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I ntroduction

Very often definition of item parameters for item used in Computer Adaptive Test (CAT) is donein Paper
and Pencil (P& P) tests, where examinees ability are distributed approximately normal (Segal et a, 1997).
However in CAT environment ability distribution of examinees, who are getting the given item in the te<t,
can differ considerably from “original” close to normal distribution. The nature of this phenomena and it
possible influences on item performance in the CAT testing is discussed in the paper.

In this paper, we will use experimental material from the Arithmetic Reasoning (AR) test of the Armed
Services Vocationa Aptitude Battery (ASVAB). About 500,000 examinees take the ASVAB each year,
so we have arather broad ability distribution of examinees. We have chosen the AR test from the
ASVAB because some studies show that the AR test is uni-dimensional (Zimowsky & Bock, 1987),
which elevates many complicationsin the our study.

1. Some Factsfrom ASVAB Testing

Due to the adaptive nature of a CAT test, the posterior ability distribution of a group of examinees who get
aparticular item from a CAT item pool differs drastically from the origina ability distribution. This change
in podterior ability digtribution can influence the functioning of following items that were calibrated using
the origind distribution, which istypicaly closeto norma N(0,1) . Keegp in mind that the posterior ability
for the n-th postion is the prior distribution for the item given in the (n + 1) -th position.

The CAT-ASVARB tests are adaptive, in which the selection of an item is driven by the maximum
information for the particular range of ability. Note, however, that the item selection processis aso
subject to the Sympson-Hetter exposure-control mechanism (Sympson & Hetter, 1985). All itemsin the
test are assumed to follow the 3PL moddl, i.e., any item in the CAT-ASVAB pool istotaly characterized
by its discriminating, difficulty, and guessing parameters (a,,0,c ), i =1,...,M , where M isthetotal
number of itemsin the CAT adaptive pool.

To estimate the change in posterior ability distribution with item position in the CAT sequence, we use data
collected in the last two years from about 300,000 examinees. As an ability estimator for a particular
examinee, we use hisher CAT ability estimate (CAT score) which is made by successive applications of
Bayesian-Owen and Bayesian-Moda agorithms.

Tablel shows the overall usage of selected items from the AR test of Form 1 of the CAT-ASVAB.
Altogether, the AR-CAT1 pool of adaptive itemsis 94.

Figure 1 shows the change in prior (posterior for previous step) ability distribution for afew itemsin the
AR test. Theleft graph shows the change in prior ability distribution for a group of examinees that got
items of “average’ difficulty in position 1 (item AR0144 with parameters a =1.57, b =-0.35, ¢ =0.11)
and position 8 (item AR0171 with parameters: a =1.64, b =0.79,¢ =0.06). Theright graph shows



ability distributions for two items in the same position 11 (an easy item, AR0061 with parameters
a=105, b=-1.81 c=0.18; and ahard item, AR0391, with parameters

a=177,b=126,c=0.25).
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Figure 1. Changein ability distribution for a group of examinees, who got the given itemsin
different positions of a CAT sequence.

For the density estimation of ability we use at least 1,200 examinees who get the correspondent item in the
indicated position of their regular AR-CAT ASVAB test. For the smoothed approximation of density we
use the ForScore agorithm by Dr. M. Levine and B. Williams (1998). Results show the positive domain
of dendity of the ability distribution contracts as the test progresses, and at position 8 or higher it usually
has a length of not more than 0.3 on the standard CAT-ASVAB scde (-2.5, 2.5).

The described above phenomenon can be traced theoretically. The value of examinee ability
gl [-25,2.5] can be approximated by maximizing vaue of examinee likelihood:

K
Lua) =9@) O R.@)"* Q@)

where U ={u,,u,,---,U, } isthe sequence of binary answers for an examinee taking a CAT test, i, is
the item number reached by the examinee in position number k , and K isthetest length (K =15 inthe
case AR test). Here P(q ) =¢, s eip(ﬁ(q )’ l(@)=-D>a (- b) is3PL Item
Characteristic Curve (ICC) for theitem i,and Q (q ) =1- P(q),axd g(q) isthe densty of prior
digtribution, assumed to be normally distributed: N(O,1) . Let's assume that the examinee reachesitem i,
inpostion j <K . It can be shown that under some no-divergency conditions (formulated further) and in
absence of exposure control mechanism there is aunique path { (i, ,T, )} =) , of items and answers to
them which will force an examinee to haveitem i; asitem number j in his’her CAT test sequence. Then

we can rewrite examinee likelihood in the form:

£
L(wa)=C>G,(@)*O R.@)*Q, @)""
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where G;@) = 9@) O P @)"* Q @)™ *=—,and C, isthe normalizing constant, i. e,,
k=1 j

25

(‘ﬁj (@)dg =1.Then G;(q) can be considered as the ability distribution for an examinee who gets item
25

i, inthe j -th position of the CAT test.

For example, for item ARO171, described earlier, to be reached on position # 8 a“typica” path of item
and answersis shown in the Table 1.

Position 1: AR9923 0 [2.11,-0.05,0.18)
Position 2: ARO031 1([1.47, -081,0.13
Position 3: ARO004 1 (150, -0.33, 0.10)
Pasition 4: AR3S2z 1(1.79,-0.22, 0.22)
Position §: ARI007 1(2.10, 016, 0.17)
Postion §: ARAZ43 0[2.13, 0.46, 0.12)
Position 7: ARA305 1(1.91, 0.31, 0.10)
Position 5 ARO171 0O[1.54, 0.79, 0.05)

Table 1. Example of items chain in AR ASVAB-CAT1test.

It is easy to see that due to transformation:

G(@)= g(q)>(5 P.@)"Q; (@)™ * %

of origina prior normal distribution to the intermediate distribution which is prior for theitem i; inthe

sequence of the CAT test, any incorrect answer “cut” alittle bit the right tail of normal distribution, and
any correct answer “cut” it left tail.

Figure 2 presents the results of the “application” of an incorrect answer in the first element of the
sequence presented above on the normal ability density. Aswe can see, the result of the product

(1- P,(@))*g(q) decreased theright tail of the normal distribution, due to the exponential decreasing of
the function (1- P,(q)). On the other hand, the result of the product P,(q)*g(q) in the case of the
correct answer on the first item will cut the left tail of prior distribution. Under additional constraints, the
digtribution G, (q) is unimodal, with a contracting domain of its positive vlueswhen j isincreasing.
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Figure 2. Result of first wrong answer on distribution G,(q) .

As we dready mentioned any randomization due to exposure control or imprecision in computing of
examinee ability distribution will destroy of the above uniqueness of CAT test sequence. Due to that, asiit
can be seen in the Table 2.1 and Table 2.2, the mgjority of examinees got a particular item beginning from
the curtain position of their test sequence although there are small number of examinees who get thisitem
on previous positions. This“smoothing” of therigid “barrier” alocation pattern is due mostly to
randomization caused by exposure control in CAT ASVAB. Examplesin the tables 2.2 and 2.2 shows that
the phenomena for the item to be first time “administered” to the examinee on the “late’ position in the
CAT test can appear for more or less “normal” items. For example, item ARO171 which is not very hard
item first time administered to the group of examinees large enough for caibration beginning from the
position 8. In this case we have some administration of the item on previous positions 6 and 7, probably
due to item exposure mechanism.

Fos 1 Pos2 Pos3 Posd PosS Pos6 PosT Pos8 Pos 3 Posi10 Pos11 Pos12 Pos13 Pos1d Posi15 |
00000 04539 00000 17422 18971 16449 02001 10496 05209 05283 04396 04852 03352 02832 02532

00000 o389 00242 1685236 19623 13209 09538 09921 05257 05214 04670 03712 02644 02749 02067
00000 0000 Qo000 Q0000 Qo000 00000 Qo000 00000 o000 00024 00516 00732 O0SeS 01235 01323
13280 2304 30236 03203 07172 02120 01453 01623 00743 00603 00830 00340 00235 00512 00405

00000 00000 00000 Q0000 00000 00037 00311 01371 05031 10310 11124 12760 10731 03251 03310

00000 00000 00000 Q0000 00000 00000 00000 00000 00000 00000 02387 03393 04802 04153 06319

Table 2.1. Example of factual item usagein AR ASVAB-CAT1test.



ARDD32 a=2.180, b= 0.410, c= 0.280
ARDD31 a=1.470, b= -0.610, c= 0.130
AR0D61 a= 1.050, b= - 1.810, ¢c= 0.180
AR0144 a=1.570, b=-0.350, c= 0.110
AR0171 a=1.640, b= 0.790, c=0.060
AR0391 a=1.770,b= 1.260, c=0.250

Table2.2. Itemsfrom AR CAT1 pool correspondent to the Table 1.1.

The uniqueness of the sequence in the CAT test is closely connected with uniqueness of CAT *“solution”
in the sense of the CAT sequence for the examinee with the given ability. In the Appendix we will explore
condition of the uniqueness in the case of Bayesian approach in computing of the next best item for an
examinee with the given ability (which isused in CAT-ASVAB) as well asfor the case of maximum
likelihood “on fly” estimation of examinee ability (which with specid fast maximizing algorithms can be
used in CAT environment).

2. Recalibration of Adaptive Items.

The ability to recalibrate CAT adaptive item is very important in CAT testing environment because with
time some items began to be compromised and some items are losing original sense, especialy in technical
tests, due to technology change.

The CAT ASVAB has abuilt in mechanism for calibration of new items — the seeded item scheme (Segal
et al, 1997). In the seeded item scheme, a new item (candidate for calibration) is given to every examinee
in the second, third or fourth position of each test. The item is chosen randomly from the set of seeded
items (currently the set contains 100 new items per test). With this approach we collect answers for a
new item in operational environment, which increase precision of testing. Our calibration packages require
to have at least 1,200 answers for anew item in order to obtain statistically stable estimation of its
parameters (Krass, 1998).

To recalibrate CAT adaptive items we developed a pseudo-seeded item scheme. If in the set of studied
CAT tests (usually we have about 500,000 CAT tests), we found that the particular CAT adaptive item
used more than 1,200 times in the same position for the different examinees. We took the correspondent
subset of tests as the set of tests in pseudo-seeded item approach for the given adaptive item. We
consider in this case the adaptive item as a seeded item and eliminate from the test position on which the
adaptive item was applied artificialy decreasing the length of the test. For example in Table 1 the item
ARO0171 can be considered as pseudo seeded item on positions 8 through 15, and length of the test will be
14 instead of 15 for the real AR test. This approach is giving possibility of recalibrate of great majority of
CAT adaptive items and study influence of recalibration parameters from position of the item in CAT test
seguence.
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Figure 3. Changing of prior distribution depending on test position.

As we described earlier in this paper, there is a drastic change in the prior ability distribution for the
examinees who took the specific item in the given position of their CAT; i. e, ability distribution is
conditiona on position number and the adaptive test item in this position. In Figure 3 we present the prior
distribution for the same item in positions 2 and 12. We adso show the ability distributions for examinees
who chose correct or incorrect answers to the item estimated by the Pearson differential equation curve
(saving four first moments of experimenta distribution). Aswe can seg, if theitem isin position 2, the
distribution of ability is close to normal with a shifted mean (thisis usua for the AR test). However, if the
item isin postion 12, the digtribution is very compressed.

After recalibration we found that standard error in the estimation of item difficulty can increase up to 5.5
times in the extreme case when the same item is used in the first position and 15 positions. The same
effect even more aggravated isin the case of discrimination and guessing parameters. This phenomenon is
due to strongly digtortion in prior ability digtribution. Thus recdibration of CAT adaptive items (CAT item
pool) should be done very cautioudy with preliminary estimation position on which examinee in the
estimated group began to get the item first time in their CAT sequence. From the other point of view we
did not find influence on item difficulty, except increasing SE in evaluation procedure, the increasing in the
position number in which the item is evaluated. This influence can be due to fatigue effect of an examinee
and should lead to increasing item difficulty when the test is progressing.

Appendix: About uniqueness of solution in CAT test.
1. Baysian Approach.

The CAT-ASVAB uses Bayesian approach to estimate ability of an examinee g, onthestep i =1,...,K

of CAT tedt. If an examinee estimated ability was ¢;_, on the previous step and his’her binary response is
u; foritem g, = (& ;.8 4,C ) Which the examinee got from CAT selection agorithm; then, dueto J.
Owen (1975), examinee Bayesian estimation of g, can be presented in the form:



O =0 *Wi. R K%' D. (1)

Here w; isvariance of ability distribution of examinees who used sequence of binary answers {u;} =}
from the beginning of CAT test. We are using CAT-ASVAB assumption that initial estimation of any
examinee ability g, = 0. Other variablesin the formula (1) are:

d by ) - di.
R = 9(2) ;A:CI(i)+(1' Cl(i))>G('di)and di:%

G(di) x\/al(i) TW a, (M) TW
density of normal N(0,1) ability distribution and G(q) its accumulative distribution. The variance w, can
be expressed as function of u;, g,;,, W,_; Which due to briefness we did not present. However, due to

, where g(Q) isa

Bayesian character of transformation (1) we alwayshave w £w, ,, i=1,...,K , where w, =1.

Getting ability estimation ¢, the CAT selection algorithm will chose next item | (i) = S(g; ), which using
(2) can be presented as:
1(i) =S(u;,q,.4) @
where S istransformation of sdlection algorithm S(q,) after substitution from (1).
Let B(Q) denote a Bayesian extension of origind ability domain Q =[- 2.5,2.5]

BQ= U Wa.uw
ol Q.ui {0,1}, wEwy,
where W(g, u,w) is CAT Bayesian transformation defines by (1). In the other words B(Q) isdomain
of all feasible g which can be reached by CAT agorithm with given CAT item pool, beginning from
normd distribution G(q) .
Definition: We will call a CAT restisnot divergent if
) Su.a)* S@.a), @
forany q 1 B(Q) and any complimentary binary responses u,U, suchthat u+0 =1.

In the other words (3) means that if an examinee in any point of the test will change his binary response
(this experiment can be done only imaginative), he/she will get another item for the next step of CAT test.
If CAT satisfies non-divergency assumption it means that itsitem pool is rich enough and selection
agorithm (2) is flexible enough.

Further we assume that 3PL parameters for any item from the CAT bank (a,b,c), i =1,...,M are

just statitical estimation of its “trug’ or latent parameters, which is done by process of calibration. Thus,
the item parameters for any CAT pool items are particular representation of random variable which is
product of used calibrating tool. In the case of CAT ASVAB thetool is Bilog for CAT1-CAT4 item pool
or On-line cdibration agorithms (see Krass, 1998) in the current Seeded item environment.

Proposition 1. Let the prior examinee ability distribution be normal N(0,1) with initia ability estimation
of any examinee g, = 0. Let the CAT agorithm uses the Bayesian update, the CAT be non-divergent,

and there is no randomization of exposure control mechanism in the item sdection algorithm. Then, for
every item | (j) which can be reached by an examinee onthestep j < K, thereis aunique binary



sequence {u, }=)"* of answers, which ensures that the examinee will get theitem 1(j) on higher j - th

sequence of the CAT test.

Proof .
Recursively using (1) and (2) we can write
L(D) =Y (U, Uy g5,y ) =5, 4)
where {u,} )" isthe sequence of binary answersand {i } =" isthe correspondent sequence of items

which provide examinee to get item 1(j) on hisher j -th position in the CAT test.

Now, let’'s assume that contrary to theorem statement, there is another sequence of binary answers

{GH " {udd? ©)
and sequence of selected |tems{|k “ ('J ! such that:
1) =Y @ Tyl 0) =Y Uy Uiy ). (6)

Due to the non-divergency assumption and (5) we have {i, }<=0* 1 {i, }}=* | Then, uiilizing the Baysian

transformation (1) and the selection algorithm, we can see that (6) presents a non-trivia connection
between item coeffici ents, which can be pr@ented in the form:

F((alblcl) (aj,b,,CJ)(c’:l1 b.c)......(a;,b;,c;)) =0, @
where F () isasmooth function defined on R> Euclidean space. Then, if at least one of the derivatives
TF Xy Xy) | _
—F10q9-=1,...,3%] , o
X, g J ®)

equation (7) is defined at least (3* j- 1) dimensiond manifoldin R (see, for example, Kantorovich,
1965)- Here X, g =1,---,3%] istheformd variable of the function F . Because, as we assumed, all
3PL coefficients present a Satistical estimation of “true” 3PL coefficient probability of holding, (6) is zero.

If (8) isnot holding, then assuming infinite smoothne& of al functions in consideration we will see that
3PL coefficients of items which forms sequences { i ool and {i } <= belong to another

(3* j- k), k >1 manifold, which aso contradicts latency assumption in the definition of 3PL
parameters of adaptive items.

Corollary.
If CAT test is not divergent then there is one-to-one correspondence between binary response sequence

{u}=X and CAT ability estimation g, of examinee, who used this response sequence.

This corollary is consequence of uniqueness of Baysian transformation (1) and item selection algorithm (2)
in the case of absence of exposure control.

2. Maximum Likelihood Approach.



a2
We are assume that prior distribution of examinees ability isnorma g(q) = i xe 2, where

2

qT[0,,.0,u].Inca ASVAB -q,,, =0,, =2.5.Foritemi=1...,M with 3PL parameters
1-

. . _ 1-¢ -
(&,h.c) itsICCis p,@Q) =G + ——F 5y ad qi(Q)—m-

l+e
From that we got

g@)=-9:9@), ©
and
0{@) = Dxa >;(a) (@), (10
gPa@-h)
1+¢gPa@-h)
parameters. (1.60, -0.33, 0.10).

where € () =- .On the Figure 4 we presented the function e (q) for item AR0004 with
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Figure 4. Example of the function € (q) (item AR0031).

As we can see the function is monotone decreasing with most negative derivative in the value (i =h.
Also

pE) = - o) = P, (@) - Do Xk ot @) =D xp @)>€,@) (1)
. Da(-h)
(A-G)>e™" . Thefunction E, (q) is depicted on the Figure 5 for the

where E (q) = (C, +eP3@ ) 1+ gPalan)y

same AR item.

D& Umax- B) —
Thefunction E, (q) isunimoda and isreaching maximum at the point € % Omac ) =4C or

Qe = 2D1 Inc, +b =-1.106. If guessing parameter ¢, smal enough maximizing point ., is
>a1'

lesser than |eft boundary point q,,;, which mean that in this case the function E; (q) is monotone

decreasing in the feasible area [Q,;, .0, ] OF its derivativeislesser than zero. In the considered case of

item AR0031 the function E; () is monotone decreasing in the are of positive abilities. Out of the formula



for q,,, itisfollowed that the function E;(q) is monotone decreasing in the point g = by because
O£c <1,even c, £0.25 inthecase of AR test. Maximum value of this function

1- e,
1+,/c

E (Qma ) = D %8, =0.97 lesser than 1 for considered item.

0.5
0.4
0.3
0.2
0.1

e
O TTTTTTTTTE TT T T I T I T T T T T I T T T I T I T I I T T IT I T I T T T

20 Vo > S Yo Vo

Figure 5 . Example of the function E, (q) (item AR0O031).

Let we assume that in the given test of K items the examinee answer write on items i,...,I; and
answer wrong on items ig,,,...,1 , where 0 £ RE K. Then higher likelihood will be:

B L
L{@U.9)=9@)O R @)*x0OQ,@)
k=1 k=R+1
Assuming that prior distribution of examinee abilities is norma and using equations (9) — (11) we will have:

(L(U,9))¢=L(U,q9)>(-q +R())

R K

[¢} [}

where R(@) =DX@ & *E @)+ a &, >& (d)) . Thus problem of maximization likelihood can
k=1 k=R+1

be presented as solution of equation:

q=R(@). (12)

Proposition 2. If equation (12) has a solution and the function R(q ) has continuous derivative and
R(Q) <1 foradl g1 [0 Qi ] then this solution is unique.

Proof. If there are two solutions 0y and (5 then we can assume 0, = {]; . Dueto (12) we have

q,-q, = R(Qz) - R(Ch) =R (q~)(q2 B CI1) <{; - {; whichisacontradiction.

As we show before any incorrect answer decreasing derivative of the function R(q ) because functions

€ (q ), i =1,...,M are monotone decreas ng. In the case of right answer the correspondent function

10



Ei (CI) has rather narrow range of abilities, in which it isincreasing. In the point @ = b and in the the
areacloseto b, , Where the solution of maximum likelihood equation is usualy located and where item is

used in CAT testing process, the function Ei (q ) is monotone decreasing. Thus for usual CAT sequence
we expect to found that R((q ) <1, which was confirmed in our smulation studies. Of course, with
specia construction of atest sequence and items consisting of it, one can reach situation where the

relation R‘(q ) <1 isnot holding and equation (12) can have more than one solutions, which was found
by F. Samgima (1973), but it is should not happened in the CAT environment .

Proposition 3. If for any feasiblearea g1 B(Q) relation R(Q) <1 ishold and CAT driven by

maximum likelihood (instead of Baysian) is not divergent then statement of Proposition 1 or it Corollary is
true.
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