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1 Introduction

Computerized adaptive testing has become increasingly popular in the large-
scale educational testing due to advancement of modern computer technol-
ogy. The most recognizable distinction between adaptive and the usual
computer-based testing is that the selection of test items is tailored to in-
dividual examinee’s ability level. Items are selected sequentially according
to the examinee’s performance on the earlier questions. For example, a stu-
dent with a pattern of successful responses may be presented with the more
difficult items in the course of the test. He or she will be exposed to a
smaller number of items and potentially finish the test sooner. For the less
able examinee, it may not make sense to continue on with the sequence of
more difficult questions. Perhaps the discrimination and difficulty parame-
ters should be adjusted according to a certain selection rule. Potentially it
could take longer to estimate ability but of course the goal is to make sure
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that every student’s ability is estimated very accurately. If this goal is sat-
isfied, the major advantage of sequential adaptive tests is that it provides
more precise ability estimates with fewer items than that required in the
conventional tests. However, methodological and theoretical development in
CAT presents a number of open problems. One of the areas of interest in
adaptive testing is the problem of the length of the test.

For the fixed length CAT, each examinee is offered an individualized
test that fits his/her ability the best, but number of items is determined in
advance. Most applications implementing adaptive tests are fixed length tests
(GRE, GMAT). However, it is desirable to reduce the test length represented
by the number of items offered to an examinee while maintaining the same
level of precision in measuring examinee’s ability trait. Able examinees can
avoid responding too many easy items, and less able examinees can avoid
being exposed to too many difficult items. In the adaptive test with a variable
length, the number of items administered to an examinee is not specified in
advance, but rather determined during the course of the test. We consider
the problem of deciding on the number of items needed to be offered to an
examinee so that his or her ability is measured effectively.

2 Maximizing information approach to the

varied length tests

Most existent stopping rules for the varied test length are based on maximiz-
ing the Fisher information evaluated at the current estimate of the ability.
In particular, setting a threshold to the amount of the information collected
(Fisher information number) can serve as an indicator that there had been
enough items collected to assess examinee’s ability efficiently. The conven-
tional stopping rule is based on the fact that information function is the
reciprocal of the asymptotic sampling variance of the estimator [Lord, 1980]:

I(θ) =
1

V ar(θ̂|θ)
.

Let σe be the standard deviation of the measurement of the ability in the
process of adaptive test. The requirement of achieving some small standard
error σe for each examinee can be translated in terms of the information
function as the requirement of exceeding certain positive bound:

σe ≤ δ0
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is approximately equivalent to

I(θ) ≥ 1/δ0.

For instance, choosing δ0 = 0.1 as a desired degree of precision translates
into comparing information function to the number 100. As pointed out in
[H.Wainer, 2000] the additivity of the information can be used to estimate the
score precision. We computed the value of the information function Ij(θj)
after the item with parameters (aj, bj) item had been administered using

current MLE ability estimate θ̂j. The cumulative information function was
computed as a sum:

In =
n∑
j=1

Ij(θ̂j).

The information-based stopping rule is a reliable method that guarantees
that all examinees are tested to the same level of accuracy. However, the right
hand side here may actually exceed the value of the true information function
at a stage n due to the measurement error in estimates θn. Thus, the method
does not give us a feel for how many items in truth were needed to achieve
this level of accuracy. Also, this approach is based on the assumption of local
independence. As we know, in CAT the selection of the next item is based
on the performance of examinee on the previous items [Chang, Ying, 2000].
We need to incorporate the knowledge of the sequential ability estimate in
our stopping rule. As Thissen and Mislevy noted in the chapter on testing
algorithms for CAT [Wainer, 2000], ”simulations may be used to determine
in advance how long the test is likely to be for examinees of various levels of
proficiency”.

3 The logistic regression based Stopping Rule

for adaptive testing

3.1 Fixed size confidence region idea.

Our idea is to derive the stopping rule that provides us with the desired
confidence level that the sequential estimates for the given item selection
mechanism fall into the vicinity of true ability of the given size. Thus we
came to formulate the question of finding the right stopping time in the
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process of ability estimation in terms of the mathematical problem of fixed
size confidence interval.

The problems of this kind were considered in various statistical models.
The earliest work on sequential estimation in order to reduce the sample
size was due to Stein (1945, 1949) who proposed the two-stage estimation
procedure for the mean parameter in a normal population with variance un-
specified. A fully sequential estimation rule was later developed by Anscombe
(1953) and Chow and Robins (1965) which lead to many subsequent inves-
tigations. The most relevant work to the logistic IRT model is, perhaps,
in Chang and Martinsek (1992) which deals with the fixed-width sequential
estimation for the logistic regression model.

The corner stone of our investigation is the fact that model explain-
ing measurements and ability estimation process (Item Response Theory)
is closely related to the well studied in statistics multinomial logistic regres-
sion model. In the next section we establish the connection between the
sequential adaptive testing model and the logistic regression.

3.2 IRT as a logistic regression model

Both theoretical and implementation aspects of adaptive testing largely rely
on the item response theory models, which relate examinee’s ability to their
response to the test items. Suppose that an examinee’s ability level can be
characterizes by a single parameter θ. A basic assumption of IRT is that
for a given item the probability of producing a correct answer depends only
on examinee’s ability parameter θ. The resulting probability curve , as θ
varies, is known as the item characteristic curve of the item. Let Y be the
response of the examinee , θ - the true ability. In this paper we consider
the so-called 2-PL model whose item characteristic curve is defined by the
following equation:

P (Y = 1|θ) =
e1.7a(θ−b)

1 + e1.7a(θ−b) .

We note that this model is a particular case of the multiple logistic regression
model. Indeed, to introduce the p-parameter multinomial logistic model
consider the set of independent identically distributed observations Yi, and
the sequence of the so-called risk factors Xi. In our study the analog of
Xi is the set of pre-calibrated item parameters. The model considered in
statistical literature that is relevant to our IRT model is described by the
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following equation:

P (Yi = 1|Xi) =
expXT

i β

1 + expXT
i β

,

where β and Xi are p-dimensional vectors, and the linear combination XT
i β is

their scalar product. To see that IRT is a particular case of the 2-dimensional
logistic model above it is enough to notice that the exponent 1.7a(θ− b) can
be presented in the form of the scalar product XT

i β, where

Xi = (1.7ai,−1.7aibi), β = (θ, 1).

The parameter β is usually estimated via maximization of the likelihood
function, and we will also consider the MLE method of sequential estimation
of ability.

3.3 Stopping rule for logistic regression as applied to
IRT

As we noted, the general problem of constructing the fixed size and prescribed
accuracy confidence interval had been studied by several authors. Let d be
the desired width of the confidence interval around the true value of θ, and
zα/2 be the α/2 quantile of the normal distribution. For instance, for α = 0.05
we get that

P (−zα/2, zα/2) = 0.95.

Statisticians were interested in precisely how many MLE estimates of the
parameter β one has to obtain in order to be confident with probability 1−α
that the estimate falls into the confidence set of a predetermined size d.

For the purposes of investigating the IRT model, we will use here the
stopping rule proven by Y.I. Chang and A. Martinsek ( p.1967) for estimating
the linear combination of CTβ. The stopping rule consists of computing the
real number rn for each step n of the MLE estimation process, and comparing
it to the bound δ. The number rn is computed based on the components of
the vector Xi,and the current MLE estimate βn. Precisely, the bound δ is
given by

δ =
d2

z2
α/2

,
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while the sequence rn is computed as follows:

rn = CTΣ−1
n C,

where the matrix Σn is computed as the sum of matrices

Σn =
n∑
i=1

expXT
i βn

1 + expXT
i βn

XiX
T
i .

The rule commands to proceed with the MLE estimation until for the first
time

rn ≤ δ.

Mathematically, the rule is expressed as follows:

T = inf{CTΣ−1
n C ≤ d2

z2
α/2

}.

In the context of IRT model, we want to find out how many MLE esti-
mates of the true ability, and consequently, how many items an examinee has
to be presented with, so that we could be sure with probability 0.95 that the
final estimate falls into the confidence interval of width d around the true
ability.

Recall that for our IRT application we chose β = (θ, 1) , so it suits us to
choose C = (1, 0). Note that in these notations CTβn = θn so this brings
us directly to computing the number of steps in the process of sequential
MLE estimation of θ. In the formula for Σn above the components of Xi are
(1.7ai,−1.7aibi), and also βn = (θn, 1). Thus, all parameters of the stopping
rule are identified through the individual sequential MLE estimates θn and
the sequence of item parameters ai, bi.

4 Results of the simulation study on the stop-

ping rules

In this project we conducted simulations for two stopping rules: the conven-
tional method, that we call “information based method”, and the “logistic
regression rule”. The data set that we had on hands consisted of item pa-
rameters (discrimination and difficulty) used for the National Assessment of
Educational Progress. The item pool consisted of 252 questions and we ran
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Table 1: Information-based method
Bound for Limit for Mean Stop. Median Stop. Mean Sq.

Stand Dev σ Information Time Time Error
0.3 10 8 6 0.09
0.25 16 12 8 0.05
0.2 25 22 12 0.04
0.15 45 47 27 0.02
0.1 100 127 105 0.01
0.05 400 200+ 200+ 0.01

adaptive process generating 200 items for each examinee. Thus, we were able
to obtain mean square error estimates for the fixed length test. We chose the
sample of size 100 from standard normal distribution to represent simulated
true ability estimates for hypothetical sample of 100 students. Next, we sim-
ulated the sequential adaptive test process for which items are selected based
on maximizing the Fisher information. The ability is estimated by maximum
likelihood method. For each examinee, we recorded the step number after
which the information would reach the set in advance bound. We then com-
pared the number of steps required by each method. The results for the
information-based method are presented in the Table 1. A similar series of
runs had been conducted for the logistic regression based method. Instead of
the desired bound to the standard deviation we impose here the size of the
confidence interval we wish ability estimates to fall. We will keep the confi-
dence level at 0.05 throughout these simulations. The results are presented
in the Table 2. As we see from the tables, both stopping rules produce a
very small mean square error. The smaller the confidence interval size or
the smaller the desired bound for standard deviation, the smaller the mean
square error is. This is a good evidence that both stopping rules give effective
ways to determine the length of the test for each examinee individually.

To be able to compare the effectiveness of both rules, we need to bring the
results in both tables to the same scale. The first method is formulated in
terms of the standard deviation σ of the ability estimates around the mean,
while the second method is formulated in terms of the 95% confidence interval
of the size d. As we know, for the normal distribution the 95% confidence
interval around the mean µ is approximately equal to (µ−2σ, µ+2σ). Thus,
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Table 2: ”Logistic regression” stopping rule
confidence level = 0.05

d - size of the Mean Stopping Median Stopping Mean Square
Confidence Interval Time Time Error

0.6 11 9 0.08
0.5 13 10 0.08
0.4 16 13 0.07
0.3 22 18 0.05
0.2 31 26 0.03
0.1 60 55 0.02
0.01 109 104 0.02

Table 3: Comparison of the effectiveness of the two rules
Pairs σ, d: Fisher Information Logistic Regression
d = 2σ Mean Stop. Mean Sq. Mean Stop. Mean Sq.

Time Error Time Error
σ = 0.1, d = 0.2 127 0.01 31 0.03
σ = 0.15, d = 0.3 47 0.02 22 0.05
σ = 0.2, d = 0.4 22 0.04 16 0.07
σ = 0.3, d = 0.6 8 0.09 11 0.08

the symmetric interval of length 4σ around the mean is in fact the 95%
confidence interval. So the approximate correspondence that we will establish
between the two rules is to compare the number of required steps for σ and d
for which the equality 2σ = d holds. The Table 3 above illustrates the results
of comparison. It shows the required number of steps for both methods for
two pairs of corresponding values of σ, d.

We also were able to compare the effectiveness of both methods with the
fixed length method. The code for our CAT simulation process is designed
to compute MSE for the fixed length tests for all consecutive lengths 1 -
200. The Table 4 presents the MSE for the stopping times for the Logistic
Regression based method and the MSE for the corresponding fixed length
method.
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Table 4: ”Logistic regression” stopping rule
Versus Fixed Length test

d - size of the Mean Stopping Varied length Fixed Length
Confidence Interval Time MSE MSE

0.6 11 0.08 0.07
0.4 16 0.07 0.05
0.3 22 0.05 0.04
0.2 31 0.03 0.03
0.1 60 0.02 0.02
0.01 109 0.02 0.01

5 Discussion of the results and future direc-

tion

As evidenced from the Table 3, to achieve the same degree of accuracy for
each individual given confidence level α = 0.05, one needs to administer less
items according to the ”Logistic regression” based method than if one follows
the conventional ”Fisher Information” method. This may suggest that the
old method is certainly very accurate method of estimation of the ability
but perhaps it requires too many extra items administered. The ”Logistic
Regression” rule advises that considerably smaller number of steps is needed
to achieve the prescribed degree of accuracy: 11 versus 66, 16 versus 168.
The price that one has to pay is reflected in the mean square error term.
We see that MSE decreases from 0.08 to 0.02 and from 0.07 to 0.01 if the
more conventional method is applied. Intuitively, the MSE is smaller for the
old method than for the new one since more items are administered and the
ability is estimated more precisely across the student population. However,
we believe that MSE are sufficiently small for both methods and one needs to
decide whether the decrease in mean square error overweighs the fact more
resources are needed to administer the extra items. The smaller number of
items would reduce overlap rates significantly and thus increase security of
the test.

Comparing the results for the fixed length test and the new stopping
rule we should note that both methods are very comparable in terms of the
accuracy across the examinee pool. The Table 4 implies that the MSE for
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the series of varied length tests and the corresponding fixed length tests show
a difference of 0.01 in the MSE. This is not really a significant difference in
overall accuracy. The existing length of the NAEP test (about 30 items)is in
line with the requirement of the size confidence interval of the ability estimate
to be about 0.2.

The varied length tests allow for a different number of items to be admin-
istered to each individual. Our simulations show a wide range of stopping
times depending on the individual ability and the MLE estimation process.
If one wants to take advantage of the simpler logistics of administering fixed
length test, our new stopping rule can be used as an effective way to prede-
termine the length of the test.

On the other hand, the stopping rule that we suggest allows to decide
on the number of items to be presented to an examinee during the course of
the test and guarantees the prescribed accuracy of ability estimation will be
achieved. The rule suggests on average fewer items to be administered that
the conventional stopping rule.

The limitation of our study is that the rule had been tested on just one
dataset, and further simulations are needed to confirm the findings. As
a future direction of research, we want to expand the technique to the 3-
parameter IRT model. This would require the mathematical derivation of the
stopping rule since such model does not exactly falls into the class of logistic
regression models. Also, we would like to apply our results to other item
selection mechanisms such as expected a posteriori and some stratification
methods.
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