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with Item Position in a CAT Sequence

                                     I. A. Krass
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 Introduction

Very often definition of item parameters for item used in Computer Adaptive Test (CAT) is done in Paper
and Pencil (P&P) tests, where examinees ability are distributed approximately normal (Segal et al, 1997).
However in CAT environment ability distribution of examinees, who are getting the given item in the test,
can differ considerably from “original” close to normal distribution. The nature of this phenomena and it
possible influences on item performance in the CAT testing is discussed in the paper.

In this paper, we will use experimental material from the Arithmetic Reasoning (AR) test of the Armed
Services Vocational Aptitude Battery (ASVAB).  About 500,000 examinees take the ASVAB each year,
so we have a rather broad ability distribution of examinees.  We have chosen the AR test from the
ASVAB because some studies show that the AR test is uni-dimensional (Zimowsky & Bock, 1987),
which elevates many complications in the our study.

                                 1. Some Facts from ASVAB Testing

Due to the adaptive nature of a CAT test, the posterior ability distribution of a group of examinees who get
a particular item from a CAT item pool differs drastically from the original ability distribution.  This change
in posterior ability distribution can influence the functioning of following items that were calibrated using
the original distribution, which is typically close to normal )1,0(Ν . Keep in mind that the posterior ability
for the n -th position is the prior distribution for the item given in the )1( +n -th position.
The CAT-ASVAB tests are adaptive, in which the selection of an item is driven by the maximum
information for the particular range of ability.  Note, however, that the item selection process is also
subject to the Sympson-Hetter exposure-control mechanism (Sympson & Hetter, 1985).  All items in the
test are assumed to follow the 3PL model, i.e., any item in the CAT-ASVAB pool is totally characterized
by its discriminating, difficulty, and guessing parameters ),,,( iii cba  Mi ,,1 K= , where M  is the total
number of items in the CAT adaptive pool.

To estimate the change in posterior ability distribution with item position in the CAT sequence, we use data
collected in the last two years from about 300,000 examinees.  As an ability estimator for a particular
examinee, we use his/her CAT ability estimate (CAT score) which is made by successive applications of
Bayesian-Owen and Bayesian-Modal algorithms.
Table1 shows the overall usage of selected items from the AR test of Form 1 of the CAT-ASVAB.
Altogether, the AR-CAT1 pool of adaptive items is 94.

Figure 1 shows the change in prior (posterior for previous step) ability distribution for a few items in the
AR test.  The left graph shows the change in prior ability distribution for a group of examinees that got
items of “average” difficulty in position 1 (item AR0144 with parameters ,57.1=a 11.0,35.0 =−= cb )
and position 8 (item AR0171 with parameters: ,64.1=a  06.0,79.0 == cb ).  The right graph shows
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ability distributions for two items in the same position 11 (an easy item, AR0061 with parameters
05.1=a , 18.0,81.1 =−= cb ; and a hard item, AR0391, with parameters

)25.0,26.1,77.1 === cba .

Figure 1. Change in ability distribution for a group of examinees, who got the given items in
different positions of a CAT sequence.

For the density estimation of ability we use at least 1,200 examinees who get the correspondent item in the
indicated position of their regular AR-CAT ASVAB test.  For the smoothed approximation of density we
use the ForScore algorithm by Dr. M. Levine and B. Williams (1998).  Results show the positive domain
of density of the ability distribution contracts as the test progresses, and at position 8 or higher it usually
has a length of not more than 0.3 on the standard CAT-ASVAB scale (-2.5, 2.5).
      
The described above phenomenon can be traced theoretically. The value of examinee ability

]5.2,5.2[−∈θ  can be approximated by maximizing value of examinee likelihood:
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Characteristic Curve (ICC) for the item i , and Q Pi i( ) ( )θ θ= −1 , and )(θg  is the density of prior

distribution, assumed to be normally distributed: )1,0(Ν . Let’s assume that the examinee reaches item ji
in position Kj < . It can be shown that under some no-divergency conditions (formulated further) and in

absence of exposure control mechanism there is a unique path jk
kkk ui =

=1)},{( , of items and answers to

them which will force an examinee to have item ji  as item number j  in his/her CAT test sequence. Then

we can rewrite examinee likelihood in the form:
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θθ dG j . Then )(θjG  can be considered as the ability distribution for an examinee who gets item

ji  in the j -th position of the CAT test.

For example, for item AR0171, described earlier, to be reached on position  # 8 a “typical” path of item
and answers is shown in the Table 1:

                         Table 1. Example of items chain in AR ASVAB-CAT1 test .

It is easy to see that due to transformation:
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of original prior normal distribution to the intermediate distribution which is prior for the item ji  in the

sequence of the CAT test, any incorrect answer “cut” a little bit the right tail of normal distribution, and
any correct answer “cut” it left tail.

Figure 2 presents the results of the “application” of an incorrect answer in the first element of the
sequence presented above on the normal ability density.  As we can see, the result of the product

)())(1( 1 θθ gP ⋅−  decreased the right tail of the normal distribution, due to the exponential decreasing of

the function ))(1( 1 θP− .  On the other hand, the result of the product )()(1 θθ gP ⋅  in the case of the
correct answer on the first item will cut the left tail of prior distribution.  Under additional constraints, the
distribution )(θjG  is unimodal, with a contracting domain of its positive values when j  is increasing.
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                            Figure 2. Result of first wrong answer on distribution )(θjG .

As we already mentioned any randomization due to exposure control or imprecision in computing of
examinee ability distribution will destroy of the above uniqueness of CAT test sequence. Due to that, as it
can be seen in the Table 2.1 and Table 2.2, the majority of examinees got a particular item beginning from
the curtain position of their test sequence although there are small number of examinees who get this item
on previous positions. This “smoothing” of the rigid “barrier” allocation pattern is due mostly to
randomization caused by exposure control in CAT ASVAB. Examples in the tables 2.2 and 2.2 shows that
the phenomena for the item to be first time “administered” to the examinee on the “late” position in the
CAT test can appear for more or less “normal” items. For example, item AR0171 which is not very hard
item first time administered to the group of examinees large enough for calibration beginning from the
position 8. In this case we have some administration of the item on previous positions 6 and 7, probably
due to item exposure mechanism.

        
             Table 2.1. Example of factual item usage in AR ASVAB-CAT1 test .
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              Table 2.2. Items from AR CAT1 pool correspondent to the Table 1.1.

The uniqueness of the sequence in the CAT test is closely connected with uniqueness of CAT  “solution”
in the sense of the CAT sequence for the examinee with the given ability. In the Appendix we will explore
condition of the uniqueness in the case of Bayesian approach in computing of the next best item for an
examinee with the given ability (which is used in CAT-ASVAB) as well as for the case of maximum
likelihood “on fly” estimation of examinee ability (which with special fast maximizing algorithms can be
used in CAT environment).

                                  2. Recalibration of Adaptive Items.

The ability to recalibrate CAT adaptive item is very important in CAT testing environment because with
time some items began to be compromised and some items are losing original sense, especially in technical
tests, due to technology change.

The CAT ASVAB has a built in mechanism for calibration of new items – the seeded item scheme (Segal
et al, 1997). In the seeded item scheme, a new item (candidate for calibration) is given to every examinee
in the second, third or fourth position of each test. The item is chosen randomly from the set of seeded
items (currently the set contains 100 new items per test). With this approach we collect answers for a
new item in operational environment, which increase precision of testing. Our calibration packages require
to have at least 1,200 answers for a new item in order to obtain statistically stable estimation of its
parameters (Krass, 1998).

To recalibrate CAT adaptive items we developed a pseudo-seeded item scheme. If in the set of studied
CAT tests (usually we have about 500,000 CAT tests), we found that the particular CAT adaptive item
used more than 1,200 times in the same position for the different examinees. We took the correspondent
subset of tests as the set of tests in pseudo-seeded item approach for the given adaptive item. We
consider in this case the adaptive item as a seeded item and eliminate from the test position on which the
adaptive item was applied artificially decreasing the length of the test. For example in Table 1 the item
AR0171 can be considered as pseudo seeded item on positions 8 through 15, and length of the test will be
14 instead of 15 for the real AR test. This approach is giving possibility of recalibrate of great majority of
CAT adaptive items and study influence of recalibration parameters from position of the item in CAT test
sequence.
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                 Figure 3. Changing of prior distribution depending on test position.

As we described earlier in this paper, there is a drastic change in the prior ability distribution for the
examinees who took the specific item in the given position of their CAT; i. e., ability distribution is
conditional on position number and the adaptive test item in this position.  In Figure 3 we present the prior
distribution for the same item in positions 2 and 12.  We also show the ability distributions for examinees
who chose correct or incorrect answers to the item estimated by the Pearson differential equation curve
(saving four first moments of experimental distribution).  As we can see, if the item is in position 2, the
distribution of ability is close to normal with a shifted mean (this is usual for the AR test).  However, if the
item is in position 12, the distribution is very compressed.
After recalibration we found that standard error in the estimation of item difficulty can increase up to 5.5
times in the extreme case when the same item is used in the first position and 15 positions. The same
effect even more aggravated is in the case of discrimination and guessing parameters. This phenomenon is
due to strongly distortion in prior ability distribution. Thus recalibration of CAT adaptive items (CAT item
pool) should be done very cautiously with preliminary estimation position on which examinee in the
estimated group began to get the item first time in their CAT sequence. From the other point of view we
did not find influence on item difficulty, except increasing SE in evaluation procedure, the increasing in the
position number in which the item is evaluated. This influence can be due to fatigue effect of an examinee
and should lead to increasing item difficulty when the test is progressing.

Appendix: About uniqueness of solution in CAT test.

1. Baysian Approach.

The CAT-ASVAB uses Bayesian approach to estimate ability of an examinee iθ  on the step Ki ,,1 K=
of CAT test. If an examinee estimated ability was 1−iθ  on the previous step and his/her binary response is

iu  for item ),,( )()()()( iIiIiIiI cba=γ  which the examinee got from CAT selection algorithm; then, due to J.

Owen (1975), examinee Bayesian estimation of iθ  can be presented in the form:
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density of normal )1,0(Ν  ability distribution and )(θG  its accumulative distribution.  The variance iw  can

be expressed as function of 1)( ,, −iiIi wu γ  which due to briefness we did not present. However, due to

Bayesian character of transformation (1) we always have Kiww ii ,,1,1 K=≤ − , where .10 =w

Getting ability estimation iθ  the CAT selection algorithm will chose next item )()( iSiI θ= , which using
(1) can be presented as:

),()( 1−= iiuSiI θ ,              (2)

where S  is transformation of selection algorithm )( iS θ  after substitution from (1).
 Let )(ΘΒ  denote a Bayesian extension of original ability domain ]5.2,5.2[−=Θ
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where ),,( wuθΩ  is CAT Bayesian transformation defines by (1). In the other words  )(ΘB  is domain
of all feasible θ  which can be reached by CAT algorithm with given CAT item pool, beginning from
normal distribution )(θG .
Definition: We will call a CAT rest is not divergent if

),(),( θθ uSuS ≠ , (3)
for any )(Θ∈ Bθ and any complimentary binary responses uu, , such that  1=+ uu .

In the other words (3) means that if an examinee in any point of the test will change his binary response
(this experiment can be done only imaginative), he/she will get another item for the next step of CAT test.
If CAT satisfies non-divergency assumption it means that its item pool is rich enough and selection
algorithm (2) is flexible enough.

Further we assume that 3PL parameters for any item from the CAT bank ),,,( iii cba  Mi ,,1 K=  are
just statistical estimation of its “true” or latent parameters, which is done by process of calibration. Thus,
the item parameters for any CAT pool items are particular representation of random variable which is
product of used calibrating tool. In the case of CAT ASVAB the tool is Bilog for CAT1-CAT4 item pool
or On-line calibration algorithms (see Krass, 1998) in the current Seeded item environment.

Proposition 1. Let the prior examinee ability distribution be normal )1,0(Ν  with initial ability estimation

of any examinee 00 =θ .  Let the CAT algorithm uses the Bayesian update, the CAT be non-divergent,
and there is no randomization of exposure control mechanism in the item selection algorithm.  Then, for
every item )( jI which can be reached by an examinee on the step Kj < , there is a unique binary
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sequence 1
1}{ −=

=
jk

kku  of answers, which ensures that the examinee will get the item )( jI  on his/her j - th
sequence of the CAT test.

Proof.
Recursively using (1) and (2) we can write
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which provide examinee to get item )( jI  on his/her j -th position in the CAT test.

Now, let’s assume that contrary to theorem statement, there is another sequence of binary answers
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transformation (1) and the selection algorithm, we can see that (6) presents a non-trivial connection
between item coefficients, which can be presented in the form:
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where )(⋅Φ  is a smooth function defined on jR ⋅3  Euclidean space.  Then, if at least one of the derivatives
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equation (7) is defined at least )1*3( −j  dimensional manifold in  jR ⋅3
  (see, for example, Kantorovich,

1965).  Here jqq ⋅= 3,,1, Lξ   is the formal variable of the function Φ .  Because, as we assumed, all

3PL coefficients present a statistical estimation of “true” 3PL coefficient probability of holding, (6) is zero.

If (8) is not holding, then assuming infinite smoothness of all functions in consideration we will see that
3PL coefficients of items which forms sequences 1

0}
~

{ −=
=

jk
kki  and 1

0}{ −=
=

jk
kki  belong to another

1),*3( >− kkj  manifold, which also contradicts latency assumption in the definition of  3PL
parameters of adaptive items.

Corollary.
If CAT test is not divergent then there is one-to-one correspondence between binary response sequence

Ki
iiu =
=1}{  and CAT ability estimation Kθ  of examinee, who used this response sequence.

This corollary is consequence of uniqueness of Baysian transformation (1) and item selection algorithm (2)
in the case of absence of exposure control.

2. Maximum Likelihood Approach.



9

We are assume that prior distribution of examinees ability is normal 2
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θ .On the Figure 4 we presented the function  )(θie  for item AR0004  with

parameters: (1.60,  -0.33, 0.10).

                           Figure 4. Example of the function )(θie (item AR0031).

As we can see the function is monotone decreasing with most negative derivative in the value ib=θ̂ .
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same AR item.

The function  )(θiE  is unimodal and is reaching maximum at the point  i
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item AR0031 the function )(θiE  is monotone decreasing in the are of positive abilities. Out of the formula
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for maxθ  it is followed that the function )(θiE  is monotone decreasing in the point ib=θ  because

10 <≤ ic , even 25.0≤ic  in the case of AR test. Maximum value of  this function

97.0
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c

c
aDE θ  lesser than 1 for considered item.

                                       Figure 5 . Example of the function )(θiE (item AR0031).

Let we assume that in the given test of  K  items the examinee answer write on items Rii ,,1 K  and

answer wrong on items KR ii ,,1 K+ , where  .0 KR ≤≤  Then his/her likelihood will be:
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Assuming that prior distribution of examinee abilities is normal and using equations (9) – (11) we will have:
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Proposition 2. If equation (12) has a solution and the function )(θR  has continuous derivative and

1)( <′ θR  for all ],[ maxmin θθθ ∈  then this solution is unique.

Proof.  If there are two solutions 1θ  and 2θ  then we can assume  12 θθ > . Due to (12) we have
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)(θiE  has rather narrow range of abilities, in which it is increasing. In the point ib=θ  and in the the

area close to ib , where the solution of maximum likelihood equation is usually located and where item is

used in CAT testing process, the function )(θiE  is monotone decreasing. Thus for usual CAT sequence

we expect to found that 1)( <′ θR , which was confirmed in our simulation studies. Of course, with
special construction of a test sequence and items consisting of it, one can reach situation where the

relation 1)( <′ θR  is not holding and equation (12) can have more than one solutions, which was found
by F. Samejima (1973), but it is should not happened in the CAT environment .

Proposition 3. If for any feasible area  )(Θ∈ Bθ  relation 1)( <′ θR  is hold and CAT driven by
maximum likelihood (instead of Baysian) is not divergent then statement of Proposition 1 or it Corollary is
true.
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