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Abstract 
Widely used in various educational and vocational assessment applications, computerized adaptive 
testing (CAT) has recently begun to be used to measure patient-reported outcomes Although successful 
in reducing respondent burden, most current CAT algorithms do not formally consider it as part of the 
item selection process.  This study used a loss function approach motivated by decision theory to 
develop an item selection method that incorporates respondent burden into the item selection process 
based on maximum Fisher information item selection. Several different loss functions placing varying 
degrees of importance on respondent burden were compared, using an item bank of 62 polytomous items 
measuring depressive symptoms. One dataset consisted of the real responses from the 730 subjects who 
responded to all the items. A second dataset consisted of simulated responses to all the items based on a 
grid of latent trait scores with replicates at each grid point. The algorithm enables a CAT administrator 
to more efficiently control the respondent burden without severely affecting the measurement precision 
than when using MFI alone.  In particular, the loss function incorporating respondent burden protected 
respondents from receiving longer tests when their estimated trait score fell in a region where there were 
few informative items.  
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A Burdened CAT: Incorporating Response Burden with 
Maximum Fisher’s Information for Item Selection 

Widely used in various assessment applications, computerized adaptive testing (CAT) 
has begun to infiltrate the patient-reported outcomes (PRO) arena (Bjorner, Chang, 
Thissen, & Reeve, 2007; Reeve, 2006). PROs such as depression and fatigue are 
represented as latent traits (similar to mathematical achievement) so CATs in conjunction 
with IRT are natural considerations for PRO measurement (Bjorner, et al., 2007; Cella & 
Chang, 2000; McHorney, 2003; Reeve, 2006).  A typical CAT design uses a 
mathematical algorithm to sequentially select items that are in some sense “best” from a 
pool of pertinent items (called an item bank) until an estimate of the latent trait is 
achieved with a certain precision.  As a result, CAT assessments are typically shorter and 
at least as precise as traditional static instruments (Jenkinson, Fitzpatrick, Garratt, Peto, & 
Stewart-Brown, 2001; Meijer & Nering, 1999; Revicki & Cella, 1997). This is 
particularly enticing to researchers interested in PRO measurement, where respondent 
burden is a concern (Bjorner, et al., 2007; Science Advisory Committee of the Medical 
Outcomes Trust, 2002). 

Respondent burden is defined as the demands and expectations placed on the people 
responding to the instrument or questionnaire (Science Advisory Committee of the 
Medical Outcomes Trust, 2002). It includes the time needed to complete the instrument 
or questionnaire, special requests or requirements placed on the respondent (i.e., 
remembering medical record information), physical or emotional stress placed on the 
individual, and overall suitability of the instrument for the respondents. In longitudinal 
assessments, the frequency with which subjects must respond to the instrument also 
contributes to respondent burden.  This burden is a concern when measuring PROs 
because these measures are often administered repeatedly during a short time interval 
(Bjorner, et al., 2007).    

With a few exceptions, many current item selection methods to date perform similarly 
for polytomous items (Choi & Swartz, 2009; Penfield, 2006).  However, most item 
selection methods developed to date do not explicitly consider the cost of administering 
items (Swartz, Choi, & Herrick, 2009; van der Linden & Pashley, 2000).  The idea of 
considering respondent burden has been encountered in mastery testing (Lewis & 
Sheehan, 1990; Vos, 1999, 2000), but the structure of the problem is different. In mastery 
testing, items are selected to minimize the cost of administering items and the cost of a 
wrong decision, i.e., master vs. non-master (Kingsbury & Weiss, 1983; Lewis & 
Sheehan, 1990).  However, in PRO assessment research, the focus centers on estimation 
of the individual score on the latent trait rather than on classification.  CAT algorithms 
frequently used in PRO assessments select items based on their information (typically 
Fisher’s information based on the provisional estimate).  To control respondent burden, 
these algorithms typically rely on ad hoc rules imposed to control respondent burden, 
such as imposing a maximum number of items to be administered (Bjorner, et al., 2007; 
Fliege, et al., 2005; Hart, Wang, Stratford, & Mioduski, 2008a, 2008b; Walter, et al., 
2007).   

The trade-off between the precision of a PRO measurement and the burden associated 
with that measurement is unequivocal:  Other characteristics being equal, administering 



 

-2- 
 

more items produces more precise estimates, but administering more items also increases 
the respondent burden.  Motivated by a Bayesian decision theoretic approach, this study 
proposes an adaptation to the maximum Fisher’s information (MFI) selection criterion to 
incorporate respondent burden.  First, we derive a Bayesian decision theoretic approach 
to motivate the process taken to adapt the MFI. Next we introduce a loss function to 
generalize the MFI to incorporate the respondent burden.  Finally we compare the 
performance of the MFI selection criterion that includes burden, called MFI-b, to the 
standard MFI selection method.   We hypothesized that the MFI-b will control burden by 
not administering items that in some sense are not “worth” asking. 

Incorporating Respondent Burden 
To formally incorporate respondent burden, we start with establishing some notation.  

Adopting the notation from van der Linden and Pashley (van der Linden & Pashley, 
2000), let θ be the latent trait of interest, and 

ki
u represent the response to item ki  

administered at the kth stage in the sequence. Then, let mk be the number of response 
categories for item ik (mk kA =4 for all k in this study).  Let denote the set of items 
administered up to and including stage k, and kR be the set of items that are available for 
selection after administering k items (in other words, Rk is the complement of Ak

kAu
). 

denotes a response vector associated with items administered in a sequence having k 
stages:

1
, ,( )

ki iuu ′… .  Let ( )|
kAg θ u  denote the posterior distribution after administering k 

items (the probability distribution of θ, given the previous k item responses and the 
prior). Let ( | )

kj Aup u denote the posterior predictive distribution (the probability of 
giving response u to item j given the previous response history). For more details about 
these distributions, see van der Linden and Pashley (van der Linden & Pashley, 2000), 
Carlin and Lewis (Carlin & Louis, 2000), or Gelman, Carlin, Stern, and Rubin (Gelman, 
Carlin, Stern, & Rubin, 2004). 

 Bayesian decision theory approach to item selection. Formally, a CAT item 
selection and stopping process can be viewed as a Bayesian decision problem.  A 
Bayesian decision theoretic approach requires specifying (1) decision rules that dictate 
the action taken once data are observed, (2) a loss function to assign or model the 
consequences associated with each decision, and (3) a probability model to describe the 
uncertainty in the decision problem (Berger, 1985; Bernardo & Smith, 1994; DeGroot, 
1969; Ferguson, 1967).  Under a Bayesian decision theoretic framework, the optimal 
decision is the decision that minimizes the expectation of the loss function with respect to 
the posterior distribution.  This is called minimizing the posterior expected loss (Berger, 
1985). A fully Bayesian adaptive sequential item selection (BASIS) method has been 
proposed (Swartz & Choi, 2008; Swartz, et al., 2009). 

 For the BASIS method, a general loss function is proposed:  

( ) ( )1 1 1
( , ) , ( ) .,, , ,

k k k k k kA i A i A il u G u uCθ θ α θ θ
− − −

= +u u u  (1) 

The component ( )1
,,

k kA iG uθ
−

u  models a loss associated with using the observed 

responses 
1

( , )
k kA iu
−

u at the current stage k to estimate a value of the true but unknown 



 

-3- 
 

latent score, θ.  The component ( )1
,,

k kA iC uθ
−

u  models a loss associated with the 

respondent burden.  The component )(α θ  serves two purposes.  First, it transforms the 
loss associated with the respondent burden onto the same scale as the loss arising from 
estimating θ. Second, it characterizes the importance of respondent burden relative to the 
estimation of θ.   More details concerning this loss function and the BASIS method can 
be found in Swartz, Choi, and Herrick (2009). 

Under certain conditions, the BASIS method reduces to the minimum expected 
posterior variance (MEPV) item selection criterion, making the MEPV a special case of 
the BASIS approach.  We next briefly discuss this relationship to motivate our later 
adaptation to the maximum Fisher’s information (MFI) selection criterion. More details 
are given in Appendix A. 

The MEPV has been defined for dichotomous items (Owen, 1975; Thissen & 
Mislevy, 2000; van der Linden & Glas, 2000 ) and extended to polytomous items as 
follows (Choi & Swartz, 2009): 

*
11

*
1

1

* arg min ( | ) Var( | , )
K k

j

k

m

j jA Aj Rk
u

i p u U uθ
− −−∈

=

  ≡ = 
  
∑ u u , (2) 

where *
1

Var( | , )
k

jA
U uθ

−
=u is the posterior variance for item j with predicted response 

category u, and the * on *
1kA − indicates that the set of previously administered items was 

selected according to the current selection criterion (i.e., the MEPV). The MEPV is a 
special case of the BASIS method when (1) we restrict the decision to first selecting an 
item at the current stage, and then deciding to either stop the test, or continue the test and 
administer an additional item;( 2) we place no importance on burden [ ]( ) 0α θ ≡ ; (3) we 
use squared error loss (that is, the square of the difference between the true value and the 
estimate) to model the loss associated with estimating θ  using the data; and (4) we 
estimate θ  with the posterior mean 

1
( ,| )

k kA iE uθ
−

u , or the expected a posteriori (EAP) 
estimator, which is a commonly used estimator for the θ  in CAT instruments.  In other 
words:  

( ) ( )1 1

2
,, |( , ) .

k k k kA i A iG u E uθ θ θ
− −

−=u u  (3) 

A more important benefit: if we define the loss associated with respondent burden to 
be the number of items administered at each stage, i.e., ( )1

,,
k kA iC kuθ
−

=u , and assume 

that the trade-off  between the respondent burden and precision of the estimate is constant 
[ ]( ) ,α θ α= Appendix A shows that the BASIS method extends the MEPV to include 
respondent burden. Specifically a Bayesian decision theoretic approach identifies a 
stopping criterion that complements the standard MEPV selection criterion:  
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* * * ** *1 11

* * * ** *1 11

|

|

u

u

Stop | | ,

Con

var( , ) var( , )

var( , ) vatinue | | .r( , )

k k k ki Ak k

k k k ki Ak k

A A i

A Ui A

Ui

i

u E U

u E U

θ θ α

θ θ α

− ++

− ++

 −  ⇔ ≤

>⇔  − 

uu

u u
 (4) 

where *
1ki +  is the item selected by the MEPV method to be administered at the next stage. 

Thus, incorporating the burden using the loss function results in terminating the CAT 
instrument when the expected decrease in variance that occurs by administering the next 
item is less than .α  That is, the CAT instrument ceases to administer items when the 
expected decrease in measurement error resulting from the administration of any 
additional item remaining in the bank is below a predetermined criterion.  We will call 
this method MEPV-b to indicate the item selection procedure that incorporates burden. 

 Generalizing maximum Fisher information (MFI). In this section, we 
demonstrate how this loss function approach can facilitate generalizing the MFI selection 
criterion to include respondent burden.  Let ( )

Ak
I θu represent Fisher’s information 

function for the items administered up to stage k, and ˆ
Ak

θu be some estimate of θ based on 

the previous k item responses.  MFI is then defined as: 

* * *
1 1 11 1

,
*

1
ˆ ˆarg max ) arg max ( )(

Aj jA Ak k kk k
k uj R j R uI Ii θ θ

− − −− −
− ∈ ∈
≡ =u u u , (5) 

where the second expression results from the additive property of the information 
function (van der Linden & Pashley, 2000).  The MFI is an ad hoc procedure that is not 
based in any formal decision theory. However, there is still an underlying loss function 
and a risk to be minimized.  Appendix B first demonstrates how to frame the MFI in 
terms of a loss function and defines the risk to be minimized. Then, a method to 
incorporate respondent burden into the MFI is derived.  The approach is similar to the 
approach used for the MEPV.  Specifically, if we again consider the cost of respondent 
burden to be proportional to the number of items administered, and we assume that the 
trade-off  between respondent burden and the precision of the estimate is a constant 
value, call it Fα , then we can use the following loss function to generalize the MFI to 
incorporate respondent burden:  

( )1 1 1,
ˆ, ), ( ,

k k A j Ak kA i FUJl u kθ θ α
− − −

= − +u uu  (6) 

where 
1 1,

ˆ )(
A j Ak kUJ θ
− −

− u u  is the observed Fisher information. Also note that there is no 

asterisk (*) on the set 1,kA −  indicating that the set of previously administered items is not 
required to be optimally selected, although in most cases it will be. 

Using this loss function one can minimize the risk, which is the expectation of the 
loss function.  Selecting the item at the current stage that minimizes the risk yields the 
following selection rule:   

*
11

* ˆarg max ).(
j Akkj Rk uIi θ

−−∈
≡ u  (7) 

Once the item is selected, stopping is dictated by the following criterion:  
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*
1

*
1

ˆStop max )

ˆContinue max ).

(

(
Akk

Ak

z

k
z

Uz R

R

F

F Uz

I

I

α θ

α θ
+

+

∈

∈
<

⇔ ≥

⇔

u

u

 (8) 

Note that Equation 7 is identical to the definition of the MFI (Equation 5).  In Equation 8 
the subscript F on Fα differentiates the value from α in the MEPV-b.  The Fα value 
serves the same purpose as the αvalue in the MEPV-b: When there are no more items in 
the bank that contribute an information gain greater than Fα , the CAT stops.  Because we 
consider each stage independently, incorporating respondent burden results only in 
changing the stopping rule. Also, note that the stopping rule amounts to imposing a 
threshold on the “worth” of administering an item, and the derivation gives mathematical 
justification for the use of such an approach (See Appendix B). 

Selectingα.. Reviewing the loss function given in Equation 6, the value of Fα  
represents the relative importance (or relevance) of respondent burden. Higher values 
indicate that respondent burden has more importance, while lower values indicate 
respondent burden has less importance relative to the precision. The stopping rule implies 
a practical interpretation for Fα and therefore helps guide the choice of values: Fα  can 
be thought of as the minimum information gain that is worth subjecting an examinee to 
an additional item.   For example 0.2α =  means it is only worth asking the next item if 
the item selected offers at least 0.2 information units for the current estimate of .θ    

We can use this interpretation for Fα  to reduce the set of potential values.  Since 
there are many more applications involving dichotomous items, a rule of thumb has been 
developed to identify poor items: Items with a discrimination value below 0.8 are 
typically considered undesirable except in rare special cases.   It can also be shown that 
the maximum information value of any item is equal to one-fourth the value of the square 
of the discrimination parameter.  Therefore, with dichotomous items it seems reasonable 
to argue that it is not worth administering an item if the information it provides is less 
than 0.2.  

Although it is not clear how this rule of thumb might map to polytomous items, it still 
indicates that α values near 0.2 might be reasonable. Also Dodd, Koch, and De Ayala 
(1989) used 0.5 as a minimum threshold for the information contributed by an item, but 
had little justification for selecting that value. Therefore, we explored the following 
values for this study: {0,0.2,0.4,0.6,0.8,1,1.25,1.5}Fα ∈ .  Simulations will indicate the 
behavior of each Fα  and how this models the trade-off between information and burden 
for polytomous items. 

Study Design 
The item bank consisted of 62 four-category response depression items inquiring 

about depressive symptom experiences. These items are described extensively by Choi 
and Swartz (2009). We had response data from 730 respondents.  The graded response 
model (Samejima, 1969) was fit to the items using MULTILOG 7.03 (Thissen, Chen, & 
Bock, 2003). The total information function for the item bank had a mode higher than the 
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standardized mean of 0.0 (see Figure 1). 

Figure 1. Total Bank Information and Standard Error  
Functions and Distribution of Respondent's Estimated θ (N=730) 

 
We performed two studies.  One involved post-hoc simulations using the real 

responses from the 730 respondents. A second study involved simulating responses from 
known θs.  For the simulated responses, we generated a grid of θs evenly distributed from 
− 3 to 3 at .5 increments.  Using the item parameter estimates, response patterns were 
generated for each θ.  This was then replicated 500 times resulting in a total of 6,500 
simulees (simulated respondents).   

In both studies, we compared the MFI with the MFI-b according to the number of 
items administered, and the standard error of measurement (SE).  The CAT using the 
standard MFI selection criterion continued administering items until a precision less than 
or equal to .32 (roughly equivalent to a classical reliability of .9) was achieved.   As will 
be discussed further below, since there were many items in the bank that had information 
values well above ,Fα we augmented the MFI-b with the standard MFI stopping rule to 
develop a composite stopping rule. The composite rule stopped administering items when 
SE ≤ 0.32 was achieved, regardless of the information units any additional items offered 
(i.e., imposing the SE ≤ 0.32 stopping rule in addition to Equation 8). Also all simulated 
CATs, regardless of their selection criterion, were limited to a maximum length of 20 
items. 

Results 
Table 1 summarizes the results for the simulated data, while Table 2 summarizes 

results for the real data. Reliability, average bias, root mean squared error (RMSE), 
correlation between the θ  estimates from the CAT administration and the θ estimates 
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from the full item bank (r), average number of items administered, and average of the 
squared standard error of the estimates (Mean SE2

Fα

) are reported.  For the SE < 0.32 
stopping rule in these tables, the root mean squared deviation (RMSD) between the θ  
estimates from the full item bank and the simulated CAT administration is reported 
instead of RMSE, since the true θ  is unknown.  With the exception of the standard MFI 
selection criterion (equivalent to ), as α increased, the average number of items 
administered decreased. Also as the value for Fα increased, the reliability and the 
correlations decreased, while the bias, mean SE, and the RMSE increased.  

Table 1. Results for Simulated Data Using MFI-b Without  
Composite Stopping Rule and With < 0.32 Composite Stopping Rule 

 
Stopping Rule and 
Selection Criterion 

 
 

Reliability 

 
 

Bias 

 
RMSE/ 
RMSD 

 
Corre- 
lation 

Ave. 
No. of 
Items 

 
 

Mean SE2 

No composite stopping rule      
   MFI (αF = 0) 0.9010 0.0277 0.3632 0.9847 11.0 0.0990 
   MFI-b, αF = 0.2 0.9292 0.0444 0.2981 0.9902 19.6 0.0708 
   MFI-b, αF = 0.4 0.9154 0.0717 0.3518 0.9875 17.3 0.0846 
   MFI-b, αF = 0.6 0.8992 0.1018 0.4237 0.9831 15.3 0.1008 
   MFI-b, αF = 0.8 0.8843 0.1085 0.4691 0.9805 13.5 0.1157 
   MFI-b, αF = 1.0 0.8548 0.1558 0.5840 0.9710 11.5 0.1452 

      MFI-b, αF = 1.25 0.8440 0.1382 0.6070 0.9697 10.1 0.1560 
   MFI-b, αF = 1.5 0.8272 0.1162 0.6418 0.9670 7.1 0.1728 
SE < 0.32 composite stopping rule     
  MFI (αF = 0) 0.9010 0.0277 0.3632 0.9847 11.0 0.0990 
  MFI-b, αF = 0.2 0.8990 0.0305 0.3656 0.9847 10.7 0.1010 
  MFI-b, αF = 0.4 0.8853 0.0578 0.4102 0.9824 8.5 0.1147 
  MFI-b, αF = 0.6 0.8701 0.0868 0.4704 0.9785 6.8 0.1299 
  MFI-b, αF = 0.8 0.8572 0.0935 0.5081 0.9765 6.8 0.1428 
  MFI-b, αF = 1.0 0.8300 0.1413 0.6124 0.9676 4.6 0.1700 
  MFI-b, αF = 1.25  0.8221 0.1262 0.6304 0.9667 4.1 0.1779 
  MFI-b, αF = 1.5 0.8112 0.1063 0.6579 0.9652 3.6 0.1888 

 

Table 1 shows that when the MFI-b is used alone (i.e., no composite stopping rule), 
the standard MFI procedure had the smallest bias, but fell between the conditions where 

Fα = 0.4 and Fα  = 0.6 for reliability, RMSE and r, while it ranked between Fα = 1.0 and 

Fα = 1.25 in term of number of items used.  When a composite rule was used, the 
standard MFI procedure fell where expected ( Fα = 0) in terms of the summary measures 
(Tables 1 and 2).   
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Table 2. Results for Real Data Using MFI-b Without  
Composite Stopping Rule and With < 0.32 Composite Stopping Rule 

Stopping Rule and 
Selection Criterion 

 
Reliability 

 
Bias 

RMSE/ 
RMSD 

Corre- 
lation 

Ave. No. 
 of Items 

 
Mean SE2 

No composite stopping rule 
   MFI (αF = 0) 0.9079 0.0466 0.3413 0.9301 9.2 0.0921 
   MFI-b, αF = 0.2 0.9437 0.0160 0.2386 0.9649 19.8 0.0563 
   MFI-b, αF = 0.4 0.9348 0.0285 0.2668 0.9558 18.5 0.0652 
   MFI-b, αF = 0.6 0.9161 0.0410 0.3096 0.9404 16.5 0.0839 
   MFI-b, αF = 0.8 0.9035 0.0567 0.3347 0.9310 14.8 0.0965 
   MFI-b, αF = 1.0 0.8591 0.0918 0.4169 0.8937 12.3 0.1409 
   MFI-b, αF = 1.25  0.8533 0.0896 0.4307 0.8848 11 0.1467 
   MFI-b, αF = 1.5 0.8384 0.1051 0.4448 0.8785 6.8 0.1616 
SE < 0.32 composite stopping rule 
   MFI (αF = 0) 0.9079 0.0466 0.3413 0.9301 9.2 0.0921 
   MFI-b, αF = 0.2 0.9070 0.0501 0.3428 0.9292 9.0 0.0927 
   MFI-b, αF = 0.4 0.8983 0.0622 0.3627 0.9196 7.7 0.1017 
   MFI-b, αF = 0.6 0.8810 0.0723 0.3937 0.9042 6.3 0.1190 
   MFI-b, αF = 0.8 0.8710 0.0850 0.4103 0.8960 5.5 0.1290 
   MFI-b, αF = 1.0 0.8301 0.1199 0.4752 0.8604 4.1 0.1699 
   MFI-b, αF = 1.25 0.8277 0.1192 0.4805 0.8567 4.0 0.1723 
   MFI-b, αF = 1.5 0.8176 0.1309 0.4970 0.8472 3.3 0.1824 

 

Figure 2 shows the number of items, SE and bias conditional on the true θ  for the 
simulated data conditions using the MFI-b alone.  Figure 3 shows the same graphs for the 
simulated data conditions using the MFI-b with the composite stopping rule.  Figure 4 
shows the graphs for the real data conditions using the MFI-b alone, and Figure 5 shows 
the graphs for the real data with MFI-b using the composite stopping rule. In all of the 
figures, the solid line represents the performance of the standard MFI procedure.  For 
simplicity only selected Fα  values for the MFI-b are shown.   

Aside from the shift that occurred because the real respondents did not cover the 
entire range of  θ, the simulated and real data conditions behaved similarly.  First we 
compare the CAT simulations using the MFI-b without the composite stopping rule to the 
CAT simulations using the standard MFI criterion. Simulations using MFI-b 
administered fewer items in the extreme values of  θ, and more items where the 
information function for the bank is near its peak (see Figure 2a) when compared to the 
standard MFI criterion.  As Fα increased, the number of items administered on average 
decreased.  Also the MFI-b simulations had lower SEs than the standard MFI simulations 
near the peak of the item bank information function.  This trend reversed for  θs at the 
extremes (−3 or 3).  The bias was fairly small and fairly consistent for all MFI-b 
simulations and the standard MFI 
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Figure 2.  Results Conditional on θ for MFI-b in Simulated Data Conditions 
 

            a. Average Number of Items                                    b. Standard Error                                                            c. Bias 
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Figure 3. Results Conditional on θ for MFI-b With SE < 0.32  
Composite Stopping Rule in Simulated Data Conditions 

 
a. Average Number of Items                                    b. Standard Error                                                             c.  Bias 
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Figure 4. Results Conditional on θ for MFI-b in Real Data Conditions  
 

    a.  Average Number of Items                                           b.  Standard Error                                                      b. Bias 
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Figure 5. Results Conditional on θ for MFI-b With  
Standard Error < 0.32 Composite Stopping Rule in Real Data Conditions 

 
                  a. Average Number of Items                                        b. Standard Error                                                             c. Bias 
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simulation for θs between −2 and 2.  At extreme θs, the magnitude of the bias became larger, and 
this magnitude increased as Fα  increased. 

For the CAT simulations using the MFI-b composite stopping rule with SE ≤ 0.32 conditions, 
the central range of the plots (Figures 3 and 5) agreed with the CAT simulations using the 
standard MFI procedure in terms of the number of items administered and the SEs. The 
agreement over this range is expected; over this range the MFI-b composite CAT algorithms 
stopped administering items because the SE of the θ estimate fell below 0.32.   Also, as 
expected, the bias was relatively unaffected. 

Discussion 
Using the MFI-b, we expected to see a relatively large decrease in the number of items 

administered (relatively large decrease in respondent burden) with a minimal increase in both the 
standard error of measurement and the magnitude of the bias. These were, however, not the 
results seen.  Without the additional imposed rule to stop when the SE ≤ 0.32, the MFI-b in fact, 
administered more items than the standard MFI when the θ estimates fell between −1.5 and 2.0. 
This is because, in the item bank used, many items were highly informative in this region.  Even 
at the highest value studied, the Fα  threshold was still much lower than the information 
provided by many items located in this range.  Therefore, the MFI-b continued to administer 
items until the maximum allowable number of items was attained.  To ameliorate this, we 
introduced the composite rule: stop the MFI-b if either the item contributed information less than 

Fα  or the standard error of the θ  estimate falls at or below 0.32.   This composite rule, although 
somewhat ad hoc, does control respondent burden better than the standard MFI stopping 
criterion.  In the region where many items contributed a high degree of information, the standard 
error stopping rule keeps the number of items administered (and hence the respondent burden) at 
a reasonable level. In areas where the information contributed by many items is small, the Fα  
threshold imposes a cutoff determining when items are not worth administering.   

Incorporating respondent burden into the selection algorithm using the composite rule 
resulted in shorter tests on average than the standard MFI. Based on the current studies, Fα = 0.4 
appears to be a reasonable value. For this value of ,Fα the MFI-b composite rule resulted in 
about a 50% reduction in the number of items administered for θ estimates falling at the lower 
extreme, while there was less than 20% increase in the standard error of measurement.  The bias 
increased a bit more substantially for θs at the extremes, but this is to be expected because there 
was not much information with fewer items administered, and the prior then has stronger 
influence on the estimate.  

Also notice that most of the reduction in the respondent burden occurred at at θs below −1.5 
or above 2. In patient reported outcome settings, respondents whose estimates are at extremes are 
also those who are most likely to be affected by respondent burden. Take depressive symptoms 
as an example. In our sample, a substantial number of people had a θ estimate below −1.5 (see 
the histogram in Figure 1). These people are at the low end of the depression continuum and are 
the people who would receive at least five  fewer items under the MFI-b with Fα = 0.4.   

If respondent burden were not controlled, these people who are experiencing little to no 
depressive symptoms might get annoyed that they are repeatedly asked questions about 
symptoms they do not experience.  In addition, administering additional items did not 
substantially reduce the standard error of measurement or the bias. The MFI-b accounts for this 
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balance, and keeps the burden lower across the θ  range. In practice, the appropriate balance 
(determined  by the value of  .Fα ) would be determined empirically based on multiple factors, 
e.g., testing purposes, item bank characteristics. 

Limitations 
There are several limitations to this study. First, there is no definitive operating value for .Fα   

The current values studied show potential and utility of the method, and this was the intent of the 
current study.  However, selecting an Fα value for a CAT to be used in practice would depend 
on the trait being measured and the importance of respondent burden as determined by experts. 
For example, an expert would select a small value of Fα  if it is more important to have less 
biased estimates than to reduce the respondent burden.  This is a preference-based approach to 
determining .Fα   An area of future research is to explore standardized methods for determining 
preference-based Fα  values. 

A second limitation of this study is that we modeled the loss associated with respondent 
burden to be the same for all items at all values of θ.  For an initial exploration into the problem, 
this was insightful and showcases the benefit of the procedure.   This simple loss structure might 
not closely reflect reality for all traits or outcomes one would want to measure with CAT.  For 
example, someone who is experiencing severe depression or fatigue might find items in general 
more burdensome than someone experiencing very little or no depression or fatigue.  Also, 
certain items may be more burdensome in terms of the reading comprehension level they require, 
or the subject matter they include.  For example, it is possible that an item about drug abuse or 
suicide may be more burdensome than an item about positive affects.  Although not considered 
in this study, the loss function could be generalized to include such considerations.  Potential 
future research would explore more accurate models of burden for the loss function.   

A third limitation is that this study only considered the MEPV briefly as a basis for the 
framework and examined the MFI in more detail.  However, it is likely that any selection method 
can be modeled using a loss function (or at least closely approximated by a loss function), and 
then the loss function could be developed to include respondent burden much as we have done in 
this study.  In fact, the simplified loss function used for the MFI in this study could be re-
expressed as a multi-objective loss function as described by van der Linden (2005). In this way, 
this study also outlined a general approach to adapting other selection methods to incorporate 
burden. We speculate that similar benefits will be seen with other selection methods as they are 
adapted to incorporate respondent burden. 

Despite the simplified form of the loss function used to model respondent burden, this study 
showed that incorporating respondent burden further reduced that burden than a selection method 
that does not, especially at θ values where the item bank has poor coverage. This is especially 
evident in the real data CAT simulations.  Figure 5 shows that most of the respondents had θ 
estimates on the low end of the scale where the total information of the bank was low (Figure 1 
shows total information). Figures 3 and 5   show that the MFI-b composite stopping rule with 

0.4Fα =  yielded the best benefit in terms of burden for these respondents.  Those with θ 
estimates at the lower extreme received about 50% fewer items but had relatively minimal 
reduction in the precision of their θ estimates.  As mentioned previously, these respondents 
typically are the ones for who burden is more of a problem.   
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Conclusions 
Typical CAT selection methods that do not consider respondent burden will administer a 

large number of items to respondents whose θs fall in areas where the bank has poor coverage 
because the selection criteria disregard respondent burden and the distribution of informative 
items in the bank. This might overburden those for whom burden is a problem. Therefore, 
reducing respondent burden for people whose θ estimates fall in a region where information is 
scarce is not only efficient but also beneficial.  In summary, we have developed a straightforward 
way to incorporate respondent burden into a familiar item selection criterion that is easy to 
interpret, computationally easy to implement, and reduces the respondent burden better than the 
traditional CAT methods when the item bank consists of polytomous items. 

APPENDIX A 
The MEPV is a special case of the BASIS method when the BASIS method is restricted to a 

single-stage decision, and uses squared error loss with the EAP estimator for the theta estimate.  
The BASIS method is outlined in Swartz et al.( 2009).  Let ( )1

,,
k kA il uθ
−

u  represent a loss 

function, that is, a function that models penalties that drive the problem. Specifically, in the CAT 
setting, our loss function (Equation 1) will model penalties associated with the precision of the 
estimate and respondent burden.  If we restrict the decision to first selecting a single item at the 
current stage, and then deciding to either stop the test or continue the test and administer an 
additional item, the BASIS method defines the following selection and stopping rules (Swartz, et 
al., 2009): 
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(9) 

In the above equations, *
ki  is the item to be administered at stage k, and [ ]|E

 

  is the conditional 
expectation operator.  Starting with the general loss function described in Equation 1, then 
defining ( )1

,,
k kA iG uθ
−

u as outlined in Equation 3, using ( ) Fα θ α= , and ( )1
,,

k kA iC kuθ
−

=u  as 

outlined in the text, results in the following loss function:  
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Using this loss function, we can further simplify the BASIS method as follows. Starting with *
ki , 

we have  
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Where the αk in the last line is not part of the integral because it is constant with respect to θ, 
and the integral of the posterior is 1.  Note that the integral of the squared error loss multiplied by 
the posterior density is the posterior variance.  Continuing from Equation 11 above:   
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The second line above follows because the term αk is constant with respect to the summation 
and is also constant with respect to the minimization; therefore it does not affect the argument to 
be minimized.  Note that the last expression is identical to the definition of the MEPV in 
Equation 2. 

 To define the stopping rule, we will first consider the left-hand side (LHS) and right-hand 
side (RHS) of the inequality separately. 
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and 
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where *
1ki +  replaces the minimization over kz R∈  in the last line because *

1ki +  is defined as the 
item that achieves that minimum.  Because the second expectation within the square brackets is 
simply the LHS expression except evaluated at k+1, we can continue from equation 14 above 
and replace the quantity as follows:   
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The last step follows from properties of the expectation operation. 

Substituting the simplified versions of LHS and RHS into the expression for the stopping 
condition in Equation 9 yields: 
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So we find the optimal decision according to the BASIS method as follows  
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Note that not accounting for burden is equivalent to setting α = 0.  Then the loss function 
(Equation 10) becomes simply squared error loss (Equation 3) and the BASIS method will 
always continue to administer items until the bank is exhausted, unless an additional stopping 
criterion is imposed. This is equivalent to the MEPV selection method, as presented in Equation 
2. 

APPENDIX B 
The MFI is an ad hoc procedure. To derive an item selection procedure based on Fisher’s 

information and respondent burden requires that we recall the definition of Fisher’s information:  

( )2) ln (( | )
A kkU AI E L Uθ θ

θ
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,  (16) 

where the expectation is taken over the responses 
1 2 3

,( , , , )
k kA i i i iUU U UU …= , kA is any set of 

administered items, not necessarily optimally selected, and |( )
kAL Uθ is the likelihood function 

of θ given the responses.  Also, recall the definition of observed information:  
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A kk AJ Lθ θ

θ
∂

≡ −
∂u u  (17) 

where 
kAu is the vector of observed responses (as discussed above.)  

Note that Fisher’s information is simply the expectation of the observed information function 
with respect to the item responses.  Both functions are additive (van der Linden & Pashley, 

2000): ( ) ( )2 2
1

( )) ln ( | l | )n (
A kk s

k

A i
s

J L L uθ θ θ
θ θ=
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≡ − = −

∂ ∂∑u u .  Next, if we view the negative of 

the observed information as a loss function, and consider minimizing the risk, defined as the 
expected loss (Ferguson, 1967) we have the following: 
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Again the * on the set *
1kA −  indicates that the previously administered items were optimally 

selected using the MFI. 

Therefore, the MFI is a method that selects the item that minimizes the risk (defined as the 
expected loss) at a given value of θ  (in this case the estimate of θ  based on the previous 
responses). Minimizing the risk at a given value of θ , although not guaranteed to give an 
optimal decision (DeGroot, 1969; Ferguson, 1967), is a reasonable approach to making a 
decision, and is the approach employed with the current MFI selection procedure. Therefore, we 
can extend the loss function to include patient burden: 
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Making the same simplifying assumptions as we did for the MEPV and assigning ( ) Fα θ α=  and 

( )1
,,
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=u  yields the following loss function:  
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The subscript F on α highlights the fact that the value associated with Fisher’s information 
method may be different from the MEPV-b.  As with the MEPV-b, the item selection does not 

change because 
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term is constant with respect to the expectation and maximization. Meanwhile, as with MEPV, 
the new loss function does change the stopping rule: 
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 (22) 

Note that since there is now a penalty term for asking additional items, the stopping rule 
compares the loss at the current stage k after administering the k items, with the risk (expected 
loss) that would be incurred after administering the next item. Simplifying the stopping condition 
further yields: 
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And similarly for the continue condition, so that the MFI-b becomes:  
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