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Abstract 
Built on multidimensional item response theory (MIRT), multidimensional adaptive testing (MAT) can, 
in principle, provide a promising choice to ensuring efficient estimation of each ability dimension in a 
multidimensional vector. Currently, two item selection procedures have been developed for MAT, one 
based on Fisher information embedded within a Bayesian framework, and the other powered by 
Kullback-Leibler (KL) information. It is well-known that in unidimensional IRT that the second 
derivative of KL information (also termed “global information”) is Fisher information evaluated at 0θ . 
This paper first generalizes the relationship between these two types of information in two ways—the 
analytical result is given as well as the graphical representation, to enhance interpretation and 
understanding. Second, a KL information index is constructed for MAT, which represents the 
integration of KL nformation over all of the ability dimensions. This paper further discusses how this 
index correlates with the item discrimination parameters.   The analytical results would lay foundation 
for future development of item selection methods in MAT which can help equalize the item exposure 
rate.  Finally, a simulation study is conducted to verify the above results. The connection between the 
item parameters, item KL information, and item exposure rate is demonstrated for empirical MAT 
delivered by an item bank calibrated under two-dimensional IRT. 
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Kullback-Leibler Information in Multidimensional 
Adaptive Testing: Theory and Application 

 
In some standardized achievement tests, it is believed that the test items differentiate levels 

of multiple traits. For example, abilities concerning both problem solving and computation might 
be needed to solve an applied mathematical problem. When a test measures a number of 
attributes, a multidimensional approach can be used to obtain diagnostic information at the 
subscale level, e.g., the multidimensional compensatory item response theory modeling approach 
(MIRT). Denote 1( ,...... )T

i i iMθ θ θ=


 as the ability vector for an examinee where M is the number 
of subscales or the number of attributes in cognitive diagnosis. In addition to providing one 
summative score, this approach will provide a fine breakdown of the domain score for each 
dimension. The advantage of this approach is that a continuous estimate of each dimension, is 
obtained, as an alternative to using only dichotomous master/non-master results, thereby gaining 
more information on each subscale for each examinee. 

Several methods have been proposed to deliver a multidimensional adaptive test (MCAT). 
Segall (1996) formulated a Bayesian procedure for θ estimation and adaptive item selection. His 
method is based on the Fisher information matrix. van der Linden (1999) derived an algorithm 
that minimizes the asymptotic error variance, when the linear combination of different ability 
dimensions is of interest. Veldkamp & van der Linden (2002) incorporated various constraints in 
MCAT through a shadow test approach and used Kullback-Leibler (KL) information as their 
objective criterion. 

Segall’s Determinant of Fisher Information 
Under the MIRT framework, Fisher information is no longer a scalar but a matrix. Motivated 

by the expression for the volume of the multivariate normal ellipsoid (Anderson,1984), Segall 
constructed the following item selection criterion: 

Maximizing the determinant of the matrix     

'
1ˆ[ ( , ) ( , ) ]j k

I I uθ θ θ φ−+ +
  

, (1) 

ˆ( , )jI θ θ
 

is the Fisher information matrix based on the items administered previously. The 

{ , }th thr s element of this matrix is given by 
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= −  ∂ ∂  

, where '( , )
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

is the item 

information matrix for the kth item, with diagonal elements  
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If the prior distribution of θ


 is taken into consideration, 1φ− is the inverse of the covariance 
matrix of the prior distributions. 

This criterion is an analogue to the maximum Fisher information criterion in unidimensional 
CAT; by minimizing the determinant, we can narrow down the confidence ellipsoid in a high 
dimensional θ space, and therefore, estimation accuracy can be enhanced. However, the 
drawback of this method is that the contribution of each item cannot be independently 
determined. Despite this disadvantage, the method has been reported to be efficient. It is also of 
theoretical interest to include this method in our study, and compare this Fisher information 
based method to the KL information based methods.  

The KL Information Index 
The application of KL information in the context of CAT was first introduced by Chang and 

Ying (1996). Their study indicated that KL not only outperformed Fisher information at the 
beginning of a CAT, but also it preserved all the good features of a CAT. Moreover, KL 
information can be obtained directly from item response functions, whether continuous or not, 
whereas Fisher information can be obtained only from continuous response functions whose 
second derivative can be taken. 

Veldkamp and van der Linden (2002) proposed a KL information measure for MCAT, where 
the KL information index is presented as  

1

1

3 3

1 1 1

3 3

ˆˆˆ( ) ...... ( , ) ........ ( , )
m

m

n n
k k k

i i i

n n

K K K
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+ +
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      

. (4) 

The integrand 1ˆ( , )k
iK θ θ −

 

is the KL item information, measuring the distance between two 
probabilities over the same parameter space (Lehmann & Casella, 1998), and it is defined as 

1 1
1 1 1

ˆ ˆ( ) 1 ( )ˆ ˆ ˆ( , ) ( ) log 1 ( ) log .
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 

   

 

 (5) 

1ˆkθ −



is the current update of ability after administering (k − 1) items. Following the 
assumption of local independence for a test of n items, the KL test information is equal to the 
summation of item information, 

1 1

1

ˆˆ( , ) ( , )
n

k k
n i

i
K Kθ θ θ θ− −

=

=∑
   

. (6) 

Therefore, KL information maintains the additivity in the multidimensional case, and the 
information carried by each item is independently identified, which is another advantage over 
Fisher information. 
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Analytical Derivations 
Relationship Between Fisher Information and KL Information 

Since both Fisher information (FI) and Kullback-Leibler information (KLI) are useful 
information measures, it is often of theoretical interest to explore the connections between them. 
We limit our exploration to the two-dimensional case with the 2PL model to facilitate 
derivations, but the results can be generalized to higher dimensions. 

In unidimensional IRT, Chang & Ying (1996) showed that FI at 0θ equals the second 
derivative of KLI evaluated at the same true value, 0θ , which is expressed as 

0

2

0 02 ( ) ( )KL Iθ θθ θ θ
θ =

∂
=

∂
. (7) 

For any givenθ , KLI represents the ease or difficulty of distinguishing θ  from 0θ . In particular, 
for θ  varying around 0θ , KLI reduces to FI.  Due to the reason that FI can be fully recovered 
from KLI, Chang & Ying (1996) termed KLI as “global information” and FI as “local 
information”.  Geometrically speaking, if KLI is viewed as a curve on the plane, FI becomes the 
curvature of the curve at 0θ θ= .  

In two dimensions, FI extends to a matrix instead of a scalar. The { , }th thr s element of this 

matrix is given by
2

( , )k
r s

InLI u Eθ
θ θ

 ∂
= −  ∂ ∂ 

, where ( , )kI uθ


is the item information matrix for the 

kth item, with each element denoted by either Equation 2 or Equation 3. KLI, on the other hand, 
stays the same and it is expressed as: 
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It can be shown that each entry of FI matrix ( , )kI uθ


 can be obtained by taking second 
derivatives of 0( )jKL θ θ

 

. In particular, the{ , }th thr s  element of 0( )I θ


 is obtained 

through
0

2
0

0
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Therefore, whenever KLI is available, the Fisher information matrix is determined. But KLI 
cannot be recovered from FI, so the terms global and local information maintain their meaning in 
two-dimensions. 

The KLI Index and Item Discrimination 
The multidimensional KLI (KI) proposed by Veldkamp and van der Linden (2002) is 

reduced to the following form in the two dimensional case: 
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 (9) 

Clearly, they assumed that the integration domain is a square centered at 10 20( , )θ θ with side 

length of 6 / n , and the two dimensions take equal priority in item selection.  However, this 
integration domain can be adjusted based upon the test requirement, which reflects the potential 
flexibility of this method. Denote the integration domain as D, which is central symmetric with 
center 10 20( , )θ θ (in a CAT, this is the updated point estimate), and we can consider two different 
cases: 

(a) Circular domain { }2 2 2
1 2 1 2( , )D rθ θ θ θ= + ≤ , 

and 

(b) Elliptic domain 
2 2

1 2
1 2 2 2

1 2

( , ) 1D
r r
θ θθ θ

  = + ≤ 
  

. 

The first case presumes that the both dimensions are equally important in a test, while the second 
assumes that the two dimensions are weighted differently. 

For ease of interpretation and derivation, we adopted the circular domain and transform the 
original rectangular coordinates to the Cylindrical coordinate, i.e., 

1 10

2 20

cos
sin

r
r

θ θ α
θ θ α
= +

 = +
. (10) 

In terms of graphical representation, the KI is actually the volume under the information 
surface, bounded by a cylinder as shown in the following two figures. 

 

Figure 1.  Graphical Representation of KI as a Volume 
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In order to show what kinds of items are favored by KI, we explore the relationship between 
the magnitudes of item KI with its discrimination parameters. Denoting the item KI 
as 0 0( ) ( )j

D

KI KLθ θ θ θ= ∂∫∫
   

, where D is the central symmetric domain centered around 0θ


, we 

found that in the two-dimensional case, the size of 0( )KI θ


is proportional to the function of item 
discrimination parameters 1 2( , )f a a  when the area of D approximates to zero. The form of the 
function depends on the shape of the integration domain. In particular, 2 2

1 2 1 2( , )f a a a a= +  when 
D takes form (a) and 2 2

1 1 2 2( ) ( ) ( )f a a r a r= +


 when D takes form (b). 

Reckase & McKinley (1991) first generalized item discrimination to the multidimensional 
case, and defined multidimensional discrimination as:  

MDISC=
1/2

2

1

m

ik
k

a
=

 
 
 
∑ . (11) 

MDISC is an overall measure of the capability of an item to distinguish between individuals that 
are in different locations in the θ space. Intuitively, items with a high value of MDISC will 
provide a large amount of information somewhere in the θ space. Thus, it is reasonable that the 
item’s KI relies on its MDISC, and MDISC can be regarded as an analogue of the 
unidimensional item discrimination parameter. This result will help us further develop some item 
selection rules to balance exposure rates. 

Variants of KI 
Sometimes, the different dimensions measured by a test are not equally important. For 

example, an applied math exam usually measure both math ability and reading ability; however 
the math ability is more important in this case than reading ability. van der Linden (1999) 
derived an algorithm that minimizes the asymptotic error variance, when the linear combination 
of different θ dimensions is of interest. In his paper, he considered the case when two dimensions 
are treated differently. In our study, we believed that KI is flexible enough to address this issue; 
the only modification needed is to change the shape of the integration domain D of the KI. For 
example, we can use form (b) as the integration domain. 

Simulation 
The focus of the paper was to explore the relationship between FI and KI in the 

multidimensional case. Segall’s method is a representative of FI while KI is based on KL 
information. Therefore, both of these methods were implemented in our simulation. A 
randomization method was also included as a baseline. 

Examinee Generation 
The true θ vectors were generated from a multivariate normal distribution with mean of zero, 

and the correlation between two dimensions was 0.5. The examinee sample size was set to 1,000. 

Item Bank Construction 
The item bank ws constructed following the two-parameter multidimensional IRT model. 

The two discrimination parameters were generated from a log-normal distribution, bounded 
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within 0.5 to 3.0. The difficulty parameters were generated from standard normal distribution. 
The item bank size was set at 900. 

Generation of Item Scores in CAT and Estimation of θ  
During the CAT procedure, given each examinee’s true θ vector, scores for each 

administered item were generated based on the two-dimensional IRT model. After obtaining the 
probability of a correct response ( 1 )ij iP Y θ=



, a random (0,1)U  variable u was generated, and the 
score ijY  was defined as: 

1          If u P( =1 )
0          otherwise

ij
ij

Y
Y

θ ≤
= 



. (12) 

Note that once an item was selected, the θ̂


 was updated for choosing the next item. Bayesian 
expected a priori (EAP) estimation was used to estimate θ. 

Results 
Estimation Accuracy and Exposure Rate Balance 

The item selection rule is a key part of a CAT. The evaluation of the various item selection 
rules is usually based upon two criteria: estimation accuracy and exposure rate balance.  

Eestimation accuracy is usually quantified by mean squared error (MSE) and bias. MSE 
(Equation 13) captures the average squared discrepancy between estimated θ and true θ, thus it 
should be as small as possible. Bias (Equation 14), on the other hand, represents the average 
discrepancy between the estimated θ and true θ and it should also be as close to zero as possible. 
For the two distinct θ dimensions in this simulation study, both MSE and Bias were calculated at 
each dimension level. 

2

1

1 ˆ( )
m

ik ik
i

MSE
m

θ θ
=

= −∑ , (13) 

and 

.
1

1 ˆ( )
m

ik ik
i

Bias
m

θ θ
=

= −∑ , (14) 

where m is the number of simulated examinees, ikθ  is the true ability for the thi examinee and 

îkθ is the EAP estimator. K is the dimension, it was either 1 or 2. 

Exposure rate balance is usually measured by a chi-square index defined as (Chang & Ying, 
1999) 

2 2

1
( ) /

N

j j j
j

er er erχ
=

= −∑  (15) 

 where jer  is the exposure rate of item j, and /jer L N=  is the desirable uniform rate for all 
items. This index represents the discrepancy between the observed and the ideal item exposure 
rates. The exposure balance not only indicates the efficiency of item bank usage, but also 
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provides information concerning test security. The smaller the value, the more efficiently the 
item bank is used, and the more secure the test is. Usually, the objectives of exposure rate 
balance (or test security) and estimation accuracy cannot be maximized simultaneously, yielding 
an accuracy-security tradeoff. The results of the above three methods were as follows: 

 

Table 1. Results of Different Methods 

 
Method 

MSE Bias  
Chi-square 

1θ  2θ  1θ  2θ  

KI (equal weight) 0.169 0.151 0.0013 0.0019 189.799 

Segall’s method 0.111 0.111 0.0009 0.0026 208.581 

Random 0.262 0.271 -0.0061 -0.0080 0.3274 

 

Table 1 shows that both Segall’s method and KI performed much better than the random item 
selection methods, and both of them led to skewed item exposure rate distributions. 

Item Exposure and Item Discriminations 
We further checked the correlation between the item exposure rate and item discrimination 

parameters, and the results are shown in the Table 2. 

 

Table 2. Correlation Between Exposure Rates and Item Parameters  

Method    1a   2a  2 2
1 2( )a a+  b 

K-L information 0.4061 0.4668 0.7139 -0.0425 

Segall’s method 0.2832 0.2550 0.5022 -0.0325 

Random -0.0181 -0.0265 -0.0461 0.0189 

 

Clearly, KI relies heavily on the square of “multidimensional discrimination.”  This high 
correlation partly explains the skewness of the exposure rate distribution. As expected, there was 
no relationship between item exposure and the item difficulty parameter. Figure 1 shows the 
trend of the relationship between item exposure and MDISC. 
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Figure 1. Correlation Between Item Parameters  
and Item Exposure as Test Proceeds 
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Figure 1 shows that item exposure obtained from both Segall’s method and the KI method 
showed consistently higher correlations with MDISC than with the individual discrimination 
parameters.  The figure also shows that the correlation increased when the number of items 
administered increases, but the correlation almost reached its highest point when the test length 
was 25 items. This is similar to the unidimensional case in which item exposure depends on the 
item discrimination parameter.  

Variants of the KL information Index 
When we changed the integration domain from a circle to a ellipse, the results changed 

somewhat, as shown in Table 3. 

          Table 3. The Performance of Each Integration Domain 

 
Dimension  
Weights 

MSE            Bias  

Chi-square 
1θ  2θ  1θ  2θ  

r1 = r2 =3 0.169 0.151 0.00013 0.0019 189.7996 

r1 = 4, r2 = 3 0.137 0.187 0.0009 0.0018 171.4478 

r2 = 4, r1 = 3 0.213 0.121 0.0011 0.00023 175.1294 

 

Table 3 shows that if one dimension is weighted higher than the other, the highly weighted 
dimension will lead to smaller MSE. Therefore, the practitioner can adjust the integration 
domain for their different needs. The correlation results are shown in Table 4. 
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Table 4. Correlation Between Exposure Rates and Item Parameters 

Weights    1a   2a  2 2
1 2( )a a+  2 2 2 2

1 1 2 2( )r a r a+  

w1 = w2 = 3 0.41886 0.46215 0.71786 0.71786 

w1 = 4, w2 = 3 0.53729 0.20319 0.61048 0.6747 

w2 = 4, w1 = 3 0.13819 0.5772 0.61854 0.67496 

 

Similarly, if 1θ  is regarded as more important, the item selection will rely more on 1a . Also, 
the highest correlation was between exposure rate and the weighted square of the two item 
discriminations, not the unweighted MDISC.  

Conclusions 
This study explored the relationship between two information measure, Fisher information 

and Kullback-Leibler information, in the multidimensional case. Derivations showed that KL 
information maintains its global information feature since the whole FI matrix can be fully 
recovered from it. In addition, we investigated the characteristic of KI.  Both analytical and 
simulation results showed that KI depends on the function of MDISC. Since MDISC functions 
similarly to the item discrimination parameter in unidimensional CAT, several methods for 
controlling exposure rate in unidimensional CAT can be easily generalized to multidimensional 
adaptive tests. This study further provided several variants of KI, which can be used in the 
situation where each dimension is treated differently. However, since the correlation between 
item exposure obtained from Segall’s method and MDISC is not extremely high, it opens for 
further investigation the question of why the item exposure rate is skewed in Segall’s method. 
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