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Abstract 
 
 

Precision of trait estimation and determination of item exposure rates are always 
important considerations in conducting CATs.  To date, simulation techniques have been used in 
research concerning these two considerations.  Even though conducting simulation studies has 
some advantages over using real human subjects, the simulation results are not as accurate as 
analytically obtained results.  To improve the accuracy of the results, and to avoid time 
consuming simulation work, more research on analytical solutions to problems is needed.  The 
purpose of this study was to investigate the precision of CAT trait estimation and to determine 
CAT item exposure rates using an analytical approach (referred to as Tree).  The results thus 
obtained were compared to those obtained using a simulation study, where three different levels 
of replications, 100, 500, and 1,000(referred to as S100, S500, and S1K respectively) were 
implemented. 

Based on this study, the differences among S100, S500, S1K, and Tree decreased as test 
length increased.  For test length as long as 20 items, the differences among S500, S1K, and Tree 
were negligible.  In other words, a simulation study with 500 replications can provide results as 
accurate as the analytical approach for a 20-item test. 
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Introduction 

To date, the efficiency and precision afforded by CATs has typically been studied using 
computer simulation techniques (e.g., Veerkamp & Berger, 1997; Wang, & Vispoel, 1998).  By 
conducting simulation studies, CAT components (i.e., item characteristics, item pool sizes, test 
lengths, item selection rules, test termination rules, etc.) can be controlled and manipulated 
easily, so the effects of factors of interest may be assessed more efficiently than by using real 
human subjects. 

Even though conducting simulation studies has some advantages over using real human 
subjects, the simulation results are not as accurate as analytically obtained results.  Furthermore, 
the simulation work is time consuming.  To improve the accuracy of the results, and to avoid 
time consuming simulation work, research on analytical solutions to problems is needed.  The 
purpose of this study was to investigate the precision of CAT trait estimation and to determine 
CAT item exposure rates using an analytical approach.  The results thus obtained were compared 
to those obtained using a simulation study. 

 
Theoretical Framework of an Analytical Approach 

  The analytical approach that was used in this study is illustrated with the following 
example.  Consider a four-item CAT administered from a pool of ten items in which each item is 
defined by the dichotomous three-parameter logistic (3PL) item response model and content 
specifications as well. 

The tree diagram in Figure 1 illustrates all possible four-item CATs that can be administered 
when no item exposure control is implemented.  Each rectangle in the tree diagram is numbered 
according to the item number it represents, and each row of the diagram corresponds to a 
particular stage of the test (i.e., 1st, 2nd, 3rd, or 4th).  The letter in parentheses within a rectangle 
represents the probability of the corresponding item being administered at the corresponding 
stage of the CAT.  These probabilities are defined in Table 1.  Without considerations of item 
exposure control, Item 5 is always administered at the first stage of the CAT in this case; hence, 
the probability of Item 5 being administered at the first stage must equal one.  During the second 
stage, Item 6 is administered to an examinee only if Item 5 is answered correctly; therefore, P(5) 
is the probability that Item 6 is administered to examinees at the second stage.  On the other 
hand, if Item 5 is answered incorrectly in the first stage, then Item 4 is administered to an 
examinee at the second stage, with probability 1-P(5).  Note that the sum of the probabilities of 
the two items that can be administered at the second stage (i.e., P(5) and 1-P(5)) is equal to one.  
During the third stage, Item 7 is administered only if Items 5 and 6 are both answered correctly.  
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Thus, the probability that Item 7 is administered at the third stage is P(5)×P(6), and the 
probability that Item 4 is administered at the third stage is P(5)×[1-P(6)].  Similarly, the 
probability that Item 6 is administered at the third stage is [1-P(5)]×P(4), and the probability that 
Item 3 administered at the third stage is [1-P(5)]×[1-P(4)].  Note that the four probabilities at the 
third stage also sum to one.  Based on the same logic, the probabilities for the items administered 
to examinees at the fourth stage are obtained and sum to one. 

Based on the probability structure defined by Table 1, the precision of trait estimation can be 
determined at any stage of the CAT, for any given true trait level.  For example, assuming a true 
trait level , two possible trait estimates can be obtained after Item 5 has been administered:  
one if the item is answered correctly, and the other if it is answered incorrectly.  The probability 
of answering Item 5 correctly (or incorrectly) is also known given .  Therefore, a discrete 
probability distribution can be formed and the mean and variance of this distribution can be 
determined exactly without any approximation.  Similarly, at any other stage of the CAT, a 
discrete probability distribution can be determined along with corresponding mean and variance.  
Thus, the precision of trait estimation for any given true trait level can be determined analytically 
at any stage of the CAT. 

θ = 3

θ = 3

The item exposure rate of any item in the pool can also be determined using the probability 
structure defined by Table 1, simply by summing the probabilities associated with that item 
across all stages of the CAT.  Table 2 shows these tabulations for each of the items in the CAT 
item pool.  Thus, the item exposure rate of each item can also be determined analytically. 

The results of this simple example can be readily extended to any item pool.  They can also 
be applied under different conditions of initial trait estimates, item selection rules, or trait 
estimators.  The utility of the analytical approach may be limited, however, in cases of long tests, 
where the tree diagram is big.  For test length as long as 20 items, the number of all possible 20-
item CATs is .  Thus, it would be time consuming to obtain results for long tests 
using the analytical approach.  For the 20-item test, it took a PC (Pentium III, 650Mhz, 128MB 
RAM) around 15 minutes to run for the analytical approach while only a couple of minutes for a 
simulation study with 1,000 replications.  

288,524219 =

Even though the analytical approach is time consuming for long tests, the accuracy of its 
results is undoubted while the accuracy of the simulation results is always unknown no matter 
how many replications are used, although the more the replications, the more accurate the 
results.  Based on the results obtained from the analytical approach, the purpose of this study was 
to evaluate the precision of trait estimation and accuracy of item exposure rates obtained from a 
simulation study, where three different levels of replications, 100, 500, and 1000 were 
implemented. 

 
Method 

The procedure of the analytical approach has been described as above.  The procedure of 
the simulation study is described in details in this section.  For both approaches, the following 
specifications for the CAT components were applied.  

Item response model.  The three-parameter logistic (3PL) item response model, which is 
commonly used in operational CATs, was applied in the current study.  This model defines the 
probability of a correct response, given a trait level ( ), as follows: θ
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where  is the item discrimination parameter,  is the item difficulty parameter, and  is the 
pseudo chance level or pseudo guessing parameter. 

ia ib ic

Item pool structure.  The item pool consisted of 360 ACT-Math items with item 
parameters calibrated using the 3PL item response model with data obtained from the years of 
1993, 1994, and 1995.  Descriptive statistics of the item parameters are shown in Table 3. 

Initialization.  Because no prior information about examinees’ trait levels could be 
obtained before testing, the initial trait estimate was assumed to be zero (i.e., ). 0ˆ

0 =θ

Trait estimation.  Because of the problems associated with MLE, especially at the early 
stages of a CAT, EAP estimation with a θ~N(0,1) prior distribution was used in this study.  The 
EAP estimate can be approximated using Gauss-Hermite quadrature (Stroud & Sechrest, 1966) 
as follows: 
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where  is one of q  quadrature points, W X  is a weight associated with , L( ) is the 
likelihood function conditioned at , and is a response vector.
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Test length and termination rule.  The maximum test length was set at 20 items.  Data 

were collected at each unitary increment of test length from i = 1 to 20, inclusive.  The 
comparison of these two approaches, however, was carried out for test length equal to 10, 15, 
and 20 items only. 

Item selection.  Maximization of item information was the criterion used for item 
selection at each stage.  The item information is defined as follows: 
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where  is the item response function for Item j and Q . )(θjP )(1)( θθ jj P−=

True Trait levels. The precision of CAT trait estimation and item exposure rates were 
studied at each of seven different true trait levels:  = -3, -2, -1, 0, 1, 2, and 3.  These trait 
levels cover most of the range of trait levels observed in practice, and they are commonly 
applied in research (e.g., Veerkamp & Berger, 1997). 

oθ

 
Simulation Study 

The procedure of the simulation study with 1,000 replications is described as follows. 
Similar procedures are applied for 100 and 500 replications.  At each trait level, 1,000 
replications (i.e., simulees) were used for the CAT simulation.  Each simulee-item response 
was generated based on the comparison of  from the 3PL (Equation 1) to a random )(θjP
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U(0,1) deviate.  If  was greater than or equal to the value of the random uniform deviate, 
then the simulee-item score was 1; otherwise, the simulee-item score was 0.  The 1000 x 360 
simulee-item response matrix was fixed at each true trait level studied to eliminate the effect 
of randomness of responses. 

)(θjP

( )o,n θ

Given an EAP trait estimate based on n items having been administered so far ( ; 

 according to the initialization assumption stated above), the (n + 1)
nθ̂

0ˆ
0 =θ th item was selected 

such that ( )njI θ̂  had the maximum value among all of the items in the pool.   
After an item was administered, the 1000 x 360 simulee-item response matrix described 

earlier was used to determine whether an examinee answered the item correctly.  Then, a new 
EAP was obtained to identify the next appropriate item for the examinee.  The process continued 
until a 20-item test had been administered. 
 
Evaluation Criteria 

Bias, standard error and item exposure rates were used to evaluate the results obtained 
from both the analytical approach and the simulation study.  The procedure to find these 
evaluation criteria for the analytical approach has been described as above.  The procedure for 
the simulation study is described as follows. 

For each combination of test length (i.e., n = 1, 2, 3, . . . , 20) and true trait level (i.e., 
= -3, -2, -1, 0, 1, 2, 3), bias (BIAS) and standard error (SE) were calculated across 1,000 

replications as follows:. 
oθ
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At each true trait level, item exposure rate of each item was calculated.  The item 

exposure rate of item i, is defined as 

 r
m
p
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where  is the number of times item i is presented to the simulees, p is the total number of 
simulees and n is the size of an item pool.    To compare the item exposure rates obtained from 
both approaches, chi-square statistic was calculated as follows: 
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where   is the item exposure rate of Item i obtained from the simulation study with 1,000 
replications and  is the item exposure rate of Item i obtained from the analytical approach. 
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 Figure 2 summarizes the standard error results obtained from the analytical approach and 
the simulation study.  In general, among the three levels of replication of the simulation study 
(S100, S500, and S1K), the SEs obtained from S1K were the closest to those obtained from the 
analytical approach (Tree).  Furthermore, the longer the test, the closer the SEs.  For test length 
as long as 20 items, they were not distinguishable.  The relationship between S500 and Tree was 
similar to that observed for S1K.  Compared to S100, the SEs obtained from S500 were closer to 
those obtained from Tree.  Also, the longer the test, the closer the SEs.  The differences were 
very slim when test length was equal to 20 items.  That is, the differences among S500, S1K, and 
Tree were  negligible for a 20-itesm test.  Compared to the results observed above, the SEs 
obtained from S100 were quite different from those obtained from Tree.  Except for the true trait 
level 2, SEs tended to be overestimated at negative true trait levels while underestimated at the 
other true trait levels when S100 was implemented.  However, the difference decreased as test 
length increased.  The differences were still noticeable when test length as long as 20 items. 
 
Bias 

 Figure 3 summarizes the bias results obtained from the analytical approach and the 
simulation study.  The relationships among the four approaches with respect to bias seemed not 
as distinguishable as those observed for SEs.  In general, the bias obtained from S1K was the 
closest to that obtained from Tree and the longer the test, the closer the bias.  The bias obtained 
from S1K and Tree were not distinguishable when test length was equal to 20 items.  Compared 
to S100, the bias obtained from S500 was closer to that obtained from Tree.  Also, the longer the 
test, the closer the bias.  The differences were also very slim when test length as long as 20 
items.  Compared to SEs, the bias obtained from S100 was not quite different from that obtained 
from Tree.  The differences were not noticeable when test length as long as 20 items.  That is, 
with respect to bias, the differences among S100, S500, S1K, and Tree were  negligible for a 20-
item test. 

  
Item Exposure Rate 

 Table 4 shows the Chi-square statistic for the simulation study with three different levels 
of replications.  The results were consistent with those observed for SE and Bias.  Among the 
three levels of replications, the item exposure rates obtained from S1K were the closest to those 
obtained from Tree, and thus associated with the smallest Chi-square values.  Compared to S100, 
S500 had much smaller chi-square values and performed much more similarly to Tree for a 20-
item test. 

 
Conclusions & Discussion 

Based on the results described above, it’s clear that the differences among S100, S500, 
S1K, and Tree decreased as test length increased.  For test length as long as 20 items, the 
differences among S500, S1K, and Tree were negligible.  In other words, a simulation study with 
500 replications can provide results as accurate as the analytical approach for a 20-item test.  
Thus, to decide the number of replications needed for a simulation study, we may have to 
consider test length as an important factor.  For test length longer than 20 items, less than 500 
replications may be sufficient to provide accurate results.  More research is needed to confirm 
this conclusion.  



  

  
Table 1. Probability of each item 
administered at each stage 

Figure 1.  Item Selection at Each Stage of a CAT
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1st stage 
 Item 5:  a = 1.0 
 
2nd stage 
 Item 6:  b = a × P(5) 
 Item 4:  c = a × [1 - P(5)] 
 
3rd stage 
 Item 7:  d = b × P(6) 
 Item 4:  e = b × [1 - P(6)] 
 Item 6:  f = c × P(4) 
 Item 3:  g = c × [1 - P(4)] 
 
4th stage 
 Item 8:  h = d × P(7)  
 Item 4:  i  = d × [1 - P(7)] Table 2. Item exposure rates 

  Item 7:  j = e × P(4) 
Item # (i) Item Exposure Rate ( r ) i

1 0.0 
2 o 
3 g + k + m 
4 c + e + i 
5 a 
6 b + f + n 
7 d + j + l 
8 h 
9 0.0 
10 0.0 

Sum 4.0 

 Item 3:  k = e × [1 - P(4)] 
 Item 7:  l = f × P(6) 
 Item 3:  m = f × [1 - P(6)] 
 Item 6:  n = g × P(3) 
 Item 2:  o = g × [1 - P(3)] 
 
Note:  P(t) is the probability that item t is 
answered correctly given a specific trait level 
base on the 3PL item response model. 
 
 
 
   
 
 
 
 
 
 
 
 
 
 



  

 
Table 3. Descriptive Statistics of the Item Parameters of an ACT-Math Item Pool 
 

Item 
Parameters 

 
N 

 
Mean 

 
SD 

 
Minimum 

 
Maximum 

 
Skewness 

 
Kurtosis 

a 360 0.9688 0.3237 0.2800 2.3700 0.7700 1.4130 
b 360 0.3983 1.1221 -3.4300 2.9400 -0.4480 0.3680 
c 360 0.1852 0.0865 0.0300 0.5000 1.0630 1.5710 

 
 
Table 4. Chi-square Statistic 
 

Theta -3 -2 -1 0 1 2 3 
S100 87.91 0.97 0.17 0.40 0.40 0.33 0.06 
S500 4.76 0.08 0.07 0.12 0.06 0.05 0.06 
S1K 1.19 0.07 0.04 0.04 0.02 0.08 0.02 



  

Standard Error for 10-Item Tests
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Figure 2. Standard Error 



  

Bias for 10-Item Tests
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Figure 3. Bias



  

References 

Lord, F. M.  (1980).  Applications of item response theory to practical testing problems.  
Hillsdale, NJ: Lawrence Erlbaum. 

Veerkamp, W. J., & Berger, M. P. F.  (1997).  Some new item selection criteria for adaptive 
testing.  Journal of Educational and Behavior Statistics, 22, 203-226. 

Wang, T. & Vispoel, W. P. (1998).  Properties of ability estimation methods in computerized 
adaptive testing.  Journal of Educational Measurement, 35(2), 109-135. 

Stroud, A. H. & Sechrest, D. (1966).  Gaussian quadrature formulas.  Englewood Cliffs, NJ: 
Prentice-Hall.  

 


	Shu-Ying Chen
	Item 5:  a = 1.0
	Item 3:  g = c ( (1 - P(4)(
	Table 2. Item exposure rates
	Item # (i)
	SD
	
	
	
	
	
	
	References








