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ABSTRACT 

The maximum Fisher information procedure (F) is a commonly used algorithm for 

item selection in computerized adaptive testing. This approach leads to great enhancement in 

test efficiency, yet results in very unbalanced item usage. The a-stratified multistage CAT 

(STR) was developed to remedy the item usage problem with F, and was found to effectively 

balance item usage but yielded lower test efficiency. To address the efficiency loss, a refined 

stratification procedure has been proposed that allows more items to be selected from the 

high a strata and fewer items from the low a strata (USTR).  

This study evaluated and compared the three item selection procedures, F, STR, and 

USTR, along with completely random item selection (RAN) with respect to test efficiency 

and item usage through CATs simulated under nine test conditions. The nine conditions 

resulted from combinations of three levels of practical constraints (no constraints, only 

exposure control, exposure control and content balancing), and three cases of the item 

selection space arising from combinations of various test lengths and target maximum 

exposure rates. The various item selection procedures were used to simulate CATs for an 

overall sample and for eleven conditional samples, and were compared in terms of error 

variances, item usage balance, overlap rates, and item pool utilization.  

In general, the results showed that RAN consistently yielded the best item usage yet 

lowest efficiency. F showed an apparent efficiency advantage over STR and USTR under 

unconstrained item selection, but with very poor item usage. USTR reduced error variances 

for STR under various conditions, with small compromises in item usage. Compared to F, 

USTR enhanced item usage while achieving comparable efficiency; it achieved an efficiency 

level similar to F with improved item usage when items were selected under exposure 
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control, and the item selection space was restricted by long tests or a stringent security 

criterion. Under the extreme condition where item availability was severely limited by very 

stringent exposure control along with content constraints, USTR failed to increase efficiency 

relative to STR. The results provide implications for choosing an appropriate item selection 

procedure in applied settings. 
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To Stratify or Not: An Investigation of CAT Item Selection Procedures under Practical 

Constraints 

 

Introduction 

Item selection is a critical component of computer adaptive testing (CAT) (Weiss & 

Kingsbury, 1984; Wainer, 1990). A typical CAT item selection procedure strives to 

maximize test precision and efficiency by successively choosing items that provide optimal 

measurement at each level of estimated ability for an examinee. When applied in practical 

settings, however, some nonstatistical constraints usually need to be incorporated into the 

item selection process to ensure validity of the test. Content balancing is an important 

consideration, which ensures different tests across examinees cover the same proportion of 

content categories so that examinees are measured on the same composite of traits. Another 

factor is item exposure control. Because CATs are continuously administered from the same 

item pool over a period of time, without control for item exposure, some  “popular” items 

may become known and no longer provide valid measurement.  To ensure appropriate 

content coverage and prevent overexposure of items, some statistical algorithms are usually 

incorporated into the item selection process.    

A good item selection algorithm should be compatible with content balancing and 

exposure control procedures, and achieve high precision and efficiency of the test while 

satisfying those constraints. In addition, for the sake of item pool maintenance, an ideal item 

selection algorithm should use all the items in the pool with nearly equal frequency (Way et 

al., 1998). As a commonly used algorithm, the maximum Fisher information procedure (F) 

selects items with maximum information at each of a succession of trait estimates. This 
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approach leads to great enhancement in test efficiency such that a CAT can achieve great 

precision with as few items as possible. This statistically optimal algorithm, however, was 

found to result in a subset of items (mostly high a items) exposed to almost every examinee, 

while another portion of the pool (items with low a values) was never used. This situation 

raised concerns about cost-efficiency of the pool utilization and posed security risks for CAT 

programs. When coupled with the Sympson-Hetter procedure (SH) (Sympson & Hetter, 

1985), a commonly used exposure control method, the exposure rates of items that otherwise 

would be overexposed were effectively limited, but the overall distribution of exposure rates 

was still found drastically skewed (Chang & Ying, 1999; Hau & Chang, 1998). Specifically, 

some low a items had zero exposure rates, while many high a items achieved maximum 

allowable exposure rates at the early stages of CAT. This is because SH attempts to control 

the conditional probability that an item is administered when selected, but it has no direct 

control over the probability that an item is selected, therefore items with small probabilities 

of being selected may still be underexposed.   

Chang and Ying (1999) proposed an alternative item selection procedure, the a-

stratified multistage CAT (STR) to remedy the item usage problem with F. With this 

procedure the item pool is partitioned into strata according to a values and items are selected 

within one stratum at each stage of testing so that a natural balance of item usage can be 

achieved. It attempts to maintain test efficiency by using low a items in the early stages and 

deferring the use of high a items to the later stages of a CAT. The rationale is that the low a 

items provide more global information when trait estimates may be substantially deviant 

from the true level at the early stages of test, while high a items can better contribute to 

estimation when trait estimates are getting closer and closer to the true level at the later 
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stages (Chang and Ying, 1996). For item pools with correlated a and b values, the procedure 

has been modified into a two-stage process to take into account both a and b values in pool 

stratification (Chang, Qian & Ying, 2000). For CATs requiring content balance, the idea of 

the two-stage stratification was extended into a tri-stage process, so that content specification 

is also incorporated into pool stratification (Yi & Chang, 2001).  It should be noted that STR 

has no direct control over exposure rates for individual items, therefore some items may still 

be overexposed unless some exposure control algorithm is imposed in item selection. 

When compared to F through CATs simulated using both ideal and operational item 

pools, STR was found to result in more evenly distributed exposure rates and reduced 

overlap rates, while achieving somewhat lower test efficiency (Chang & Ying, 1999). Deng 

and Chang (2001) argued that the efficiency loss of STR could be attributed to insufficient 

use of high a items at later stages of the test. The point is that by drawing equal numbers of 

items from each stratum, the current STR procedure results in observed exposure rates for 

most items in the pool far below the target maximum exposure criterion, which leads to 

underuse of high a items later in the test and may degrade test efficiency to some extent. This 

consideration has led to a refined stratified procedure that allows more items to be selected 

from the high a strata and fewer items selected from the low a strata (USTR), which was 

found in a simulation study to effectively improve test efficiency over STR without 

unacceptably degrading item usage (Deng & Chang, 2001). The promising results about 

USTR have driven the current study for a systematic investigation of the comparative 

performances of F, STR, and USTR under a variety of realistic test conditions with item 

selection constrained by content coverage and exposure control. 
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In operational CATs, item selection often has to simultaneously address multiple and 

often conflicting demands, such as efficiency of ability estimation, content coverage, and 

exposure control. In addition, the behavior of an item selection procedure is influenced by the 

item selection space which can be viewed from the relationship between available and 

required item exposure.  For a specific CAT, the required item exposure can be quantified as 

n×m where n is test length and m represents the examinee sample size. For a given item pool, 

the available item exposure is N×r×m where N stands for item pool size and r is the target 

maximum exposure rate. With a fixed item pool and a fixed examinee sample, the 

relationship between the available and the required exposure is determined by test length and 

target maximum exposure rate. 

The purpose of this study was to eva luate and compare the three item selection  

procedures, F, STR, and USTR, along with the completely randomized item selection (RAN, 

serving as a baseline comparison) with respect to test efficiency and item pool usage through 

simulated CATs under systematically varied CAT design conditions. The test conditions 

varied in terms of absence or presence of practical constraints (content balancing and 

exposure control), and degree of restriction on item selection space due to various test 

lengths and target maximum exposure rates. The results from the study are intended to 

provide general guidelines for choosing an item selection procedure in realistic CAT settings. 

Method 

Design  

 In this study, the item selection space was manipulated by varying test length (n) and 

target maximum exposure rate (r). Since the item pool size was fixed at N=300 and examinee 

sample size was fixed at m=3000 for the overall sample and m=1000 for the conditional 
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samples, the ratio between the available item exposure (N×r×m) and the required exposure 

(n×m) was determined by n and r. In general a high ratio signals a large item selection space 

which allows more freedom in item selection.  

Case 1 represents a situation where available exposure is rich relative to the required 

exposure. With 300 items in the item pool, the test length was set to 20 items to make the 

ratio of the pool size to test length 15, more than satisfying the Stocking’s rule (Stocking, 

1994) that the pool size should be 12 times the test length. The maximum exposure rate was 

set at 0.20, a value commonly used by large-scale testing programs (Way, 1998). The 

required exposure was 20m, while the available item exposure was (300)(0.20)m=60m, three 

times the required. In Case 2, the item selection space was limited relative to Case 1 due to 

lengthened tests, with n=32 and r=0.2. Compared to Case 1, the available exposure remained 

the same (60m) but the required exposure increased to 32m. The ratio between the available 

and required exposure was reduced to 1.875.  In Case 3, item availability was restricted by a 

more stringent security criterion, with n=20 and r=0.125. Compared to Case 1, the required 

exposure remained the same (20m) but the available exposure decreased to 

(300)(0.125)m=37.5m. The ratio between available and required exposure was 1.875, the 

same as Case 2, but the item selection space was limited due to highly restricted exposure 

instead of longer tests. 

 The study involved nine test conditions resulting from combinations of three levels of 

practical constraints (no constraints, exposure control only, exposure control and content 

balancing), and the three cases of item selection space specified above. With respect to 

practical constraints, the no constraint condition bears little practical relevance but provides 

base comparisons among the various item selection procedures.  
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The exposure- control-only condition represents the situation where a high-stakes test 

measures a single ability with homogeneous items for which no content balance is necessary 

but security is of major concern. Although the SH procedure has been extended to 

accommodate exposure control conditional on additional elements (Stocking & Lewis, 1998; 

Davey & Parshall, 1995), the refined procedures involve much more time-consuming 

iterative simulations and result in further lessened efficiency, therefore they were not chosen 

for this study. Since the current study was primarily concerned with item selection methods, 

the general SH procedure would suffice.  

In the conditions that demand both exposure control and content balancing, the 

modified multinomial model (MMM) (Chen & Ankenmann, 1999) was used for content 

balancing, since it was found to achieve best item usage among various content balancing 

methods compared in a simulation study (Leing et al., 2001).  

The layout of the nine test conditions is shown below: 

 

Table 1. Specifications of Test Conditions 
    

  No Constraints With exposure control With exposure control 
and content balancing 

Case 1            
(n=20, 
r=0.20) 

RAN, F, STR, USTR F, STR, USTR RAN, F, STR, USTR 

Case 2             
(n=32, 
r=0.20) 

RAN, F, STR, USTR F, STR, USTR RAN, F, STR, USTR 

Case 3             
(n=20, 

r=0.125) 
RAN, F, STR, USTR F, STR, USTR RAN, F, STR, USTR 
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CATs were simulated using each of the three non-random item selection procedures 

(F, STR, USTR) under each of nine conditions. RAN was simulated under conditions except 

those requiring exposure control only, since random item selection itself can be considered 

an exposure control procedure that results in almost equalized exposure rates. Simulations 

under all the conditions were done for an overall sample of 3000 θs distributed as N(0,1), as 

well as for conditional samples of 1000 θs at each of eleven points equally spaced on the θ 

scale, ranging form –2.5 to 2.5 in increments of 0.5. The three-parameter logistic IRT model 

(3PLM) (Lord, 1980; Lord & Novick, 1968) was used for item response generation.  The 

expected a posterior (EAP) estimation (Bock & Aitkin, 1981) with a normal prior N(0,1) was 

used for ability estimation in the beginning of a test; once a response pattern scorable by 

MLE was obtained, MLE was used for the  remainder of the test.  

A real item pool consisting of 300 mathematical items from a large-scale assessment 

was used, with items classified into three major content areas. 120 items (40% of the pool) 

were from content area 1, and 90 items (30% of the pool) each from content areas 2 and 3. 

For CATs simulated with content constraints, the item selected were required to reflect the 

same content proportions. Table 2 shows the summary statistics of the item parameters for 

the entire pool and by content category.  

Given correlated a and b values (.356, significant at .0001 level) for the items in the 

pool, the pool stratification must take into account both item a and b values. Two types of 

stratified item pools were prepared for conditions with or without content balancing, all with 

four strata of 75 items each. For conditions requiring exposure control only, the pool was 

stratified through a two-stage process, b blocking followed by a stratification (Chang et. al , 
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2000), which resulted in b values similarly distributed in each stratum, with average a values 

increasing across strata. For the conditions requiring content balance, the item pool was 

stratified by item a and b values and content indices through a tri-stage process (Yi & Chang, 

2001). Specifically, the pool was first stratified into blocks based on content area; then the 

two-stage stratification was performed within each content block. Finally the corresponding 

strata across content blocks were collapsed into a single stratum. The pool stratified through 

the tri-stage process had content coverage within each stratum that resembled the entire pool, 

while the pool stratified with only respect to a and b values did not have this quality.  

Summary statistics of item parameters for both types of item pools appear in Table 3.  

Item selection  

 To allow an initial success experience for most examines, each examine was assigned 

an initial ability estimate of –1. For F, the first item was randomly selected from among the 

10 items most informative at ability level –1; for STR and USTR, the first item was 

randomly selected from among the 10 items in the first stratum with b values most closely 

matching the θ value -1. Random selection from 10 items for the first item was intended to 

eliminate the similar item sequences across examinees early in the test. This strategy for 

selecting the first item was used in one study of the stratified design (Yi, 2002) and differed 

from the procedure used in other studies (e.g, Chang & Ying, 1999; Chang, Qian & Ying, 

2000; Leung, Chang & Hau, 2001), which used three artificial items to roughly “locate” each 

examinee on the ability continuum for the test to begin. The use of artificial items is 

unrealistic in that operational CATs never begin with several items that do not count toward 

the total test score.  
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After the first item administration, the ability estimate was updated, and the second 

and the subsequent items were selected, one at a time, according to maximum information 

criterion for F, and by matching b and θ values for STR and USTR. For STR, 4 and 8 items 

were selected form each stratum for conditions with n=20 and n=32, respectively. For USTR, 

3,5,6,7 items were selected from the four strata for conditions with n=20, and 5,7,9,11 items 

for conditions with n=32. For CATs simulated with RAN, items were randomly selected 

from the item pool at each provisional ability estimate, without targeting item attributes to 

ability estimates at all. 

For conditions with exposure control, the use of SH requires a preliminary simulation 

phase to obtain exposure control parameters for all items in the pool. For each of the CAT 

design conditions with specified test length, maximum exposure rate, item selection 

procedure, and examinee sample (conditional or overall), a unique set of exposure control 

parameters was derived through iterative simulations. The results from the final round of the 

simulation were taken as the exposure control parameters for operational CAT 

administrations.  

For conditions with both exposure control and content balance, the MMM content 

balancing procedure was incorporated into item selection in addition to the exposure control 

procedure SH.  The MMM procedure forms a multinomial distribution from the target item 

proportions for the content areas (0.4, 0.3, and 0.3), and identifies a content area for the to-

be-selected item by drawing a random number from U(0,1). Depending on where the random 

number fell in the distribution, a content area was identified, and an item was selected from 

this content area based on the appropriate item selection criterion. Whenever a target 

proportion was reached for a content area, it was dropped from the remainder of the test and 
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the rest of the target proportions were divided by their sum to form a new multinomial 

distribution. The item selection proceeded in the same manner until the target proportion was 

satisfied for each content area. 

Simulation procedure 

 Item exposure control parameters were derived for each CAT design condition 

through separate iterative simulations. The SH procedure is based on the probability 

relationship P(A)=P(A|S)P(S), where P(A) is the probability that an item is administered, P(S) 

is the probability that the item is selected by the CAT algorithm, and P(A|S) is the conditional 

probability that the item is administered given that it has been selected. The SH procedure 

attempts to control item exposure through assigning each item an exposure control parameter 

ki, which is the finalized value of P(Ai|Si) from the last round of the iterative simulations. For 

the condition with n=20 and r=.2, items selected using USTR with exposure and content 

constraints, and 1000 examinees with the same ability θ=1.0, item selection occurred within 

the pool stratified through the tri-stage process, and the steps for obtaining exposure control 

parameters were as follows: 

Step 1. Set initial values P(A|S)=1.0 for all items in the pool. 

Step 2. Simulate CATs for the 1000 examinees with θ=1.0. The first item was 

randomly selected from among the 10 best items targeted at an ability level of -1 from the 

first stratum. For the second item and on, items were selected based on content specification, 

exposure control algorithm, and the criterion of matching b with θ. For the 20- item test, 

3,4,6, and 7 items were selected from each of the four strata, respectively. Each time to select 

an item, a random number sampled from U(0,1) was used to locate the appropriate content 

area in the current stratum, and an item i with bi most closely matching the current θ estimate 
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was selected. Given the selected item i, another random number u was sampled from U(0,1) 

and compared to P(Ai|Si). Item i was administered only if u≤P(Ai|Si), otherwise the next best 

item from the same content area in the same stratum was evaluated. Item i was dropped for 

the remainder of the test no matter if it was administered or not. The procedure was repeated 

until an item was administered. After all CATs were finished, the frequency of selection P(Si) 

and the frequency of administration P(Ai) were computed for all items in the pool.  

 Step 3. Adjust P(Ai|Si) according to the prespecified maximum exposure rate, r=.2.  

  If P(Si)>r, then P(Ai|Si)=r/ P(Si); 

  If P(Si) ≤r, then P(Ai|Si)=1.0. 

The resulting new P(A|S)s were sorted. To ensure a complete test of 20 items with 

appropriate content coverage for each examinee, the 8 largest P(Ai|Si)s from content area one, 

and the 6 largest P(Ai|Si)s from each of content areas two and three were set to 1.0.  

Step 4. Repeat Steps 2 and 3 until all P(Ai|Si) have stabilized and the maximum P(A) 

value approximately equals r. The P(Ai|Si) values from the final iteration were the exposure 

control parameters (ki ) to be used in operational CAT administrations. 

The operational CAT simulations proceeded in much the same way as the preliminary 

simulations except that no adjustments of parameters were needed and all simulations 

occurred in one cycle that resulted in a final ability estimate for each examinee.  

The above procedure for simulating CATs also applies to the STR conditions, except 

that unequal numbers of items were to be selected from each stratum. For the F conditions, 

the simulation procedure differed from the above in three ways: (1) it did not require a 

stratified pool, (2) it did not involve multiple stages of testing, and (3) it adopted a maximum 

information criterion for item selection. 
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Evaluation criteria 

To evaluate test efficiency, bias, standard error of measurement (SEM) and root mean 

square error (RMSE) of ability estimates were examined for the overall sample, and RMSE 

was also evaluated for each conditional sample.  

To evaluate item usage, observed item exposure rates were graphed and examined for 

an overall impression of item usage balance. A ?2 statistic, defined as follows, was computed 

as a measure of the discrepancy of the observed and the uniform exposure rates: 

∑
=

−=
N

j
jjj ererer

1

22 )(χ  

where erj is the observed exposure rate, and jer =n/N is the uniform exposure rate with n  

being the test length and N  being the pool size.  

The observed maximum item exposure rate for all items in the pool was taken as an 

indication of the overall security achieved (Stocking & Lewis, 1995); the number of items 

never used for the overall sample was reported as a measure of item pool utilization 

efficiency. Test overlap rate is another important summary index for measuring exposure 

control. For fixed length n- item CATs and for a sample of m examinees, the calculation of 

test overlap rates involves the following steps: (1) counting the number of common items for 

each of the m(m-1)/2 pairs of examinees, (2) summing all the m(m-1)/2 counts, and (3) 

dividing the total counts by nm(m-1)/2. To ensure test security, the number of common items 

shared by two randomly sampled examinees should be minimized. For the current study, the 

test-retest overlap rates were obtained for each item selection procedure conditional on 

ability level with CATs simulated for 1000 examinees (m=1000), while the peer-to-peer 
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overlap rates were obtained with CATs simulated for the overall sample of 3000 examinees 

(m=3000).  

Results 

The global comparison of the various item selection procedures was based on CATs 

simulated for the overall sample of 3000 examinees with abilities distributed as N (0,1), 

while the comparison at specific ability levels was based on conditional samples of 1000 

examinees at each of the eleven ability points. It should be noted that the global and 

conditional results were based on independent simulations. In addition, for conditions with 

exposure control, the CAT simulations for the global and conditional examinee samples each 

involved unique sets of exposure control parameters. For these reasons, the global and 

conditional results have no direct correspondence to each other, but they provide 

complementary information about the comparative performance of each procedure. 

No matter whether observed marginally or conditionally, RAN was found to 

consistently result in the lowest test efficiency and best item usage across test conditions. 

Completely randomized item selection achieves a natural balance of item usage by 

generating item exposure rates that closely matched the uniform distribution, and yielded 

minimum overlap rates across examinees. This procedure, however, showed the poorest 

performance on test efficiency due to not matching item difficulty to ability estimates. Since 

RAN forfeited the basic property of a CAT, its inclusion in this study was simply for baseline 

comparison. Summarized below are the comparative performances of the three non-random 

procedures, F, STR, and USTR, organized by conditions of practical constraints. 
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Without constraints 

From Tables 4 - 6, it was observed that for CATs simulated for the overall sample of 

examinees under non-constrained conditions, F resulted in lower SEM (equivalently, RMSE, 

since RMSE2=Bias2+SEM2 and bias values were small across all conditions) than STR and 

USTR, and thus F had higher efficiency. However, F had dramatically skewed item exposure 

rates (see Figures 1-3), poor utilization of the item pool (many unused items), and high 

overlap rates. USTR showed slightly improved efficiency over STR (see SEM), with a larger 

proportion of unused items. This pattern of results transcends different combinations of test 

lengths and target maximum exposure rates. The efficiency advantage of F was clearly seen 

when items were selected based solely on statistical properties. 

A similar pattern of results was also observed for conditional samples (see Figures 4-

9). F had lower RMAE, thus higher efficiency than STR and USTR along the ability scale, 

but it had high test-retest overlap rates at all ability levels. USTR showed slightly improved 

efficiency over STR at all ability levels except the low extreme, and had slightly higher 

overlap rates than STR along the ability scale. 

With exposure control 

 For CATs simulated with respect to the overall sample, the relative performance of F, 

STR, and USTR varied with test length and target exposure rate (see Tables 4-6). As shown 

in Table 4, when available exposure was rich relative to the required, F showed somewhat 

higher efficiency yet poorer item usage than STR and USTR; USTR had slightly improved 

efficiency over STR with slightly compromised item usage. When the item selection space 

was restricted by either lengthened tests or a lower target maximum exposure rate, as shown 

in Tables 5 and 6, however, poor item usage for F no longer led to an efficiency gain in 
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return. While USTR yielded slightly higher efficiency than STR with slightly compromised 

item usage, it approached the same level of efficiency as F. It seemed that under conditions 

with restricted item availability, USTR was a good alternative to F since it resulted in a 

similar level of efficiency with better item usage.  

Observed conditionally, the relative performance of F, STR, and USTR also showed 

different patterns across conditions of different test lengths and target maximum exposure 

rates (see Figures 4-9). In Case 1 where item availability was relatively large, the three 

procedures showed a similar trend as those observed for the unconstrained condition, 

although the differences among the three procedures were quite small. F showed the highest 

efficiency and poorest item usage across ability levels, while STR showed the opposite; at all 

ability levels except the low extreme, USTR had slightly higher efficiency than STR with 

slightly inflated overlap rates. In Case 2 and Case 3 where the item selection space was 

relatively restricted, all three procedures performed similarly in terms of efficiency along the 

ability scale, while F had higher overlap rates at the middle ability levels than STR and 

USTR. The results from conditional samples were not completely consistent to those 

observed from the overall sample, partly because the item pool was poorly targeted to ability 

levels beyond the middle portion of the scale, while the configuration of the b values 

approximated reasonably well the overall ability distribution N(0,1). Had sufficient number 

of items appropriate for all ability levels been included in the item pool, more distinction 

might have been observed across various procedures on the conditional samples.  

With exposure control and content balancing 

 With respect to the overall sample, when item selection involved both exposure 

control and content balancing, the comparative performance of various procedures very much 
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resembled the pattern observed for the condition with only exposure control, except for the 

situation with very stringent exposure control (see Tables 4-6). Specifically, with a relatively 

large item selection space in Case 1, the use of F resulted in efficiency gain over the STR and 

USTR, with poor item usage; USTR slightly improved efficiency over STR with small 

compromises on item usage. When the item selection space was limited by lengthened tests 

as examined in Case 2, F lost its efficiency gain. STR still had the lowest efficiency and best 

item usage. The use of USTR seemed to be a viable option since it achieved a similar 

efficiency level as F with improved item usage. Under the condition where more stringent 

exposure control was imposed along with content balancing, USTR lost its efficiency gain 

over STR; the two procedures achieved the same level of efficiency with STR showing better 

item usage. Relative to the stratification procedures, F retained its efficiency advantage, with 

still problematic item usage.  

When examined conditionally on ability levels, the patterns of relative performance 

of the three procedures were in general similar to those observed under the conditions with 

only exposure control. Specifically, in Case 1 where item availability was relatively large, F 

showed slightly higher efficiency and poorer item usage than the stratification methods along 

the ability scale; USTR had slightly higher efficiency than STR with slightly inflated overlap 

rates at the middle ability levels. In Case 2 and Case 3 where the item selection space was 

relatively restricted, all three procedures performed similarly in terms of efficiency along the 

ability scale, while F showed higher overlap rates at the middle ability levels than STR and 

USTR. 

 To summarize, the results showed that USTR reduced error variances for STR under 

a variety of test conditions, with small compromises in item usage. F had an apparent 
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efficiency advantage over STR and USTR only when item selection occurred with no 

constraints in a relatively large selection space. Compared to F, USTR enhanced the balance 

of item exposure, reduced overlap rate, and made better utilization of the entire pool, while 

achieving comparable test efficiency, especially when items were selected under exposure 

control and the item selection space was restricted by long tests or a stringent security 

criterion. It should also be noted that, if item usage is of major concern, STR seems to be the 

best procedure since it always outperformed the other procedures on item usage balance and 

pool utilization.  

 With respect to the effects of constraints, it was found that exposure control had a 

general tendency to dramatically decrease efficiency for F, yet had minimal impact on 

efficiency for STR and USTR, which implies that USTR had large potential for achieving 

efficiency comparable to F under exposure constrained conditions. On the other hand, the 

content constraints were found to decrease efficiency for all non-random procedures, 

including STR and USTR. In addition, a noteworthy finding was that under the condition 

where item availability was severely limited by very stringent exposure control along with 

content constraints, USTR failed to realize its efficiency potential. Finally, the results based 

on conditional indices highlighted the importance of including an adequate number of items 

appropriate for the ability range the test was intended to measure. 

Discussion 
  
 The results from the current study confirmed the preliminary findings from Deng & 

Chang (2001), and extended the work by examining the three procedures (F, STR, and 

USTR) along with a baseline RAN, both conditionally and unconditionally, under 
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systematically varied conditions. The results from this study have implications for choosing 

an appropriate item selection procedure in applied settings.  

 The efficiency advantage of F was evident when items were selected without any 

constraints, but its high efficiency came at the price of very poor item usage. In addition to a 

large proportion of unused items that could cause an economic concern, overexposed items, 

mostly high a items, compromised test security and validity. To maintain an item pool that 

supports effective CATs, there must be a substantial number of high a items continuously 

input into the pool, while at the same time those items must satisfy test specifications and 

other constraints. That is a very difficult task for item writers, which even if achievable, may 

not be economically feasible at all. It is likely that few operational CAT programs could 

afford the use of maximum information item selection without any constraints. 

 For CAT programs that implement exposure control in item selection, the results 

suggest that the choice of an item selection procedure should be based on the relationship 

between the available and required item exposure. When the item pool size, test length and 

security criterion permit a large item selection space, as in Case 1 of the current study, the 

use of F resulted in an efficiency gain over the stratification procedures, yet the efficiency 

gain was accompanied by unbalanced exposure rates, high overlap rates, and a large number 

of unused items. When the item selection space was restricted by lengthened tests or more 

stringent exposure control, USTR seemed to be a promising alternative to F, since it to a 

large extent overcame the item usage problems with F while at the same time maintained its 

efficiency level. In addition, the results showed that the stratification procedures had stable 

efficiency levels no matter if item exposure was constrained or not; on the other hand, 
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exposure control consistently led to substantial efficiency loss for F, and the more stringent 

the exposure control, the greater the loss.  

For CAT programs that implement content constraints as well as exposure control, 

the results suggest that the choice of an item selection procedure requires careful examination 

of the relationship between available and required item exposure. Unlike exposure control 

that only influenced test efficiency for F, content constraints tended to decrease efficiency for 

all non-random procedures, including STR and USTR. When the item selection space is 

limited by stringent exposure control, imposing content constraints may further decrease item 

selection space to a point where USTR fails to gain efficiency over STR. 

In reality, any CAT operation necessitates compromises among competing goals. This 

is clearly evident in the choice of an item selection procedure. The results from this study 

provide some tentative guidelines for choosing an item selection procedure in CAT and 

should encourage further studies using different item pools and CAT design structures. The 

results also highlight the importance of viewing the merits and shortcomings of each item 

selection procedure in relation to important practical concerns and CAT design conditions, 

and emphasize the necessity of choosing a procedure based on informed judgments from 

balancing many factors in a manner that best satisfies the needs of the testing program.  
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Table 2. Descriptive Statistics of the Item Parameters by Content Category 
        

Item 
Parameters N Mean SD Minimum Maximum Skewness Kurtosis 

Content 1 

a 120 0.923 0.281 0.359 1.635 0.345 -0.374 

b 120 -0.001 1.048 -2.515 2.005 -0.227 -0.759 

c 120 0.148 0.042 0.031 0.251 -0.039 0.140 

Content 2 

a 90 1.012 0.305 0.349 1.605 -0.159 -0.915 

b 90 0.587 0.847 -1.977 2.582 -0.460 0.122 

c 90 0.156 0.049 0.042 0.271 -0.140 -0.512 

Content 3 

a 90 1.037 0.290 0.296 1.933 0.210 0.399 

b 90 0.442 0.785 -1.809 1.971 -0.473 0.344 

c 90 0.141 0.048 0.037 0.267 0.102 -0.324 

The Entire Pool 

a 300 0.984 0.295 0.296 1.933 0.147 -0.419 

b 300 0.308 0.949 -2.515 2.582 -0.480 -0.191 

c 300 0.148 0.046 0.031 0.271 -0.017 -0.282 
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Table 3. Descriptive Statistics of the Item Parameters by Stratum 
         

Stratum 
Item 

Parameters N Mean SD Minimum Maximum Skewness Kurtosis 

  Stratified by a, b 

1 a 75 0.696 0.184 0.296 1.114 0.033 -0.423 

 b 75 0.312 0.972 -2.348 2.582 -0.430 -0.001 

  c 75 0.160 0.046 0.042 0.267 -0.357 0.030 

2 a 75 0.911 0.202 0.487 1.407 0.146 -0.707 

 b 75 0.303 0.967 -2.515 2.199 -0.566 0.052 

  c 75 0.151 0.040 0.073 0.252 0.258 -0.013 

3 a 75 1.072 0.205 0.493 1.505 -0.264 -0.077 

 b 75 0.308 0.939 -2.132 2.005 -0.479 -0.354 

  c 75 0.145 0.053 0.031 0.271 0.145 -0.656 

4 a 75 1.259 0.247 0.584 1.933 -0.262 0.284 

 b 75 0.310 0.937 -2.185 1.971 -0.474 -0.311 

  c 75 0.137 0.043 0.037 0.251 -0.086 -0.067 

  Stratified by a, b & content 

1 a 75 0.705 0.182 0.296 1.084 -0.078 -0.353 

 b 75 0.308 0.971 -2.348 2.582 -0.451 0.009 

  c 75 0.157 0.043 0.042 0.267 -0.027 0.125 

2 a 75 0.893 0.195 0.487 1.420 0.102 -0.174 

 b 75 0.313 0.949 -2.515 2.199 -0.537 0.070 

  c 75 0.159 0.043 0.062 0.240 -0.437 -0.395 

3 a 75 1.061 0.197 0.493 1.505 -0.451 0.244 

 b 75 0.295 0.965 -2.132 2.005 -0.501 -0.295 

  c 75 0.143 0.047 0.055 0.271 0.383 -0.234 

4 a 75 1.278 0.244 0.584 1.933 -0.612 1.106 

 b 75 0.317 0.931 -2.185 1.871 -0.460 -0.371 

  c 75 0.135 0.049 0.031 0.251 0.155 0.089 
 



 

 

24

24

 

 Table 4. Performance Summary for Various Methods under Case 1 Conditions 
         

   n=20, r=.20 

  
    Bias SEM RMSE χ2 #Zero 

Exposure  
Overlap 

Rate 

 Without Constraints 
   

  F -0.004 0.297 0.297 71.456 177 0.305 

  STR 0.007 0.369 0.369 9.767 11 0.099 

  USTR 0.003 0.350 0.350 9.285 33 0.097 

   RAN -0.094 0.689 0.695 0.112 0 0.067 

With Exposure Control      

  F-SH -0.008 0.331 0.331 32.242 139 0.174 

  STR-SH -0.005 0.373 0.373 8.158 11 0.094 

   USTR-SH -0.004 0.351 0.351 8.945 34 0.096 

 With Exposure Control and Content Control     

  F-SH-C -0.005 0.346 0.346 31.591 120 0.172 

  STR-SH-C -0.004 0.387 0.387 9.293 9 0.097 

  USTR-SH-C 0.002 0.369 0.369 9.710 29 0.099 

    RAN-C -0.084 0.686 0.691 0.093 0 0.067 
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 Table 5. Performance Summary for Various Methods under Case 2 Conditions 
         

   n=32, r=.20 

  
    Bias SEM RMSE χ2 #Zero 

Exposure  
Overlap 

Rate 

 Without Constraints 
   

  F -0.001 0.245 0.245 66.054 121 0.327 

  STR 0.003 0.290 0.290 10.244 0 0.141 

  USTR 0.000 0.278 0.278 11.228 11 0.144 

   RAN -0.062 0.528 0.532 0.092 0 0.107 

With Exposure Control      

  F-SH -0.005 0.271 0.271 22.740 75 0.182 

  STR-SH -0.002 0.281 0.281 6.214 0 0.127 

   USTR-SH 0.010 0.270 0.270 9.922 11 0.140 

 With Exposure Control and Content Control     

  F-SH-C -0.006 0.285 0.285 22.387 64 0.181 

  STR-SH-C 0.002 0.307 0.307 7.568 0 0.132 

  USTR-SH-C -0.007 0.289 0.289 10.161 9 0.140 

    RAN-C -0.045 0.518 0.520 0.185 0 0.107 
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 Table 6. Performance Summary for Various Methods under Case 3 Conditions 
         

   n=20, r=.125 

  
    Bias SEM RMSE χ2 #Zero 

Exposure  
Overlap 

Rate 

 Without Constraints     

  F -0.004 0.294 0.294 71.012 177 0.303 

  STR 0.002 0.372 0.372 9.838 11 0.099 

  USTR 0.013 0.351 0.351 9.405 33 0.096 

   RAN -0.066 0.695 0.698 0.097 0 0.067 

With Exposure Control      

  F-SH -0.007 0.348 0.348 15.231 96 0.117 

  STR-SH 0.013 0.369 0.369 5.395 11 0.084 

   USTR-SH -0.002 0.353 0.353 7.813 34 0.092 

 With Exposure Control and Content Control     

  F-SH-C -0.021 0.373 0.374 14.912 86 0.116 

  STR-SH-C -0.008 0.392 0.392 6.121 9 0.087 

  USTR-SH-C -0.011 0.393 0.393 7.511 29 0.091 

    RAN-C -0.077 0.687 0.692 0.085 0 0.067 
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Figure 1. Item Exposure Rates for Various Methods in Case 1 (n=20, r=.20) 
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Figure 2. Item Exposure Rates for Various Methods in Case 2 (n=32, r=.20) 
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Figure 3. Item Exposure Rates for Various Methods in Case 3 (n=20, r=.125)
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Figure 4. Conditional Root Mean Squared Errors for Variouos Methods under Case 1 Conditions (n =20, r =.20)
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Figure 5. Conditional Root Mean Squared Errors for Variouos Methods under Case 2 Conditions (n =32, r =.20)
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Figure 6. Conditional Root Mean Squared Errors for Variouos Methods under Case 3 Conditions (n =20, r =.125)
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Figure 7. Conditional Overlap Rates for Various Methods under Case 1 Conditions (n =20, r =.20)
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Figure 8. Conditional Overlap Rates for Various Methods under Case 2 Conditions (n =32, r =.20)
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Figure 9. Conditional Overlap Rates for Various Methods under Case 3 Conditions (n =20, r =.125)

Without Exposure Control or
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