2=2.5) and 300 replications of the mastery decision 

procedure were performed for each pair of values using 

MIRTSPRT. Thus, for each combination of conditions, a total 

of 50,700 (169x300) mastery decisions were made. 
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Mastery Decisions Based on SPRT 

In the MIRTSPRT, item responses were generated from the 

“true” 2-D COMIRT model with values of θ1 and θ2. However, 

the SPRT-CMT was carried out using estimates of UIRT 

parameters. Thus, items were ranked on the ”false” values of 

information at a “false” cut-score. 

The sequential probability ratio testing procedure was 

used to determine the pass/fail status using the UIRT 

models. The general SPRT procedure was described in Chapter 

II. 

Definition of Type I and Type II Errors 

The mastery decision based on the true model (i.e., 2-D 

COMIRT 3-PL) was defined as: 

If f(θ1,θ2) ≥ 0, the examinee truly passes. 

If f(θ1,θ2) < 0, the examinee truly fails. 

The decision (pass or fail) made by the SPRT procedure 

with UIRT models was then compared to the decision based on 

the true model. If the decision based on true item 

parameters and the corresponding θ1 and θ2 was consistent 

with the decision based on false (i.e., either UIRT 3-PL or 

UIRT 1-PL) item parameters and the corresponding thetas, 

there was no error. However, if the decision based on true 

item parameters was to fail the examinee while the decision 

based on UIRT item parameters was to pass the examinee, a 

type I error (false positive) occurs. If the decision based 
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on true item parameters was to pass the examinee while the 

decision based on UIRT item parameters was to fail the 

examinee, a type II error (false negative) occurred. (See 

Figure 7.) The expected errors and test lengths were 

calculated based on the expectations relative to the density 

of ability. The density function is described below.  

Density Function 

As was mentioned earlier, 300 replications were 

calculated at each of 169 pairs of θ-values. It was assumed 

that the examinee population had a bivariate normal 

distribution with respect to these two theta scales. In 

order to calculate the expected error rates and expected 

number of items used to make the mastery decision in such a 

population, a set of weights was needed to reflect the 

relative frequencies of each pair of thetas. These weights 

were calculated according to the density function formula: 

1
2 1 2

1 2π θ θ− r
exp{[-.5/(1-rθ1 θ2

2)][θ12 - 2(rθ1 θ2) θ1 θ2 + θ22]}, 

where 

θ1 is the value of theta 1, 

θ2 is the value of theta 2, and 

rθ1 θ2 is the correlation value between theta 1 and 

theta 2. 
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It can be seen that as the θ-correlation is changed, 

the value of the weight is also changed. The expected type 

I, type II error rates and expected number of items used to 

make the mastery decision were then calculated using these 

weights. 

Test Length and Cut-Score Setting 

In the program MIRTSPRT, a test length constraint 

(i.e., minimum and maximum test length) and level of cut-

score could be manipulated. The expected false positive 

rates, expected false negative rates, and expected number of 

items used for making the decision can be calculated based 

on 300 replications with each pair of thetas. The robustness 

of the models was examined by comparing the average false 

positive rates, average false negative rates, and average 

number of items used under different combinations of 

conditions. Figures 4, 6, and 7 summarize the procedures 

used in this study. 

Criterion Indices  

For each simulation, the outcomes of interest were: (1) 

expected type I error (false positive) rates, (2) expected 

type II error (false negative) rates, and (3) expected 

numbers of items used to make the mastery decision via 

computerized mastery testing. 
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Fixed Factors 

The fixed factors for all simulations of this design 

are listed below: 

1. The number of dimensions (2). 

2. The number of items in the pool (360). 

3. The means and standard deviations of the generated 

thetas.  

4. The means and standard deviations of a1, a2, d, and 

c in the 2-D COMIRT 3-PL model. 

5. The number of simulation replications (300). 

6. The width of the SPRT indifference region (|θ0 - 

θ1|=0.5) (i.e., θ0 = δ - 0.25, θ1 = δ + 0.25, where δ 

is the passing criterion).  

7. The nominal error rates, α and β in the SPRT 

procedure (0.05).  
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CHAPTER IV 

RESULTS AND DISCUSSION 

The purpose of this study was to investigate the 

usefulness of the SPRT procedure with UIRT models in 

computerized mastery testing when the unidimensionality 

assumption is violated. The study was conducted using the 

design described in Chapter III. 

This chapter contains six sections. Section I describes 

the characteristics of the simulated data. Section II and 

Section III present and discuss the main and interaction 

effects of the three manipulated factors within the UIRT 3-

PL and UIRT 1-PL models, respectively. The results for the 

UIRT 3-PL model and the 1-PL model are compared in Section 

IV. Section V discusses the results when the correlation 

between θ1 and θ2 (hereafter referred to as the θ-correlation 

or rθ1 θ2) was equal to one. A summary of the results is 

provided in Section VI. 

Section I. Description of Simulated Data 

Table 1 shows the descriptive statistics for the 

original two-dimensional item parameters based on the 360 

items calibrated by NOHARM. The mean of the estimates of the 

first a-parameter was .93 and the mean of the estimates of 
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the second a-parameter was .64. The mean of difficulty (d = 

-a1b1-a2b2) estimate was -.79 and the mean of the estimates 

of the guessing parameter was .18. The mean of the estimates 

of the first item discrimination parameter was about 1.5 

times the mean of the estimates of the second item 

discrimination parameter. This suggests that the first 

dimension is more dominant than the second dimension. The 

standard deviations, skewness indices, and kurtosis indices 

of each of the distributions of estimated item parameters 

are also given in Table 1. 

Table 2 gives the descriptive statistics for the 

bivariate theta distributions used to generate the 

dichotomous data. The means and standard deviations of the 

theta distributions were close to zero and one respectively. 

The skewness and kurtosis were relatively similar to those 

for a normal distribution. 

Table 3 displays the first three eigen-values 

associated with five different theta correlations. For each 

correlation, 2000 pairs of thetas were drawn from a specific 

bivariate normal distribution. These values were entered 

into the 2-D COMIRT 3-PL equation with the original two-

dimensional parameters of 360 items. For each pair of 

thetas, 360 probabilities of correct responses (like “true 

scores”) were recorded. The eigen-values of these 360-by-360 

“true score” variance-covariance matrices were calculated. 
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It was found that as the θ-correlation increased, the first 

eigen-value increased and the third eigen-value decreased. 

Table 4 presents the means and standard deviations of 

the item parameter estimates calibrated by the UIRT models. 

For the UIRT 3-PL model, as the θ-correlation increased, the 

mean of the discrimination parameters increased, the mean of 

the difficulty parameter decreased, and the mean of the 

guessing decreased. The same pattern was exhibited for the 

UIRT 1-PL model. 

Table 5 provides the cut-scores on the theta scales 

(θc) associated with each of the cut-scores on the p-value 

scale (P(θc)). As rθ1 θ2 = 1 was a special case of 2-D COMIRT 

3-PL model, the θc could be calculated based on the original 

two-dimensional item parameters with the equation derived in 

Chapter II. These θcs are shown in parentheses in Table 5. 

Compared with the thetas derived from 2-D COMIRT 3-PL model 

(true item parameters), the estimated thetas based on the 

UIRT 3-PL model seemed to overestimate the cut-score on the 

theta scale, suggesting that the estimated item parameters 

may yield a biased estimate of θc. 

As can be seen in Table 5, as the θ-correlation 

increased, the value of θc generally increased when 

P(θc)=.4, except when rθ1 θ2=1 and P(θc)=.4 with the UIRT 3-PL 

model. However, at P(θc)=.6 or .8, the estimated θc 

decreased as the θ-correlation increased. 
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Table 6 summarizes the accumulated item information 

values for each UIRT model under different conditions. As 

was mentioned earlier, the items were ranked at the cut-

score according to their information: the higher the item 

information, the higher the priority for administration. The 

equation for the item information calculation was given in 

Chapter II. Table 6 lists the accumulated item information 

of the first 50 most informative items (max=50). That is: 

Ii c

i

( )θ
=

∑
1

50

. 

Also, the accumulated item information for the entire 

360 items (max=360) is shown in Table 6. That is: 

Ii c

i

( )θ
=

∑
1

360

. 

It was found that as the θ-correlation increased, the 

amount of accumulated information generally increased. The 

only exception to this trend was when the θ-correlation was 

equal to one, the cut-score was .8 and the UIRT 3-PL model 

was used. 

For the UIRT 3-PL model, when the maximum test length 

was set to 50, accumulated information increased as the cut-

score increased. When the maximum test length was set to 360 

(i.e., no test length constraint), the accumulated 
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information was similar at cut-scores of .6 and .8 and the 

least accumulated information was observed at .4.  

For the UIRT 1-PL model, when the maximum test length 

was set to 50, the amount of accumulated information was 

similar across the three cut-scores. When the maximum test 

length was set to 360, the accumulated information was 

similar at cut-scores of .4 and .6 and the least information 

was found at .8. 

The amount of accumulated information was greater for 

the UIRT 3-PL model than for the UIRT 1-PL model. For the 

UIRT 3-PL model, item discrimination parameters in the test 

are allowed to vary. However, for the UIRT 1-PL model, item 

discrimination parameters in the same test are assumed to be 

equal. Because item discrimination has a dominant effect on 

item information (the higher the discrimination, the higher 

the information (Lord, 1980)), the difference between the 

accumulated information for the two models was expected. 

Section II. Results for UIRT 3-PL Model 

In this section, the results for the UIRT 3-PL model 

are presented and discussed. The next section presents the 

results and discussion for the UIRT 1-PL model. 

The main effects and interaction effects of either the 

UIRT 3-PL model or the UIRT 1-PL model are described and 

discussed in the following order: 

1. Three main effects:  
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(1) magnitude of rθ1 θ2. 

(2) test length constraint.  

(3) level of cut-score. 

2. Three 2-way interaction effects: 

(1) magnitude of rθ1 θ2 and test length constraint. 

(2) magnitude of rθ1 θ2 and level of cut-score. 

(3) test length constraint and level of cut-score. 

3. One 3-way interaction effects: 

(1) magnitude of rθ1 θ2 and test length constraint and 

level of cut-score.  

Outcomes of Interest 

For the results of the UIRT 3-PL and UIRT 1-PL models, 

the four outcomes of interest in this study are: 

1. False positive error (type I error) rates. 

2. False negative error (type II error) rates. 

3. Total error rates (1 + 2). 

4. Number of items used to make the mastery decision 

(NI). 

In order to facilitate the discussion, differences of 

.01 or less in error rates (type I, type II, or total error) 

and differences of 4 or less in number of item used (NI) to 

make the mastery decision are considered negligible and will 

not be discussed. It should be noted that the results with 

rθ1 θ2 = 1 are presented in a separate section. 
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The results of applying the UIRT 3-PL model when the 

response data were simulated using a two-dimensional 3-PL 

compensatory model are discussed in this section. Table 7 

presents the results for each combination of conditions 

within the UIRT 3-PL model. Over all the conditions, the 

average false positive rate, average false negative rate, 

average total error rate, and average NI were .0171, .0209, 

.0380, and 14.1476 respectively. 

Magnitude of rθ 1 θ 2 

As the θ-correlation was changed, a clear pattern was 

found: as the θ-correlation increased, the type I error 

rates decreased, the total error rates decreased, and the NI 

value decreased. In addition, the type II error rate was 

consistently greater than the type I error rate within each 

θ-correlation. (See Table 8.) 

Although there was a clear pattern, the range of the 

error rates was relatively small: false positive rates 

ranged from .0138 to .0195; false negative rates ranged from 

.0200 to .0220; and total error rates ranged from .0346 to 

.0415. As mentioned earlier, differences of .01 or less in 

error rates were considered negligible.  

The changes in the θ-correlation had a more obvious 

impact on the NI index. When the θ-correlation was .00, 

16.7663 items were needed on average for the mastery 
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decision. When the θ-correlation was .90, the average number 

of items needed decreased to 12.1158. 

Thus, for the UIRT 3-PL model, the magnitude of the θ-

correlation seemed to have an obvious impact only on the 

number of items used. The testing procedure became more 

efficient as the θ-correlation increased. Recall from Table 

6 that as the magnitude of θ-correlation increased, the 

accumulated information also increased. When the maximum 

test length was set to 50 items, the correlations between 

accumulated information and number of items used to make 

mastery decision were -.8590 and -.4239 for UIRT 3-PL and 1-

PL models, respectively. This negative correlation suggests 

that the θ-correlation affects the accumulated information, 

which in turn affects the item-consumption. 

Test Length Constraint 

As shown in Table 9, the impact of the test length 

constraint was relatively small. The average type I, type 

II, and total error rates were slightly lower (.0168 vs. 

.0175, .0206 vs. .0212, .0374 vs. .0387) for the constraint 

condition (min=15, max=50) than for the unconstrained 

condition (min=1, max=360). However, the average NI was 

greater (17.4571 vs. 10.8382). 

These results seem to indicate that the test length 

constraint only had an impact on the number of items used. 

If test efficiency is the main concern, these results 



70 

indicated that it would be better not to apply a constraint 

on the minimum number of items when using the UIRT 3-PL 

model.  

Level of Cut-Score  

As the cut-score level increased, the type I error rate 

and the NI value decreased. (See Table 10.) The most 

obviously impact of changing the cut-score level was 

observed for NI. NI was 18.5651 at P(θc)=.4 and 10.5864 at 

P(θc)=.8. Also, the type I error rate decreased from .0268 

at P(θc)=.4 to .0096 at P(θc)=.8. 

At P(θc)=.4, the type I error rate was greater than the 

type II error rate (.0268 vs. .0178). However, at the 

P(θc)=.6 or .8, the type II error rate was greater than the 

type I error rate. This pattern suggests an estimated θc 

bias. That is, θc may be underestimated at P(θc)=.4 and 

overestimated at P(θc)=.6 and P(θc)=.8. 

Combined Effects of the Magnitude of  

rθ 1 θ 2 and Test Length Constraint 

Table 11 shows the combined effects of the θ-

correlation and the test length constraint on the four 

outcome measures. As can be seen in Table 11, the general 

trends for the error rates are highly similar to the main 

effect trends observed in Tables 8 and 9. However, for the 

NI index, the effect of the θ-correlation seemed to be a 
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function of the test length constraint. The effect of the θ-

correlation on the NI index appeared to be greater for the 

no test length constraint (min=1, max=360) than for the test 

length constraint (min=15, max=50). For the constraint 

condition, the NI decreased from 18.5 to 16.2 as the θ-

correlation changed from .00 to .90. However, for the no 

constraint condition, the NI decreased from 15.1 to 7.6 as 

the θ-correlation increased from .00 to .90. 

These results indicate that the 2-way interaction 

effects (rθ1 θ2 x cut-score) had an impact mainly on test 

efficiency and not on error rates. 

Combined Effects of the Magnitude  

of rθ 1 θ 2 and Level of Cut-Score 

Table 12 shows the combined effects of the θ-

correlation and the level of cut-score on the four outcome 

measures. As can be seen in Table 12, the general trend 

observed for the four outcome measures are similar to main 

effect trends observed in Tables 8 and 10. The one exception 

to these trends was for the false positive error rates when 

rθ1 θ2=.9. This error rate did not consistently decreased as 

the cut-score increased. However, these results also 

indicated that the effect of the θ-correlation varied with 

the cut-score level. The nature of this interaction is 

described below. 
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At P(θc)=.4 and .6, as the θ-correlation increased, the 

type I error rate decreased, but at P(θc)=.8, the opposite 

happened. At P(θc)=.4 and .8, as the θ-correlation 

increased, the type II error rate decreased but at P(θc)=.6, 

the opposite happened. At P(θc)=.4, as the θ-correlation 

increased, the total error rate decreased but the total 

error rates were approximately equal at P(θc)=.6 and at 

P(θc)=.8. At P(θc)=.4, as the θ-correlation increased, the NI 

index decreased from 24.1 to 14.5, but at P(θc)=.6 and .8, 

the NI-values were similar. 

These results suggest that there were 2-way interaction 

effects (θ-correlation and level of cut-score) on both the 

classification accuracy and test efficiency. These results 

seem to indicate that regardless of the degree of 

correlation between the two θs, tests that have relatively 

high cut-scores (e.g., .8) will perform better than tests 

with lower cut-scores. 

Combined Effects of Test Length 

Constraint and Level  

of Cut-Score 

Table 13 shows the combined effects of the test length 

constraint and the level of cut-score on the four outcome 

measures. As can be seen in Table 13, the general trends 

observed for the four outcome measures are similar to the 

main effect trends observed in Tables 9 and 10. However, the 
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effect of the cut-score on the NI index appeared to be 

greater for the unconstrained test length (min=1, max=360) 

than for the constrained test length (min=15, max=50). For 

the constrained test length, the NI decreased from 19.5 to 

15.7 as the cut-score changed from .4 to .8. However, for 

the unconstrained test length, the NI decreased from 17.6 to 

5.4 as the cut-score changed from .4 to .8. 

These results indicate that the 2-way interaction 

effects (test length constraint x cut-score) had an impact 

mainly on test efficiency. A relatively smaller number of 

items is needed to make the mastery decisions when a test 

length constraint is not applied and when a high cut-score 

is used. 

Combined Effects of Magnitude of rθ 1 θ 2, 

Test Length Constraint, and 

Level of Cut-Score 

The 3-way interaction effects are reflected in the 

means reported in Table 7. The general trends for all three 

error rates are consistent with the main effect trends noted 

in Tables 8, 9, and 10. 

However, the means reported in Table 7 suggest 3-way 

interaction effects relative to the NI index. For the 

constrained test length (min=15, max=50), across different 

θ-correlations and within each cut-score, the NI values were 

similar. (That is, the differences were less than 4.) But 
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for the unconstrained test length (min=1, max=360), across 

different θ-correlations and within each cut-score, the NI 

value decreased at P(θc)=.4. The decrease was from 26.6 when 

rθ1 θ2=.00 to 11.2 when rθ1 θ2=.90. At P(θc)=.6 and .8, however, 

the NI values were relatively similar. With a test length 

constraint, the variation among the NI values was relatively 

small. Without a test length constraint, the test is more 

efficient but the NI values showed greater variation.  

Summary of the Results for  

the UIRT 3-PL Model 

Table 14 summarizes the effects observed in this study. 

The major impact of the factors of interest (rθ1 θ2, test 

length constraint, & level of cut-score) was on test 

efficiency (number of items required for the mastery 

decision). The NI index generally decreased as rθ1 θ2 

increased and the level of the cut-score increased. The NI 

was also less for the no test length constraint as compared 

to the constrained condition. However, the rate of decrease 

accounted for by a factor was not always the same at levels 

of the other factors. 

With respect to error rates, the SPRT procedure seemed 

robust to violations of the unidimensionality assumption 

under all conditions when the UIRT 3-PL model was used.  
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Section III. Results for UIRT 1-PL Model 

The results of applying the UIRT 1-PL model when the 

response data were simulated using a 2-D COMIRT 3-PL model 

are presented and discussed in this section. Like the last 

section, the main effects and interaction effects of UIRT 1-

PL model under different conditions are described and 

discussed. Table 15 presents these results for each 

combination of conditions within the UIRT 1-PL model. The 

average false positive rate, false negative rate, and total 

error rate were .0156, .0264, and .0420, respectively. The 

average NI was 31.2765. 

Magnitude of rθ 1 θ 2 

Table 16 presents the averages for the four outcome 

variables for each of the four θ-correlations. In general, 

the three error rates were similar. However, the average NI 

value decreased as the θ-correlation increased. When the  

rθ1 θ2=.00, the average NI was 38.0. This average NI value 

decreased to 25.5 when rθ1 θ2=.90. 

Thus, for the UIRT 1-PL model, the magnitude of θ-

correlation seemed to impact only the test efficiency. This 

outcome was consistent with the outcome observed for UIRT 3-

PL model. However, compared with UIRT 3-PL model, UIRT 1-PL 

model required about twice the number of items to make the 

classification decision.  
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Test Length Constraint 

Table 17 presents the results for the test length 

constraint condition. As can be seen in Table 17, the error 

rates for the no constraint condition (min=1, max=360) were 

slightly less than for the constraint condition (min=15, 

max=50). However, the constraint condition used fewer items 

to make the mastery decision, which means the maximum test 

length constraint (max=50) forced the test to stop. 

Based on these results, the use of a test length 

constraint with the UIRT 1-PL model had an impact on the 

total error rates and the number of items used to make the 

decision. If classification accuracy is the main concern, it 

would be better not to apply a test length constraint when 

using the UIRT 1-PL model. 

Level of Cut-Score  

Table 18 presents the averages of the four outcome 

measures for each cut-score level. The type I error rates 

(false positive) tended to decreased as the cut-score 

increased. This trend was also true for the total error 

rate. However, the greatest type II error rate (false 

negative) occurred at P(θc)=.6. The average NI value 

decreased as the level of cut-score increased. 

At P(θc)=.4, the type I error rate was greater than the 

type II error rate. However, at P(θc)=.6 or .8, the type II 

error rate was greater than type I error rate. The same 
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pattern also occurred when the UIRT 3-PL model was used. 

This pattern may suggest an estimated θc bias. That is, θc 

might be underestimated at P(θc)=.4 and overestimated at 

P(θc)=.6 and .8. 

Combined Effects of the Magnitude of  

r θ 1 θ 2 and Test Length Constraint 

Table 19 gives the means for the θ-correlation and test 

length constraint condition. The trends observed in Table 19 

were consistent with the main effect trends described in 

Tables 16 and 17, except for the NI index. 

When the test length was constrained (min=15, max=50), 

the average NI value decreased from 30.2 (r θ1 θ2=.00) to 23.5 

(r θ1 θ2=.90). However, in the unconstrained condition (min=1, 

max=360), the NI decrease was even greater. The average NI 

value decreased from 45.8 (r θ1 θ2=.00) to 27.6 (r θ1 θ2=.90). 

Thus, the θ-correlation seems to have a greater impact 

on NI in the no constraint condition than in the constraint 

condition. These results are consistent with that of UIRT 3-

PL model. 

Combined Effects of the Magnitude  

of r θ 1 θ 2 and Level of Cut-Score 

The means of the four outcome measures for the twelve 

combinations of θ-correlations and cut-score levels are 

given in Table 20. As shown in Table 20, the general trends 
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for the four outcome measures were relatively similar to the 

main effect trends noted in Tables 16 and 18. However, when 

the θ-correlation was .90, a slightly different trend was 

seen for the type II and total error rates. When r θ1 θ2=.90, 

the total error rate for a cut-score of .6 was actually 

greater than the total error rate for a cut-score of .4 

(.0638 vs. .0504). Similarly, the difference between the 

type II error rates for these two cut-scores(.0613-

.0099=.0514) was relatively greater when r θ1 θ2=.90 than for 

the other θ-correlations.  

With respect to the NI index, at P(θc)=.8 it decreased 

from 25.2 when r θ1 θ2=.00 to 19.3 when r θ1 θ2=.90. However, at 

P(θc)=.4 the NI value decreased from 48.2 when r θ1 θ2=.00 to 

31.8 when r θ1 θ2=.90. Thus, the decrease in NI was greater at 

P(θc)=.4 than at P(θc)=.6. 

Based on these results, a combined effect of θ-

correlation and the level of cut-score on type II error 

rates, total error rates, and NI was suggested. The 

violation of unidimensionality had an impact on both error 

rates and the NI at lower cut-scores (i.e., .4 & .6) but a 

relatively smaller impact on the higher cut-score. This 

suggests that if the unidimensionality assumption is 

violated, CMT might perform better when used for 

differentiating among high ability examinees.  
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Combined Effects of Test Length 

Constraint and Level  

of Cut-Score 

The average values of the four outcome measures for the 

six combinations of test length and cut-score level are 

shown in Table 21. The general trends noted in Tables 17 and 

18 also hold for most of the outcome measures. One exception 

was that for the unconstrained test length condition. In 

this condition, the total error rates at the cut-scores of 

.4 and .6 were almost identical.  

The results in Table 21 also seemed to indicate that 

the effect of the cut-score level varies as a function of 

the test length constraint. For the test length constraint 

condition (min=15, max=50), the decreases in the type I 

error rates, the total error rates and NI from P(θc)=.4 to 

P(θc)=.8 were .0473, .0486, and 10.4, respectively. However, 

for the no constraint condition (min=1, max=360), the 

decreases were .0266, .0266, and 22.8, respectively. 

Based on these results, a combined effect of test 

length constraint and cut-score level on type I error rates, 

total error rates, and NI was suggested. The test length 

constraint had a relatively small impact on classification 

accuracy and test efficiency at a higher cut-score level 

(e.g., .8). 
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Combined Effects of Magnitude of rθ 1 θ 2, 

Test Length Constraint, and 

Level of Cut-Score  

The means of the four outcome variables for the twenty-

four combinations of θ-correlation values, cut-score levels, 

and test length constraints are given in Table 15. In 

general, the main effect trends observed for type I error 

rates and NI values in Tables 16, 17, and 18 were also 

observed in this table. 

The data in Table 15 were used to examine the three 2-

way interaction effects identified previously ((1) θ-

correlation by test length constraint on NI (Table 19), (2) 

θ-correlation by cut-score level on error rates and NI 

(Table 20), and (3) test length constraint by cut-score 

level on error rates and NI (Table 21)) at levels of the 

third variable.  

The test length constraint by cut-score interaction 

appeared to vary as a function of the θ-correlation. When 

rθ1 θ2=.90, the total error rate at a cut-score of .6 was 

greater than the total error rate at .4 for both test 

lengths. However, for the other correlation values, the 

highest total error rate was at .4. 
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Summary of the Results for  

the UIRT 1-PL Model 

As was true when the UIRT 3-PL model was used, the SPRT 

procedure using parameters estimated by UIRT 1-PL model 

seemed relatively robust with respect to classification 

errors. The range of error rates across the manipulated 

conditions was relatively small. Although these factors 

affected the classification accuracy and the test 

efficiency, the error rates and NI values would probably be 

considered reasonable in most testing situations. The main 

and combined effects of these manipulated factors are 

summarized in Table 22. 

Section IV. UIRT 3-PL Versus  

UIRT 1-PL Model 

In this section, the results for the UIRT 3-PL model 

and those for the 1-PL model are compared in terms of type I 

error rates, type II error rates, total error rates, and NI. 

The average values of these indices for two models are 

summarized in Tables 7 and 15.  

The average type I, type II, and total error rates were 

similar for both the UIRT 3-PL and the 1-PL models (.0171 

vs. .0156, .0209 vs. .0264, .0380 vs. .0420). However, the 

average NI value was somewhat different. The average NI for 

the 3-PL model was 14.1476, while for the 1-PL model it was 

31.2765. In other words, the UIRT 1-PL model required about 
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twice number of the items as the 3-PL model to make mastery 

decisions with similar accuracy. 

Overall, it was found that the test efficiency of UIRT 

3-PL model was better than 1-PL model in all conditions. 

That is, the average NI values were less for the 3-PL model 

than for 1-PL model. Also, the error rates for both models 

were similar. These results are consistent with the fact 

that the accumulated information value based on UIRT model 

was consistently higher for 3-PL model than for the 1-PL 

model. 

Magnitude of r θ1 θ2  

The effect of the magnitude of the θ-correlation was 

similar for both models. As the θ-correlation increased, the 

NI decreased. (See Tables 8 & 16.) 

Test Length Constraint 

The SPRT procedure using the UIRT 3-PL model had 

similar classification precision under either the test 

length constraint condition or the no test length constraint 

condition (average total error: .0374 vs. .0387). However, 

without the test length constraint, the UIRT 3-PL model 

required fewer items to make the classification (10.8382 vs. 

17.4571) than with the constraint. (See Table 9.) 

For UIRT 1-PL model, however, the test length 

constraint had the opposite effect. Without the test length 
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constraint, the UIRT 1-PL model made fewer average errors 

(.0326 vs. .0514) than with the constraint, but used more 

items (35.9858 vs. 26.5673) than with the constraint. (See 

Table 17.) 

Thus, the test length constraint had little effect on 

error rates for the 3-PL but did have some effect for the 1-

PL model. For the 1-PL model, greater mastery decision 

accuracy was gained when no test length constraint was 

applied than when a test length constraint was applied. 

In common test administration situations, test length 

constraints are always applied for practical concerns (e.g., 

content coverage, item exposure rate control). Thus, it 

appears that the UIRT 3-PL model might be better in such 

situations. Moreover, the range of the test length 

constraint can be set differently. It would appear to be 

better to set a higher maximum number, if the UIRT 1-PL 

model is used.  

Level of Cut-Score 

Both models showed similar patterns across different 

cut-scores: (1) the greatest false positive error rates were 

at P(θc)=.6 and the least were at P(θc)=.8; (2) the greater 

the level of the cut-score, the less the false positive 

error and the less the NI; and (3) the total error rates 

were similar at P(θc)=.4 and 6. 
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Although the average type I, type II, and total errors 

were similar for both models, within each cut-score, the 1-

PL model constantly required more items (over 2 times) to 

make the mastery decision. In other words, the UIRT 1-PL 

model was not as efficient as the 3-PL model. 

Also, for both models, the highest type I error rates 

were always at P(θc)=.4 and the highest type II error rates 

were always at P(θc)=.6. This results suggest a bias in the 

estimation of θc.  

Section V. Results for rθ 1θ 2 = 1 

The simulated data in this study were based on the two-

dimensional compensatory three-parameter model. Dichotomous 

data were generated with different θ-correlations. Then, 

either the UIRT 3-PL model or the 1-PL model was used to do 

the item calibration and θc estimation. When the correlation 

between θ1 and θ2 is 1, the θc scale could be calculated 

directly from the equation derived in Chapter III. (See 

Table 5 for the θc values.) However, θc based on the derived 

equation for 1-PL model could not be calculated because the 

“true” model underlying the data was 2-D COMIRT 3-PL. 

UIRT 3-PL Model 

Tables 23 and 24 summarize the results for 3-PL model 

with the two different sets of θcs for rθ1θ2=1. The results 

given in Table 23 are derived from the θcs based on 
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estimated item parameters (UIRT 3-PL model.) The results 

given in Table 24 are derived from on the θcs based on true 

item parameters (2-D COMIRT 3-PL model.)  

The results presented in Table 23 are generally 

consistent with the trends displayed in Table 7. However the 

magnitude of the type II error rate was surprisingly high. 

It is hypothesized that the high type II error rates at 

P(θc)=.6 and the relatively high type I error rates at 

P(θc)=.8 were caused in part by a bias in the estimated θc. 

To investigate this hypothesis, the simulation was 

repeated based on the true θcs and the results are 

summarized in Table 24. It was found that the type II error 

rate at P(θc)=.6 was reduced dramatically from about .09 to 

about .04, which is still relatively high. These results 

suggest that the bias associated with the cut-score does 

have an effect on the error rates, but there may also be 

other factors that contribute to those high errors. At this 

time, it is difficult to interpret this result. Further 

research is needed to gain insights into this issue. 

UIRT 3-PL Model versus  

UIRT 1-PL Model  

Table 25 presents the results based on the item 

calibration and θc estimation with the UIRT 1-PL model when 

rθ1θ2=1. Compared with the results of the UIRT 3-PL model 

reported in Table 23, the average type I error, type II 
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error, and total error rates are similar but the average NI 

values are significantly different. In the test length 

constraint condition, the average NI for UIRT 3-PL and 1-PL 

models were 16.7094 and 23.0230, respectively. Without the 

test length constraint condition, the average NI for UIRT 3-

PL and 1-PL models were 7.2085 and 26.7559, respectively. 

Almost 4 times more items were needed for the mastery 

decision when the UIRT 1-PL model was used than when the 

UIRT 3-PL model was used. 

Section VI. Summary 

In the previous sections, the simulated data were 

described and the results of applying the SPRT procedure in 

computerized mastery testing with UIRT 3-PL and 1-PL models 

when the item response were two-dimensional were presented. 

Three variables, θ-correlation, test constraint, and cut-

score level, were manipulated to examine the robustness of 

the UIRT models. The main effects, as well as interaction 

effects were discussed in terms of type I error rate, type 

II error rate, total error rates, and NI.  

Generally, it was found that the manipulated conditions 

had an impact mainly on test efficiency rather than on 

classification accuracy. For example, it was found that as 

the θ-correlation increased, the number of items needed to 

make the mastery decision decreased while the error rates 

remained constant. These results also suggest that these 
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conditions had an effect on item and/or test information, 

which in turn affects the item consumption. These findings 

were consistent with those reported in previous studies 

(e.g., Abdel, Lau, & Spray, 1995, 1996). 

Both UIRT models showed similar patterns across the 

manipulated conditions. However, the UIRT 3-PL model was 

more efficient than the UIRT 1-PL model. Both models had 

similar classification accuracy. However, the 3-PL model 

only used about half items as of the 1-PL model to make the 

mastery decisions. 

Also, it appeared that there was bias in the estimate 

of θc if the true data set was two-dimensional but 

calibrated by UIRT models. For some cut-scores, the UIRT-

estimated θc was underestimated and more type I errors 

occurred; for other cut-scores, the UIRT-estimated θc was 

overestimated and more type II errors occurred. It appeared 

that the θc bias was dependent on the magnitude of the θ-

correlation. 
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CHAPTER V 

CONCLUSIONS AND IMPLICATIONS 

Certification or licensure tests represent an important 

type of achievement test. Such tests are used to help ensure 

that the quality of a profession is maintained. Computerized 

mastery testing (CMT) is the label given to certification 

tests that are administered in a computerized adaptive 

format. For convenience and availability, unidimensional IRT 

models are almost always adopted in CMT to assist item 

parameter calibration, θ-estimation, item 

selection/administration, and mastery decision making. 

However, the unidimensionality assumption will probably be 

violated in most, if not all, situations. 

The purpose of this study was to investigate whether 

the UIRT models used in making mastery decisions with the 

sequential probability ratio test (SPRT) procedure produced 

acceptable classification accuracy when the assumption of 

unidimensionality was violated. Monte Carlo simulation 

techniques were used to examine the robustness of these 

procedures.  

The specific procedures used to study robustness were 

outlined in Chapter III and the results were presented and 
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discussed in Chapter IV. In this chapter, conclusions based 

on these results are presented and their implications to 

practical testing situations are discussed. The strengths 

and limitations of this study and directions for further 

research are also considered. Four sections are contained in 

this chapter: (1) Conclusions, (2) Practical Implications, 

(3) Limitations and Strengths, and (4) Recommendation for 

Future Study. 

Section I. Conclusions 

The major conclusions about the SPRT procedure, the 

UIRT models, the test length constraint, and the cut-score 

levels are presented below. 

SPRT Procedure in CMT 

In this study, the SPRT procedure was found useful and 

robust for making mastery decisions in CMT with parameters 

estimated by either the UIRT 3-PL or the UIRT 1-PL models 

even when the unidimensionality assumption was violated. The 

actual average (across the two UIRT models) type I and type 

II error rates were .0164 and .0237, respectively. These 

results suggest that SPRT is an effective method to control 

error rates even when the unidimensionality assumption is 

violated.  

The Appendix displays one of the outputs of the 

MIRTSPRT program. In this run, the cut-score was .4 (the 
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corresponding θc was -.132). In this Appendix, it can be 

seen that as the function (FUNC) based on the true model 

departed more from the cut-score, fewer classification 

errors occurred and fewer items were needed to make the 

mastery decision. In other words, type I and type II errors 

happened mainly in these “marginal” examinees. Passing a 

borderline examinee would seem to be a less serious error 

than passing an examinee whose ability level is far away 

from the required ability.  

As indicated above, the average type I error rate was 

less than the average type II error rate. In general, a type 

II error (false negative) is not as serious as type I error 

(false positive) in the context of certification testing 

because there are usually other opportunities to retake the 

test. However, passing an unqualified candidate is 

potentially more harmful.  

In view of the above, it can be concluded that the SPRT 

procedure using unidimensional item calibration models is a 

promising procedure for making mastery decisions, even when 

the test response data are two-dimensional. 

Usefulness of UIRT Models 

Generally speaking, both the UIRT 3-PL and 1-PL models 

were robust with respect to error rates. The violation of 

the unidimensionality assumption primarily had an impact on 

test efficiency and not on classification accuracy. This was 
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also true for the other factors of interest in this study. 

The error rates were generally within a reasonable range. 

False positive rates were lower than false negative rates in 

most of the conditions. 

Although the underlying response data were based on a 

two-dimensional COMIRT model, the classification accuracy of 

UIRT 1-PL model was similar to that of the UIRT 3-PL model. 

However, the item-consumption of UIRT 1-PL model was twice 

that of the UIRT 3-PL model. 

Based on these results, it is concluded that both 

unidimensional IRT models are robust and useful for 

parameter estimation and for assisting in the mastery 

classification decision making. With respect to test 

efficiency, the UIRT 3-PL model performs better than UIRT 1-

PL model. With respect to classification accuracy, both 

models perform adequately. 

Test Length Constraint 

The two unidimensional models showed a different 

pattern of error rates and item-consumption when the test 

length constraint was changed. 

The classification accuracy of the UIRT 3-PL model was 

similar under both test length conditions. However, for the 

UIRT 1-PL model, when the maximum number of items was set to 

50, the classification errors increased relative to the no 

constraint condition. 
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Also, the test length constraint had different effects 

in terms of test efficiency for these two UIRT models. For 

the UIRT 3-PL model, if a test length constraint was 

applied, the test efficiency was less than when there was no 

constraint. For the UIRT 1-PL model, the test efficiency was 

greater with the constraint condition as compared to the no 

constraint condition. 

Based on these results, it is concluded that the impact 

of a test length constraint on classification accuracy and 

efficiency depends on which unidimensional model is used.  

Location of Cut-Score  

When the unidimensionality assumption was violated, the 

results of this study suggested an existence of a bias in 

the determination of θc. That is, if the response data were 

two-dimensional but the item parameters and θc were 

estimated by UIRT models, θc might be overestimated at some 

points and underestimated at other points. If the θc is 

overestimated, the false negative error rate would be 

greater than false positive error rate. If the θc is 

underestimated, the false positive error rate would be 

greater than negative positive error rate. 

Based on these results, it is concluded that violation 

of the unidimensionality assumption will cause bias in the 

estimation of θc, which in turn will cause differential 

classification errors. 
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Section II. Practical Implications 

In almost all practical testing situations, the 

unidimensionality assumption does not hold absolutely. The 

results of this study indicate that violations of the 

unidimensionality assumption (in terms of changing the θ-

correlation) do not significantly increase error rates. It 

may cause the testing procedure to use more items to make 

the mastery decisions but the average number of items used 

is still within a reasonable range for most testing 

situations. Based on the results of this study, test 

practitioners should feel confident about adopting an UIRT-

SPRT procedure for certification testing even when the 

response data are two-dimensional. 

UIRT Models 

Theoretically, the UIRT 3-PL model is less restrictive 

than the UIRT 1-PL model. (That is, it allows for guessing 

and for different discrimination parameter values within a 

test). Therefore, the UIRT 3-PL model should fit the item 

data better than the UIRT 1-PL model, especially with a 

multiple choice item format. Practically, compared with the 

UIRT 3-PL model, the UIRT 1-PL model is simpler and usually 

requires smaller sample sizes for accurate item calibration. 

For this reason, the Rasch model is often adopted in 

certification testing situations. The results of this study 
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suggest that 1-PL model is a useful option, even when the 

unidimensionality assumption is violated to some degree. 

Although the underlying response data was based on a 

two-dimensional COMIRT 3-PL model, both the UIRT 3-PL and 

the 1-PL models were found robust and yielded acceptable 

classification accuracy across different conditions with the 

SPRT procedure was used. Thus, if the primary concern is to 

control error rates, using either the UIRT 3-PL or 1-PL 

model can be defended.  

However, the UIRT 3-PL model seems to perform more 

efficiently and is more stable than the UIRT 1-PL model. If 

other conditions are the same, the UIRT 3-PL model should 

have the first priority to be used. However, if the 

available calibration sample size is small and test length 

is not a major concern, it may be preferable to use UIRT 1-

PL model. 

Test Length Constraint 

To control the exposure rate and test security, a test 

length constraint is commonly implemented in CMT. Based on 

the results of this study, if the unidimensionality 

assumption is violated, the effects of using a test length 

constraint could be different depending on the UIRT model 

used. Both test efficiency and classification accuracy can 

be influenced. The results of this study suggest that: (1) 

if the UIRT 3-PL model is adopted, set a lower minimum 
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number of items to gain higher test efficiency; (2) if the 

UIRT 1-PL model is adopted, set a higher maximum number of 

items to gain higher classification accuracy. 

Test Difficulty 

 Tests differ in their difficulty. In CMT, the level of 

difficulty determines the location of θc. Based on the 

results of this study, if the unidimensionality assumption 

is violated, the location of θc could increase type I error 

rates at some points but increase type II error rates at 

other points. However, for tests with high cut-score (e.g., 

.8), the impact is relatively small.  

Section III. Strengths and Limitations 

Strengths of this Study 

This study addressed important questions related to 

applications of computerized mastery testing. It was based 

on simulation procedures. Four factors: (1) type of UIRT 

model, (2) degree of θ-correlation, (3) presence or absence 

test length constraint, and (4) level of cut-score within 

CMT were investigated. These represent important 

considerations that are of interest when using CMT. This 

study provides substantial information about the impact of 

each of these factors on classification accuracy and test 

efficiency. 
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Because this study used simulation procedures, the true 

item parameters were fixed and the factors of interest could 

be manipulated directly. Also, because this study used 

“large response data sets”, sampling error concerns were 

minimal.  

Limitations of this Study 

Two important considerations in CMT, content balance 

and item exposure control, were not considered in this 

study. The SPRT procedure used here selects items that have 

maximum information at the cutting point and every 

“examinee” was exposed to the same sequence of items. Item 

exposure rate is a serious concern in many CAT situations. 

The other limitations of this study are mainly due to 

the research design. Only four factors were examined in this 

study. These limitations are discussed below. 

Data Set 

The two-dimensional item parameters used to generate 

dichotomous responses were based on six test forms (60 items 

each form) of ACT Assessment Mathematics tests. The test 

content and test characteristics are limited to these 360 

item parameters and the representativeness of these 

conditions is unknown. Because the results were based on 

two-dimensional data set, which is the simplest 
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multidimensional case, the conclusions might not be 

generalized to more complex multidimensional situations.  

Test Conditions 

One level of the test length constraint condition and 

three levels of cut-score were examined. Thus, the 

conclusions are restricted to these limited conditions. 

SPRT Procedure 

Within the SPRT procedure, the width of indifference 

region and the nominal error rates were fixed for all 60 

conditions. No knowledge was gained in this study concerning 

how the changes in the indifference region and nominal error 

rates would impact the actual error rates and item 

consumption. 

Section IV. Recommendation  

for Future Study 

It is said that you cannot do everything at one time. 

In this study, four factors (UIRT model, θ-correlation, test 

length constraint, and cut-score) and sixty conditions were 

investigated. This study should be expanded. More factors 

and/or variations should be investigated in the future so 

that greater generalizability can be achieved. 
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Data Set 

In order to increase representativeness, other kinds of 

tests (e.g., Vocabulary, Reading) and different item pool 

characteristics (e.g., mean, standard deviation, number of 

items) should be used to see if the results are replicated. 

Also, three or more dimensional response data should be 

studied to check the robustness of the UIRT-SPRT procedure 

in more complex situations. 

Test Conditions 

Test length constraint interacted with type of UIRT 

model. More variations of the test length constraint (e.g., 

min. = 1, 15, 30, 45,... by max. = 75, 100, 125, 150,...) 

should be examined to observe this relationship in more 

detail. 

There seems to be an interaction between the θ-

correlation and the θc bias. More cutting points should be 

set so that this relationship can be observed more 

precisely.  

Variation of SPRT Procedure 

With the SPRT procedure, the width of indifference 

region and nominal error rates can be varied. The width of 

the indifference region affects item consumption while the 

nominal error rate influences the observed error rates. In 
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future investigations, different indifference regions and 

nominal error rates should be studied. 

Item Exposure Control 

No item exposure control was adopted in this study. 

There are different methods for item exposure control (e.g., 

parallel booklets) that can be applied in the item selection 

and administration procedures. Item exposure control should 

be included in future studies to make the testing situation 

more realistic and the results more applicable. 

SB versus SPRT 

Sequential Bayes is another procedure employed for item 

selection/administration, mastery decision making, and test 

termination. Few studies have been performed to investigate 

whether the SB procedure can be used in computerized mastery 

testing when the unidimensionality assumption is violated. 

The SPRT and SB procedures could be also compared in terms 

of classification accuracy and efficiency in such studies. 

Different MIRT Models 

In this study, a two-dimensional compensatory MIRT 

three-parameter model (2-D COMIRT 3-PL) was adopted to 

generate response data. There are other COMIRT models such 

as 2-D COMIRT 1-PL, and 2-D COMIRT 2-PL. Also, there are 

other MIRT models such as the noncompensatory (NOCOMIRT) 

model (Sympson, 1978) (2-D NOCOMIRT 1-PL, 2-D NOCOMIRT 2-PL, 
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& 2-D NOCOMIRT 3-PL). Different MIRT models for response 

data sets can be adopted and compared to see if the results 

are similar.  
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Table 1.  Summary Statistics for Original Two-Dimensional 
Item Parameters 

parameter mean SD skewness kurtosis 

     
a1 0.93 0.38 0.98 2.59 
a2 0.64 0.53 1.25 2.30 
d -0.79 1.20 -0.90 0.96 
c 0.18 0.08 0.71 0.21 
     

Note: SD is standard deviation. 
 

 

 

 

Table 2.  Descriptive Statistics of θ1 and θ2 with Different 
Correlations 

rθ1θ2 theta mean SD skewness kurtosis 

      
.00 θ1 -.0221 1.0024 -.0078 -.1611 
 θ2 .0022 1.0018 .0721 .0173 
      
.30 θ1 -.0221 1.0078 -.0078 -.1611 
 θ2 -.0045 .9958 .0540 .0822 
      
.60 θ1 -.0221 1.0024 -.0078 -.1611 
 θ2 -.0114 .9919 .0034 .0657 
      
.90 θ1 -.0221 1.0024 -.0076 -.1611 
 θ2 -.0187 .9940 -.0398 -.0602 
      
1.00 θ1 -.0221 1.002 -.0078 -.1611 
 θ2 -.0221 1.002 -.0078 -.1611 
      

Note: θ1 and θ2 are theta 1 and theta 2. 
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Table 3.  The First Three Eigen-Values  

rθ1θ2 eigen 1 eigen 2 eigen 3 

    
.00 277.67 42.06 22.19 
.30 291.35 34.16 19.01 
.60 303.21 32.32 11.88 
.90 313.68 32.97 7.05 
1.00 316.93 33.27 7.00 
    

 

 

 

 

Table 4.  Means and Standard Deviations of Unidimensional 
Item Parameters 

 UIRT 3-PL UIRT 1-PL 

rθ1θ2 a b c a b c 

       
.00 1.0813 .6678 .1970 .5312 .1727 .000 
 (.4665) (.9496) (.0776)  (1.0274)  
       
.30 1.1811 .5808 .1906 .6057 .1276 .000 
 (.4907) (.8731) (.0747)  (.8942)  
       
.60 1.2819 .5340 .1880 .6749 .0952 .000 
 (.5166) (.8223) (.0749)  (.7998)  
       
.90 1.4113 .4908 .1859 .7396 .0687 .000 
 (.6216) (.7742) (.0759)  (.7265)  
       
1.00 1.4418 .4636 .1839 .7661 .0572 .000 
 (.6271) (.7536) (.0756)  (.7000)  

       

Note: Standard deviations are shown in parentheses. 
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Table 5.  Cut-Scores and Their Corresponding Thetas 

  UIRT 3-PL UIRT 1-PL 

rθ1θ2 cut-score cut-score on θ scale 

    
.00 .4 -.1600 -.3560 
.00 .6 .7920 .7040 
.00 .8 1.6360 1.9640 
    
.30 .4 -.1480 -.3320 
.30 .6 .6960 .5960 
.30 .8 1.4640 1.6960 
    
.60 .4 -.1320 -.3200 
.60 .6 .6440 .5120 
.60 .8 1.3520 1.5000 
    
.90 .4 -.1160 -.3120 
.90 .6 .5960 .4480 
.90 .8 1.2480 1.3520 
    
1.00 .4 -.1240 -.3080 
  (-.1640)  
1.00 .6 .5680 .4240 
  (.4905)  
1.00 .8 1.2080 1.2920 
  (1.0794)  
    

Note: The corresponding theta estimates based on 2-D COMIRT 
3-PL model are shown in parentheses. 
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Table 6.  Accumulated Information Value at Each Condition 

  accumulated information 

  UIRT 3-PL UIRT 1-PL 

rθ1θ2 cut-score max=50 max=360 max=50 max=360 

      
.00 .4 27.9562 64.2432 10.1665 59.6267 
.00 .6 52.8911 135.8011 10.1662 59.7696 
.00 .8 63.3480 141.1518 9.8029 41.5512 
      
.30 .4 37.2529 83.7545 13.2217 77.8227 
.30 .6 64.4188 167.0143 13.2210 77.8612 
.30 .8 73.7314 166.9306 12.7553 54.0386 
      
.60 .4 45.1929 100.8731 16.4185 96.7734 
.60 .6 76.0380 198.6984 16.4109 96.8255 
.60 .8 88.9715 197.3844 15.8277 67.0963 
      
.90 .4 55.2764 120.1003 19.7152 116.4226 
.90 .6 91.6467 234.4135 19.7052 116.4356 
.90 .8 114.8079 241.5028 18.9875 80.3927 
      
1.00 .4 58.0903 127.7852 21.1499 125.1073 
1.00 .6 98.9188 249.2493 21.1489 124.9657 
1.00 .8 111.9223 244.9277 20.3591 86.4154 
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Table 7.  UIRT 3-PL Model: Error Rates and NI 

 
rθ1θ2 

test 
length 

cut-  
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

       
.00 15,50 .4 .0357 .0245 .0602 21.6876 
.00 15,50 .6 .0189 .0284 .0473 17.8908 
.00 15,50 .8 .0064 .0140 .0204 15.8457 
       
.30 15,50 .4 .0311 .0196 .0507 19.9046 
.30 15,50 .6 .0178 .0295 .0473 17.2173 
.30 15,50 .8 .0071 .0143 .0214 15.8401 
       
.60 15,50 .4 .0245 .0162 .0407 18.8116 
.60 15,50 .6 .0152 .0293 .0445 16.6911 
.60 15,50 .8 .0082 .0140 .0222 15.7345 
       
.90 15,50 .4 .0212 .0111 .0323 17.8631 
.90 15,50 .6 .0048 .0404 .0452 16.4223 
.90 15,50 .8 .0106 .0057 .0163 15.5767 
       
.00 1,360 .4 .0302 .0224 .0506 26.5764 
.00 1,360 .6 .0192 .0292 .0484 12.4604 
.00 1,360 .8 .0067 .0135 .0202 6.1368 
       
.30 1,360 .4 .0249 .0166 .0415 18.4102 
.30 1,360 .6 .0197 .0297 .0494 10.2431 
.30 1,360 .8 .0094 .0152 .0246 6.5742 
       
.60 1,360 .4 .0251 .0159 .0410 14.0345 
.60 1,360 .6 .0173 .0310 .0483 8.1602 
.60 1,360 .8 .0111 .0138 .0249 4.6293 
       
.90 1,360 .4 .0214 .0156 .0370 11.2323 
.90 1,360 .6 .0077 .0449 .0526 7.2471 
.90 1,360 .8 .0168 .0070 .0238 4.3533 
       
       
 average: .0171 .0209 .0380 14.1476 
       

Note: False positive is type I error. False negative is type 
II error. NI is the number of items used. rθ1θ2 is the 
value of correlation between the two thetas. 
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Table 8.  UIRT 3-PL Model: Average Error Rates and NI for 
Different Theta Correlations 

 
rθ1θ2 

false 
positive 

false 
negative 

total 
error 

 
NI 

     
.00 .0195 .0220 .0415 16.7663 
.30 .0184 .0208 .0392 14.6983 
.60 .0169 .0200 .0369 13.0102 
.90 .0138 .0208 .0346 12.1158 
     

 

 

 

Table 9.  UIRT 3-PL Model: Average Error Rates and NI for 
Different Test Length Constraints 

test 
length 

false 
positive 

false 
negative 

total 
error 

 
NI 

     
15,50 .0168 .0206 .0374 17.4571 

     
1,360 .0175 .0212 .0387 10.8382 

     
 

 

 

Table 10. UIRT 3-PL Model: Average Error Rates and NI for 
Different Cut-Scores 

 
cut-score 

false 
positive 

false 
negative 

total 
error 

 
NI 

     
.4 .0268 .0178 .0445 18.5651 
.6 .0151 .0328 .0479 13.2916 
.8 .0096 .0122 .0218 10.5864 
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Table 11. UIRT 3-PL Model: Average Error Rates and NI for 
Different Theta Correlations and Test Length 
Constraints 

 
rθ1θ2 

test 
length 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
.00 15,50 .0203 .0223 .0426 18.4747 
.30 15,50 .0187 .0211 .0398 17.6540 
.60 15,50 .0160 .0198 .0358 17.0791 
.90 15,50 .0122 .0191 .0313 16.6207 
      
.00 1,360 .0187 .0217 .0404 15.0579 
.30 1,360 .0180 .0205 .0385 11.7425 
.60 1,360 .0178 .0202 .0380 8.9413 
.90 1,360 .0153 .0225 .0378 7.6109 
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Table 12. UIRT 3-PL Model: Average Error Rates and NI for 
Different Theta Correlations and Cut-Scores 

 
rθ1θ2 

cut- 
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
.00 .4 .0330 .0235 .0564 24.1320 
.00 .6 .0191 .0288 .0479 15.1756 
.00 .8 .0066 .0138 .0203 10.9913 
      
.30 .4 .0280 .0181 .0461 19.1574 
.30 .6 .0188 .0296 .0484 13.7302 
.30 .8 .0083 .0148 .0230 11.2072 
      
.60 .4 .0248 .0161 .0409 16.4231 
.60 .6 .0163 .0302 .0464 12.4257 
.60 .8 .0097 .0139 .0236 10.1819 
      
.90 .4 .0213 .0134 .0347 14.5477 
.90 .6 .0063 .0427 .0489 11.8347 
.90 .8 .0137 .0064 .0201 9.9650 
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Table 13. UIRT 3-PL Model: Average Error Rates and NI for 
Different Cut-Scores and Test Length Constraints 

cut- 
score 

test 
length 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
.4 15,50 .0281 .0179 .0460 19.5667 
.6 15,50 .0142 .0319 .0461 17.0554 
.8 15,50 .0081 .0120 .0201 15.7493 
      
.4 1,360 .0254 .0176 .0430 17.5634 
.6 1,360 .0160 .0337 .0497 9.5277 
.8 1,360 .0110 .0124 .0234 5.4234 
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Table 14. Summary of the Results for the UIRT 3-PL Model 

factors of interest effects 

  

rθ1θ2 NI 

TLC NI 

P(θc) I, NI 

  

rθ1θ2 x TLC NI 

rθ1θ2 x P(θc) I, II, total error, NI 

TLC X P(θc) NI 

  

rθ1θ2 x TLC x P(θc NI 

  

Note: TLC is test length constraint. I is type I error. II 
is type II error. Total is I + II. NI is number of 
items used. 
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Table 15. UIRT 1-PL Model: Error Rates and NI 

 
rθ1θ2 

test 
length 

cut-  
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

       
.00 15,50 .4 .0441 .0393 .0834 35.4067 
.00 15,50 .6 .0110 .0448 .0558 32.5814 
.00 15,50 .8 .0030 .0190 .0220 22.4648 
       
.30 15,50 .4 .0531 .0231 .0762 32.0791 
.30 15,50 .6 .0137 .0369 .0506 28.9062 
.30 15,50 .8 .0019 .0246 .0265 21.0503 
       
.60 15,50 .4 .0485 .0224 .0709 29.3455 
.60 15,50 .6 .0073 .0478 .0551 26.5075 
.60 15,50 .8 .0017 .0278 .0295 19.9266 
       
.90 15,50 .4 .0518 .0108 .0626 27.3215 
.90 15,50 .6 .0033 .0607 .0640 24.1686 
.90 15,50 .8 .0017 .0189 .0206 19.0490 
       
.00 1,360 .4 .0270 .0155 .0425 61.0561 
.00 1,360 .6 .0053 .0257 .0310 48.3970 
.00 1,360 .8 .0016 .0121 .0137 27.8600 
       
.30 1,360 .4 .0265 .0140 .0405 49.4524 
.30 1,360 .6 .0039 .0307 .0346 39.5341 
.30 1,360 .8 .0020 .0158 .0178 25.3111 
       
.60 1,360 .4 .0306 .0131 .0437 41.4159 
.60 1,360 .6 .0029 .0350 .0379 33.6958 
.60 1,360 .8 .0012 .0163 .0175 22.4135 
       
.90 1,360 .4 .0292 .0089 .0381 34.3713 
.90 1,360 .6 .0018 .0618 .0636 28.7407 
.90 1,360 .8 .0018 .0076 .0094 19.5811 
       
       
 average: .0156 .0264 .0420 31.2765 
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Table 16. UIRT 1-PL Model: Average Error Rates and NI for 
Different Theta Correlations 

 
rθ1θ2 

false 
positive 

false 
negative 

total 
error 

 
NI 

     
.00 .0154 .0261 .0415 37.9610 
.30 .0169 .0242 .0411 32.7222 
.60 .0154 .0271 .0425 28.8842 
.90 .0149 .0281 .0430 25.5387 
     

 

 

 

Table 17. UIRT 1-PL Model: Average Error Rates and NI for 
Different Test Length Constrtaints 

test 
length 

false 
positive 

false 
negative 

total 
error 

 
NI 

     
15,50 .0201 .0313 .0514 26.5673 

     
1,360 .0112 .0214 .0326 35.9858 

     
 

 

 

Table 18. UIRT 1-PL Model: Average Error Rates and NI for 
Different Cut-Scores 

 
cut-score 

false 
positive 

false 
negative 

total 
error 

 
NI 

     
.4 .0389 .0184 .0573 38.8061 
.6 .0062 .0430 .0491 32.8194 
.8 .0019 .0178 .0197 22.2071 
     

 

 



122 

Table 19. UIRT 1-PL Model: Average Error Rates and NI for 
Different Theta Correlations and Test Length 
Constraints 

 
rθ1θ2 

test 
length 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
.00 15,50 .0194 .0344 .0538 30.1510 
.30 15,50 .0229 .0282 .0511 27.3452 
.60 15,50 .0192 .0327 .0519 25.2599 
.90 15,50 .0189 .0301 .0490 23.5130 
      
.00 1,360 .0113 .0178 .0291 45.7710 
.30 1,360 .0108 .0202 .0310 38.0992 
.60 1,360 .0116 .0215 .0331 32.5084 
.90 1,360 .0109 .0261 .0370 27.5644 
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Table 20. UIRT 1-PL Model: Average Error Rates and NI for 
Different Theta Correlations and Cut-Scores 

 
rθ1θ2 

cut- 
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
.00 .4 .0356 .0274 .0630 48.2314 
.00 .6 .0082 .0353 .0434 40.4892 
.00 .8 .0023 .0156 .0179 25.1624 
      
.30 .4 .0398 .0186 .0584 40.7658 
.30 .6 .0088 .0338 .0426 34.2202 
.30 .8 .0020 .0202 .0222 23.1807 
      
.60 .4 .0396 .0178 .0573 35.3807 
.60 .6 .0051 .0414 .0465 30.1017 
.60 .8 .0015 .0221 .0235 21.1701 
      
.90 .4 .0405 .0099 .0504 30.8464 
.90 .6 .0026 .0613 .0638 26.4547 
.90 .8 .0018 .0133 .0150 19.3151 
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Table 21. UIRT 1-PL Model: Average Error Rates and NI for 
Different Cut-Scores and Test Length Constraints 

cut- 
score 

test 
length 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
.4 15,50 .0494 .0239 .0733 31.0382 
.6 15,50 .0088 .0476 .0564 28.0409 
.8 15,50 .0021 .0226 .0247 20.6227 
      
.4 1,360 .0283 .0129 .0412 46.5739 
.6 1,360 .0035 .0383 .0418 37.5979 
.8 1,360 .0017 .0130 .0146 23.7914 
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Table 22. Summary of the Results for the UIRT 1-PL Model 

factors of interest effects 

  

rθ1θ2 NI 

TLC total error, NI 

P(θc) I, total error, NI 

  

rθ1θ2 x TLC NI 

rθ1θ2 x P(θc) II, total error, NI 

TLC X P(θc) I, total error, NI 

  

rθ1θ2 x TLC x P(θc) II, total error, NI 
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Table 23. P(θc) Esimation Based on UIRT 3-PL Model: Average 
Error Rates and NI for rθ1θ2=1 

test 
length 

cut- 
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
15,50 .4 .0018 .0286 .0304 17.5820 
15,50 .6 .0000 .0922 .0922 16.7648 
15,50 .8 .0266 .0000 .0266 15.7814 

      
 average: .0095 .0403 .0497 16.7094 
      

1,360 .4 .0035 .0260 .0295 9.9665 
1,360 .6 .0007 .0946 .0953 7.5881 
1,360 .8 .0326 .0000 .0326 4.0709 

      
 average: .0123 .0402 .0525 7.2085 
      
 

 

 

Table 24. P(θc) Calculation Based on 2-D COMIRT 3-PL model: 
Average Error Rates and NI for rθ1θ2=1 

test 
length 

cut-  
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
15,50 .4 .0035 .0160 .0195 17.5935 
15,50 .6 .0007 .0388 .0394 16.3329 
15,50 .8 .0723 .0000 .0723 16.1449 

      
 average: .0255 .0183 .0438 16.6904 
      

1,360 .4 .0029 .0173 .0202 9.9961 
1,360 .6 .0013 .0488 .0501 6.0488 
1,360 .8 .0778 .0000 .0778 4.3439 

      
 average: .0273 .0220 .0494 6.7963 
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Table 25. P(θc) Esimation Based on UIRT 1-PL Model: Average 
Error Rates and NI for rθ1θ2=1 

test 
length 

cut-  
score 

false 
positive 

false 
negative 

total 
error 

 
NI 

      
15,50 .4 .0151 .0346 .0497 26.5567 
15,50 .6 .0007 .1081 .1088 23.8232 
15,50 .8 .0057 .0002 .0059 18.6891 

      
 average: .0072 .0476 .0548 23.0230 
      

1,360 .4 .0070 .0153 .0223 30.9595 
1,360 .6 .0000 .1187 .1187 31.0374 
1,360 .8 .0044 .0002 .0046 18.2709 

      
 average: .0038 .0447 .0485 26.7559 
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 6 forms of ACT Assessment Mathematics- 
each form has 60 items responded to 
by 2000 randomly drawn examinees 

 
 
 
 

NOHARM 
 
 
 
 

original 
a1, a2, d,& c 

 
 
 
 

GENMIRT 
 
 
 
 

different correlations between θ  & θ2 1
(0.00, 0.30, 0.60, 0.90, 1.00 ) 

 
 
 
 

5 sets of 1/0 responses for 
2000 “examinees” based on 
the true test parameters 

 

Figure 1. Dichotomous response data generation procedure 
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    S1. pairs of thetas (θ1,θ2) drawn 
    from a bivariate normal 
    distribution. 
 
 
 
    S2. input 2-D COMIRT 3-PL  
    item parameters.  
     
 
 
    S3. calculate P(X=1|θ1,θ2) and  
    compare the probability with 
    the value randomly drawn from 
    a uniform distribution ranged 
    from 0 to 1 (U(0,1)). 
    if P(X=1|θ1,θ2)≥U(0,1), X=1. 
    if P(X=1|θ1,θ2)<U(0,1), X=0. 
 
 
 
    S4. repeat S2-S3 for 
    all the 360 items. 
 
 
 
    S5. repeat S1-S4 2000 times 
    to obtain a 2000-by-360 matrix 
    of 1/0 data. 

 

Figure 2. Method for generate dichotomous responses in 
GENMIRT 
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PT(θ) 

0
0.1
0.2

0.3
0.4
0.5
0.6

0.7
0.8
0.9

1

-3 -2.8 -2.5 -2.3 -2 -1.8 -1.5 -1.3 -1 -0.8 -0.5 -0.3 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
 

θ 

Figure 3. Illustration of the mapping of pT(θc) to θc 
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MIRTSPRT 
 
 
 
 
 2-D COMIRT 3-PL       UIRT 

 
 

       S1. compute IIF with UIRT. 
       S2. rank items according to  
       IIF at the cutting point. 
       S3. select items in UIRT one 
       by one. 
       S4. compute P(θ0) & P(θ1) at 
       UIRT cutting point. 
 
 

S5. generate 1/0 responses with  
(θj1,θj2) for COMIRT items  
corresponding to S3. 

 
 
       S6. determine the pass/fail 
       status in the UIRT model 
       by likelihood ratio. 
 
 

S7. determine the pass/fail status 
in the COMIRT model by using  
threshold function f(θ1,θ2). 

 
 
 
     S8. compare results of  
     S6 & S7.  
     S9. repeat S1-S8 300 
     times and compute % of 
     type I, II errors, 
     & # of items used. 
 
 
 
Note: IIF is the item information function. S represents 

step. S1-S8 represent steps 1 through 8. 

 

Figure 4. Type I and type II error calculation using 
MIRTSPRT 
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P=0.8

P=0.4

 

Figure 5. Threshold function contour 
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 true test parameter 
 based on 
 2-D COMIRT 3-PL 
 
       5 sets of 1/0 responses based 
       on true test parameters with  
       different theta correlation  
       generated by GENMIRT 

 
 
 

         BILOG 
 
 

         UIRT 
          (1-PL, 3-PL) 
 
 
        10 sets of false 
        test parameters 
        based on UIRT 
  
          

f(θ1,θ2) = 
1

360
1

1

360
1 2Pi j j

i
θ θ,

=
∑  - cutting point  UTCC 

cutting point = 0.4, 0.6, & 0.8 
 
 
        map corresponding 
        theta by PT(θc)=0.4, 
        0.6, & 0.8 

  
 

MIRTSPRT 
 
 

different test length constraints 
different cut-scores 

 
 

       % of type I error 
       % of type II error 
       # of items used 
 
 

Figure 6. Data analysis flow chart 
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  UIRT (false) 

  pass fail 

MIRT (true) pass  type II error 

fail type I error  

 

Figure 7. Type I and type II error definition in MIRTSPRT 
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APPENDIX 

MIRTSPRT OUTPUT 
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*****          MIRTSPRT  OUTPUT  ***** 
 
FUNC Theta1 Theta2   NI   H0   H1   TI   TII 
        
0.187 -3.00 -3.00 5.950 1.000 0.000 0.000 0.000 
0.188 -3.00 -2.50 5.570 1.000 0.000 0.000 0.000 
0.189 -3.00 -2.00 5.640 1.000 0.000 0.000 0.000 
0.191 -3.00 -1.50 6.037 1.000 0.000 0.000 0.000 
0.194 -3.00 -1.00 6.063 1.000 0.000 0.000 0.000 
0.198 -3.00 -0.50 5.797 1.000 0.000 0.000 0.000 
0.204 -3.00 0.00 5.877 1.000 0.000 0.000 0.000 
0.211 -3.00 0.50 5.957 1.000 0.000 0.000 0.000 
0.222 -3.00 1.00 6.287 1.000 0.000 0.000 0.000 
0.239 -3.00 1.50 7.143 0.997 0.003 0.003 0.000 
0.263 -3.00 2.00 9.787 0.997 0.003 0.003 0.000 
0.296 -3.00 2.50 17.903 0.980 0.020 0.020 0.000 
0.339 -3.00 3.00 24.727 0.910 0.090 0.090 0.000 
0.192 -2.50 -3.00 5.693 1.000 0.000 0.000 0.000 
0.194 -2.50 -2.50 6.073 1.000 0.000 0.000 0.000 
0.196 -2.50 -2.00 5.990 1.000 0.000 0.000 0.000 
0.198 -2.50 -1.50 5.867 1.000 0.000 0.000 0.000 
0.202 -2.50 -1.00 5.970 1.000 0.000 0.000 0.000 
0.208 -2.50 -0.50 5.847 1.000 0.000 0.000 0.000 
0.216 -2.50 0.00 5.817 1.000 0.000 0.000 0.000 
0.227 -2.50 0.50 6.403 1.000 0.000 0.000 0.000 
0.242 -2.50 1.00 6.493 1.000 0.000 0.000 0.000 
0.265 -2.50 1.50 9.727 1.000 0.000 0.000 0.000 
0.298 -2.50 2.00 16.140 0.977 0.023 0.023 0.000 
0.341 -2.50 2.50 27.813 0.877 0.123 0.123 0.000 
0.393 -2.50 3.00 37.893 0.633 0.367 0.367 0.000 
0.201 -2.00 -3.00 5.503 1.000 0.000 0.000 0.000 
0.203 -2.00 -2.50 5.907 1.000 0.000 0.000 0.000 
0.206 -2.00 -2.00 6.133 1.000 0.000 0.000 0.000 
0.210 -2.00 -1.50 6.150 1.000 0.000 0.000 0.000 
0.216 -2.00 -1.00 6.113 0.997 0.003 0.003 0.000 
0.223 -2.00 -0.50 5.990 1.000 0.000 0.000 0.000 
0.234 -2.00 0.00 6.053 1.000 0.000 0.000 0.000 
0.250 -2.00 0.50 6.653 1.000 0.000 0.000 0.000 
0.273 -2.00 1.00 8.947 0.997 0.003 0.003 0.000 
0.305 -2.00 1.50 15.657 0.967 0.033 0.033 0.000 
0.348 -2.00 2.00 29.460 0.813 0.187 0.187 0.000 
0.403 -2.00 2.50 42.930 0.453 0.547 0.000 0.453 
0.463 -2.00 3.00 25.030 0.070 0.930 0.000 0.070 
0.214 -1.50 -3.00 5.977 1.000 0.000 0.000 0.000 
0.217 -1.50 -2.50 5.740 1.000 0.000 0.000 0.000 
0.222 -1.50 -2.00 6.050 1.000 0.000 0.000 0.000 
0.228 -1.50 -1.50 5.847 1.000 0.000 0.000 0.000 
0.236 -1.50 -1.00 6.247 1.000 0.000 0.000 0.000 
0.247 -1.50 -0.50 6.703 1.000 0.000 0.000 0.000 
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0.263 -1.50 0.00 7.240 1.000 0.000 0.000 0.000 
0.286 -1.50 0.50 8.977 1.000 0.000 0.000 0.000 
0.318 -1.50 1.00 16.410 0.977 0.023 0.023 0.000 
0.362 -1.50 1.50 40.897 0.770 0.230 0.230 0.000 
0.418 -1.50 2.00 33.697 0.213 0.787 0.000 0.213 
0.482 -1.50 2.50 15.303 0.033 0.967 0.000 0.033 
0.546 -1.50 3.00 10.780 0.007 0.993 0.000 0.007 
0.233 -1.00 -3.00 5.953 0.997 0.003 0.003 0.000 
0.238 -1.00 -2.50 6.010 1.000 0.000 0.000 0.000 
0.245 -1.00 -2.00 6.397 1.000 0.000 0.000 0.000 
0.254 -1.00 -1.50 6.227 0.997 0.003 0.003 0.000 
0.266 -1.00 -1.00 7.080 1.000 0.000 0.000 0.000 
0.282 -1.00 -0.50 7.857 1.000 0.000 0.000 0.000 
0.305 -1.00 0.00 9.753 1.000 0.000 0.000 0.000 
0.338 -1.00 0.50 21.987 0.950 0.050 0.050 0.000 
0.383 -1.00 1.00 42.960 0.573 0.427 0.427 0.000 
0.439 -1.00 1.50 24.913 0.090 0.910 0.000 0.090 
0.506 -1.00 2.00 10.410 0.017 0.983 0.000 0.017 
0.576 -1.00 2.50 7.577 0.000 1.000 0.000 0.000 
0.638 -1.00 3.00 5.730 0.000 1.000 0.000 0.000 
0.259 -0.50 -3.00 6.210 1.000 0.000 0.000 0.000 
0.266 -0.50 -2.50 6.447 1.000 0.000 0.000 0.000 
0.276 -0.50 -2.00 6.717 1.000 0.000 0.000 0.000 
0.289 -0.50 -1.50 7.570 1.000 0.000 0.000 0.000 
0.307 -0.50 -1.00 9.760 0.993 0.007 0.007 0.000 
0.331 -0.50 -0.50 13.340 0.990 0.010 0.010 0.000 
0.365 -0.50 0.00 33.217 0.897 0.103 0.103 0.000 
0.410 -0.50 0.50 46.097 0.270 0.730 0.000 0.270 
0.467 -0.50 1.00 12.240 0.010 0.990 0.000 0.010 
0.535 -0.50 1.50 7.650 0.000 1.000 0.000 0.000 
0.608 -0.50 2.00 5.673 0.000 1.000 0.000 0.000 
0.675 -0.50 2.50 4.657 0.000 1.000 0.000 0.000 
0.729 -0.50 3.00 4.480 0.000 1.000 0.000 0.000 
0.292 0.00 -3.00 7.423 1.000 0.000 0.000 0.000 
0.303 0.00 -2.50 8.213 1.000 0.000 0.000 0.000 
0.318 0.00 -2.00 9.103 1.000 0.000 0.000 0.000 
0.338 0.00 -1.50 14.447 1.000 0.000 0.000 0.000 
0.363 0.00 -1.00 25.510 0.930 0.070 0.070 0.000 
0.397 0.00 -0.50 56.527 0.627 0.373 0.373 0.000 
0.443 0.00 0.00 31.000 0.090 0.910 0.000 0.090 
0.501 0.00 0.50 9.617 0.007 0.993 0.000 0.007 
0.568 0.00 1.00 5.863 0.000 1.000 0.000 0.000 
0.641 0.00 1.50 4.950 0.000 1.000 0.000 0.000 
0.711 0.00 2.00 4.547 0.000 1.000 0.000 0.000 
0.768 0.00 2.50 4.347 0.000 1.000 0.000 0.000 
0.810 0.00 3.00 4.123 0.000 1.000 0.000 0.000 
0.335 0.50 -3.00 10.493 0.990 0.010 0.010 0.000 
0.352 0.50 -2.50 14.397 0.993 0.007 0.007 0.000 
0.373 0.50 -2.00 26.433 0.953 0.047 0.047 0.000 



138 

0.400 0.50 -1.50 54.233 0.750 0.250 0.250 0.000 
0.434 0.50 -1.00 53.610 0.270 0.730 0.000 0.270 
0.479 0.50 -0.50 17.183 0.017 0.983 0.000 0.017 
0.537 0.50 0.00 8.440 0.000 1.000 0.000 0.000 
0.603 0.50 0.50 5.283 0.000 1.000 0.000 0.000 
0.675 0.50 1.00 4.443 0.000 1.000 0.000 0.000 
0.746 0.50 1.50 4.203 0.000 1.000 0.000 0.000 
0.804 0.50 2.00 4.120 0.000 1.000 0.000 0.000 
0.847 0.50 2.50 4.077 0.000 1.000 0.000 0.000 
0.876 0.50 3.00 4.020 0.000 1.000 0.000 0.000 
0.387 1.00 -3.00 22.427 0.960 0.040 0.040 0.000 
0.410 1.00 -2.50 52.020 0.783 0.217 0.000 0.783 
0.438 1.00 -2.00 55.900 0.437 0.563 0.000 0.437 
0.473 1.00 -1.50 33.257 0.060 0.940 0.000 0.060 
0.517 1.00 -1.00 14.277 0.000 1.000 0.000 0.000 
0.572 1.00 -0.50 7.910 0.000 1.000 0.000 0.000 
0.638 1.00 0.00 4.997 0.000 1.000 0.000 0.000 
0.708 1.00 0.50 4.360 0.000 1.000 0.000 0.000 
0.776 1.00 1.00 4.150 0.000 1.000 0.000 0.000 
0.835 1.00 1.50 4.090 0.000 1.000 0.000 0.000 
0.878 1.00 2.00 4.043 0.000 1.000 0.000 0.000 
0.906 1.00 2.50 4.017 0.000 1.000 0.000 0.000 
0.924 1.00 3.00 4.010 0.000 1.000 0.000 0.000 
0.446 1.50 -3.00 56.233 0.410 0.590 0.000 0.410 
0.475 1.50 -2.50 41.847 0.117 0.883 0.000 0.117 
0.510 1.50 -2.00 20.707 0.007 0.993 0.000 0.007 
0.553 1.50 -1.50 10.567 0.000 1.000 0.000 0.000 
0.606 1.50 -1.00 6.833 0.000 1.000 0.000 0.000 
0.669 1.50 -0.50 4.803 0.000 1.000 0.000 0.000 
0.737 1.50 0.00 4.307 0.000 1.000 0.000 0.000 
0.800 1.50 0.50 4.097 0.000 1.000 0.000 0.000 
0.857 1.50 1.00 4.037 0.000 1.000 0.000 0.000 
0.900 1.50 1.50 4.020 0.000 1.000 0.000 0.000 
0.928 1.50 2.00 4.010 0.000 1.000 0.000 0.000 
0.944 1.50 2.50 4.000 0.000 1.000 0.000 0.000 
0.953 1.50 3.00 4.007 0.000 1.000 0.000 0.000 
0.509 2.00 -3.00 27.187 0.037 0.963 0.000 0.037 
0.544 2.00 -2.50 15.907 0.003 0.997 0.000 0.003 
0.586 2.00 -2.00 9.233 0.000 1.000 0.000 0.000 
0.637 2.00 -1.50 7.007 0.000 1.000 0.000 0.000 
0.696 2.00 -1.00 5.247 0.000 1.000 0.000 0.000 
0.759 2.00 -0.50 4.367 0.000 1.000 0.000 0.000 
0.818 2.00 0.00 4.127 0.000 1.000 0.000 0.000 
0.871 2.00 0.50 4.037 0.000 1.000 0.000 0.000 
0.913 2.00 1.00 4.007 0.000 1.000 0.000 0.000 
0.941 2.00 1.50 4.000 0.000 1.000 0.000 0.000 
0.958 2.00 2.00 4.020 0.000 1.000 0.000 0.000 
0.967 2.00 2.50 4.010 0.000 1.000 0.000 0.000 
0.972 2.00 3.00 4.000 0.000 1.000 0.000 0.000 
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0.573 2.50 -3.00 12.200 0.000 1.000 0.000 0.000 
0.614 2.50 -2.50 8.673 0.000 1.000 0.000 0.000 
0.662 2.50 -2.00 6.717 0.000 1.000 0.000 0.000 
0.716 2.50 -1.50 4.957 0.000 1.000 0.000 0.000 
0.775 2.50 -1.00 4.300 0.000 1.000 0.000 0.000 
0.830 2.50 -0.50 4.073 0.000 1.000 0.000 0.000 
0.878 2.50 0.00 4.043 0.000 1.000 0.000 0.000 
0.919 2.50 0.50 4.013 0.000 1.000 0.000 0.000 
0.947 2.50 1.00 4.000 0.000 1.000 0.000 0.000 
0.966 2.50 1.50 4.000 0.000 1.000 0.000 0.000 
0.975 2.50 2.00 4.000 0.000 1.000 0.000 0.000 
0.981 2.50 2.50 4.000 0.000 1.000 0.000 0.000 
0.983 2.50 3.00 4.000 0.000 1.000 0.000 0.000 
0.637 3.00 -3.00 8.303 0.000 1.000 0.000 0.000 
0.682 3.00 -2.50 6.237 0.000 1.000 0.000 0.000 
0.731 3.00 -2.00 5.033 0.000 1.000 0.000 0.000 
0.784 3.00 -1.50 4.320 0.000 1.000 0.000 0.000 
0.835 3.00 -1.00 4.040 0.000 1.000 0.000 0.000 
0.880 3.00 -0.50 4.007 0.000 1.000 0.000 0.000 
0.919 3.00 0.00 4.013 0.000 1.000 0.000 0.000 
0.948 3.00 0.50 4.013 0.000 1.000 0.000 0.000 
0.968 3.00 1.00 4.007 0.000 1.000 0.000 0.000 
0.979 3.00 1.50 4.000 0.000 1.000 0.000 0.000 
0.985 3.00 2.00 4.000 0.000 1.000 0.000 0.000 
0.989 3.00 2.50 4.000 0.000 1.000 0.000 0.000 
0.990 3.00 3.00 4.000 0.000 1.000 0.000 0.000 
 
E(TYPE1) =  .0251   E(TYPE2) =  .0159  E(ERR) =  .0410 
E(NI) =   14.03448 
 
DECPT =  -.1320  
INDIF REGION = (  -.3820   .1180) 
 
Rho =  .6000 
P =  .4000 
 
Alpha =  .0500  beta =  .0500 
SEED = .98765D+00  
 
Maximum Test Length = 360   Minimum Test Length =   1 
Simulation is based on  300 replications for 360 items. 
 

Note: FUNC is computed based on 
1

360
1

1

360
1 2Pi j j

i
θ θ,

=
∑ . Theta1 is 

the first theta, θ1. Theta2 is the second theta, θ2. 
NI is number of items used. H0 is the null hypothesis 
in SPRT. H1 is the alternative hypothesis in SPRT. TI 
is type I error rate. TII is type II error rate. 
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E(TYPE1) is the expected type I error rate. E(TYPE2) 
is the expected type II error rate. E(NI) is the 
expected number of items used. DECPT is the cut-score 
on theta scale. INDIF REGION is the range of lower 
and upper limits set in SPRT. Rho is the θ-
correlation. P is the cut-score. Alpha is the nominal 
type I error rate. Beta is the nominal type II error 
rate. 

 




