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Abstract 
Targeting any arbitrary percentile, the biased-coin up-and-down design is theoretically appealing and 
can provide an efficient alternative to the current maximum Fisher information method for item 
selection in adaptive testing. This paper illustrates the use of the design with the one-parameter item 
response model and further evaluates its utility by comparing it with the conventional method in a few 
simulated conditions. Results from simulation studies indicate that the biased-coin up-and-down design 
is flexible in targeting any difficulty level, and that it outperforms the conventional item selection 
method in certain circumstances. 
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Item Selection With Biased-Coin Up-and-Down Designs 
 

As computerized adaptive testing (CAT) is becoming increasingly popular, it has been 
implemented in various testing programs in and outside the United States. A basic ingredient in 
CAT is the item selection procedure that sequentially selects and administers items based on a 
person's responses to the previously administered items. For decades, the maximum Fisher 
information (MFI; Lord, 1977) criterion has been widely used as the conventional method for 
item selection in CAT (e.g., Thissen & Mislevy, 2000) because it is conceptually simple and 
theoretically efficient (e.g., Kingsbury & Zara, 1989).  

However, item selection by Fisher’s information is not ideal. This method selects items to 
match the provisional person trait (θ) estimate, so that each person has about a .5 probability of 
endorsing the next item correctly. Hence, with an optimal item bank, about 50 percent of the 
items are expected to be answered correctly.  However, in some testing situations, it might be 
more desirable to target a different probability . For example, when young children are being 
measured, it might be appropriate to administer an instrument so that a larger proportion of items 
can be answered correctly to keep them highly motivated in the content area. Alternatively, in 
some testing situations, a mastery level test might be desired so that test developers are able to 
specify a certain proportion of items that examinees can endorse correctly. Fisher information 
item selection is, consequently, limited in certain CAT applications. In addition, the reliance on 
the prior θ estimates in the selection of the subsequent items to be administered increases the 
need for accurate estimation procedures. Nonetheless, none of the currently used estimation 
procedures performs well in all testing situations. For example, maximum likelihood estimation 
(MLE; Lord, 1977) does not work well in short tests (e.g., Hambleton & Swaminathan, 1985) in 
that it tends to give rise to multiple local maxima for tests with less than 20 items (Lord, 1980). 
On the other hand, Bayesian estimation tends to shrink toward the prior mean, and hence rely on 
correct specifications of the prior distribution, as misspecfication can lead to large estimation 
bias (e.g., Gorin, Dodd, Fitzpatrick, & Shih, 2005).  

Up-and-down designs are sequential designs and have been widely used in bioassay 
applications. They initially received attention in the 1940s (Anderson, McCarthy, & Tukey, 
1946) for quantile estimation. Dixon and Mood (1948) focused on such designs specifically for 
estimating the 50th percentile of the dose response function;  they were later called the classical 
up-and-down designs (Lord, 1970). Up-and-down designs have been studied by many in the 
biostatistical community, including Wetherill (1963), Dixon (1965), Wetherill and Glazebrook 
(1986), Tsutakawa (1967, 1980), Storer (1989), Flournoy (1990), and Durham and Flournoy 
(1993), among others, before Durham and Flournoy (1994) proposed and popularized the biased-
coin up-and-down design (BCD), which is a simple sequential design that requires smallest 
possible sample sizes without loss of estimation accuracy. The BCD has a number of advantages 
in that it can target any arbitrary percentile (not just the 50th percentile), converges quickly, and 
has minimum variance among a large class of up-and-down designs (Bortet & Giovagnoli, 
2005).  

CAT shares many similarities with the adaptive testing in bioassay. Specifically, while one 
controls item parameters such as jα , jβ , and/or jγ  to estimate θ  in CAT, the bioassayist 
controls θ  to estimate the value of β , which is defined, in biostatistics, as the dosage level at 
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which a certain percentage of the treated subjects is toxicized. Given this, it is reasonable to 
believe that the item selection algorithm based on the BCD, which does not rely on an accurate θ 
estimate in every step of CAT administrations, provides an efficient alternative to, while being 
more flexible than, the conventional item selection method.  

In the CAT literature, early efforts have been made to apply the classical up-and-down 
design to adaptive testing in educational and psychological measurement (e.g., Lord, 1970; 
1971). Due to its  lack of improved measurement accuracy over a linear paper-and-pencil test 
and the fact that more importance had been attached to the information function in item response 
theory (IRT), attention has been focused on other item selection algorithms. The BCD was 
recently introduced and applied to CAT from a person response perspective (Sheng, Flournoy, & 
Osterlind, 2007). Although it has shown promise in that context, it is not clear whether the BCD 
provides utility in IRT-based CAT. The purpose of this study was to illustrate the use of the BCD 
in CAT from the item response perspective and to further evaluate its utility by comparing it with 
the conventional MFI algorithm. 

Item Selection With the BCD 
The practical, defining characteristics of an up-and-down design are twofold, including (1) a 

finite set of possible item characteristic levels that can be arranged in order, i.e., 
1 1{ ,..., ; ... }X K Kξ ξ ξ ξΩ = < < , and (2) after an initial item is administered, the next item has either 

the same level on the item characteristic(s) under study or one level higher or lower. Hence, 
depending on the number of characteristics that are used to distinguish between items in the 
bank, kξ  can be a scalar or a vector. 

The BCD Item Selection Algorithm  
Let h be the probability that a biased coin comes up head. Fix h as a function of the odds of 

the correct response rate as follows (Durham & Flournoy, 1994): 

,  0 < 0.5    
1 .
1 ,  0.5 1.0

h

Γ Γ ≤ −Γ=  −Γ ≤ Γ <
 Γ

 (1) 

Select the first item with a certain characteristic level, i.e., set (1) kX ξ= , for some k Xξ ∈Ω , 
where (1)X  is random or fixed. Then given ( ) kX ξ= , the BCD proceeds sequentially as follows: 
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1. For 0 0.5< Γ ≤ , if ( ) kX ξ= , k = 2,…, K− 1, 
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2. For 0.5 1.0≤ Γ < , if ( ) kX ξ= , k = 2,…, K − 1, 
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This procedure continues sequentially until a stopping criterion is met. 

In the special case where 0.5Γ = , 1h = (the coin always comes up heads), the BCD 
simplifies to the classical up-and-down design (see Lord, 1970 for a detailed illustration).  

IRT Model 
It is important to note here that the BCD does not rely on a model of a specific form and that 

the parametric item response relationships are useful in evaluating or examining the performance 
of the design in educational CAT situations. For ease of implementation of the BCD from an 
item response perspective in CAT, this study focused on the one-parameter IRT model, which 
takes the form 
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( )
1( ) ( 1| )

1 jj jP P Y
e θ βθ θ − −= = =

+
, (8) 

where jβ  denotes the jth item difficulty level. This implies that item difficulty is the only item 
characteristic that differentiates between different items, namely, j jξ β= .   

Simulation Studies 
Method 

To investigate the utility of the BCD for item selection in CAT, two Monte Carlo simulation 
studies were conducted in which  either a fixed- or a random- stopping rule was employed. With 
the fixed-stopping rule, the item bank was fixed to have items with 100 different difficulty levels 
and the CAT stopped when k (k = 5, 10, 30, 100) items had been administered. With the random-
stopping rule, the item bank had items with n (n = 10, 30, 50, 100) different difficulty levels and 
the CAT stopped when the test information reached 3.5 (i.e., the standard error of measurement 
reached approximately .535). In either case, item difficulties were randomly generated from a 

( 2,2)U −  distribution, and CAT responses were simulated for persons whose actual θ  levels 
were 0 (the average), −1 (1 standard deviation below the average), and −2 (2 standard deviations 
below the average) using the IRT model specified in Equation 8. Further, subsequent items were 
selected based on each of the following four procedures: (1) the MFI, (2) the BCD with 0.2Γ = , 
(3) the BCD with 0.5Γ = , and (4) the BCD with 0.8Γ = , with the three BCD procedures 
targeting at the 80th, the 50th and the 20th percentiles in item difficulty levels, respectively. Each 
CAT simulation began θ  estimation with an initial value of 0 and used  MLE.   

With either stopping rule, 10,000 replications were conducted to reduce sampling error. The 
accuracy of person parameter estimates was evaluated using the mean square error (MSE) and 
bias. Let r̂θ  denote the estimated person θ parameter in the rth replication (r = 1, …, R). The 
MSE is defined as  

2
1

ˆ( )R
rrMSE

R
θ θ

=
−

= ∑ , (9) 

 

and the bias is defined as 

1
ˆ( )R
rrbias

R
θ θ

=
−

= ∑ . (10) 

 
Results  

Before the MSE and bias results are summarized, the four item selection procedures were 
compared using a single simulation with the fixed-stopping rule, one replication at θ = 0, 100 
difficulty levels in the item bank (n), and 1,000 items administered (k) was used here simply to 
illustrate theoretical properties of items selected by each procedure.  

The difficulty levels for items administered using the four procedures were obtained and their 
density plots are displayed in Figure 1, from which it can be seen that 80% of time, the MFI 
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selected items with a medium difficulty level (i.e., β = 0). On the other hand, the BCD with 
0.5Γ = , though targeting at the medium difficulty level on average, differed from the MFI in 

that the items selected had difficulties ranging from −.3 to .4. This potentially allows the person 
to be exposed to a variety of items. The BCD with 0.2Γ =  selected items with difficulties that 
ranged from −1.8 and 0 and centered around −1.3, whereas the BCD with 0.5Γ = selected 
relatively more difficult items, with difficulties ranging from 0 to 2 and an average of 1.3. Given 
the item difficulty distributions, it is not surprising to observe that proportions of correct 
responses using the four selection procedures were 49.3%, 77.4%, 50%, and 22.4%, respectively. 
Hence, the flexibility of the BCD in targeting any percentile in the difficulty levels has been 
illustrated. The four procedures resulted in similar MLE estimates of θ, which were .0296, 
−.0321, .0115, and .0263, respectively. These estimates were fairly close to the true θ value of 0 
in this simulation, with the BCD with 0.5Γ = relatively closer. Additional results based on 
10,000 replications summarized below support this finding.  

 

Figure 1. Empirical Density Plots of the Difficulty Values for Items Selected Using the Four 
Procedures in a CAT Simulation Where ~ ( 2,2)j Uβ − , 0θ = , n = 100, k = 1000 

 
 

For simulations with the fixed-stopping rule, the MSE and bias results are plotted in Figure 2 
for θ = 0, θ = −1, and θ = −2, respectively. The following observations can be made from the 
plots: 

1. When θ = 0, the MFI had a relatively larger MSE but smaller bias than the three BCD 
procedures with k = 5. As k increased, the four procedures were close in their MSE 
values, although the MFI had a larger bias. Among the three BCD procedures, the 
BCD with 0.5Γ = seemed to perform relatively better for k > 5. 
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Figure 2. Parameter Recovery With the Fixed-Stopping Rule 
a. θ = 0 

 
b. θ = −1  
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c. θ = −2  

 
 

2. When θ = −1, the MFI, having consistently the smallest bias for different k values 
considered, had a smaller MSE than the three BCD procedures for k > 5. The three 
BCD procedures performed similarly with respect to the MSE.  

3. When θ = −2, the MFI had relatively smaller bias than the three BCD procedures 
except for k = 100, where the BCD with 0.5Γ =  had the smallest bias. In addition, 
except for k = 10, the MFI had relatively smaller MSE. Among the three BCD 
procedures, the BCD with 0.8Γ =  had consistently larger MSE and bias values. 

Hence, the results suggest that BCD did not show much advantage in the accuracy of 
estimating θ over the MFI using the fixed-stopping rule, particularly when θ was −2. It is noted 
that θ = −2 was at the limit of the difficulty levels in the item bank as the difficulties were 
generated from U( 2, 2)−  in the simulations. Therefore, the BCD is not recommended for 
estimating person θ  levels at or close to the limit of the difficulty levels in the item bank. When 
the actual θ level is at or close to the center location of the distribution of item difficulties, the 
BCD, especial the BCD with 0.5Γ =  is preferred to the MFI when the number of items 
administered is small.   

For simulations with the random-stopping rule, the MSE and bias results are plotted in Figure 
3 for θ = 0, θ = −1, and θ = −2, respectively. From the plots, we can observe the following: 
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Figure 3. Parameter Recovery With the Random-Stopping Rule 
a. θ = 0 

 
 

b. θ = −1  
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c. θ = −2  

 
 

1. When θ = 0, the MFI consistently had a larger MSE, though not necessarily a larger 
bias, than the three BCD procedures, among which the BCD with 0.2Γ = had 
relatively smaller MSE in all the situations considered. Further, the BCD with 

0.5Γ = consistently resulted in the smallest bias. 

2. When θ = −1, the MFI, with relatively a smaller bias for n > 10, had again 
consistently larger MSE than the three BCD procedures. Among the three BCD 
procedures, the BCD with 0.2Γ =  had relatively a smaller bias.  

3. When θ = −2, the MFI had consistently a smaller bias than the three BCD procedures.  
Further, when n = 30 and n = 100, the MFI had the smallest MSE, whereas when n = 
10 and n = 50, the BCD with 0.2Γ =  had the smallest MSE. A close examination of 
the MSE values indicates that the three BCD procedures did not differ much in 
estimating θ, except that the BCD with 0.8Γ = had a slightly larger MSE when n < 
100. 

Consequently, the three BCD procedures under study have shown advantages over the 
traditional MFI in estimating θ using the random-stopping rule. In particular, when θ was not at 
or close to the limit of the item difficulty levels in the item bank (such as −2 in the simulations), 
the BCD tended to result in a smaller MSE, though not a smaller bias compared with the MFI. It 
has to be noted that such advantages may come with a price, as the BCD tends to administer 
more items than the MFI using the random-stopping rule. This is understandable as the MFI 
always selects items that maximize item information.  
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Examination of the number of items administered (k) using each selection procedure (Figure 
4) reveals that when θ was 0, MFI had k similar to or even larger than BCD (particularly BCD 
with 0.5Γ = ); whereas when θ  moved away from 0, BCD required more items than MFI as n 
increased. Among the three BCD procedures, the BCD with 0.8Γ =  consistently had a larger k 
and the other two BCD procedures were close for θ ≠ 0, with the BCD with 0.2Γ =  having a 
slightly smaller k. Therefore, considering the efficiency of the CAT, the BCD with 0.5Γ =  is 
recommended when the person’s actual θ level is around 0.0. When the θ moves away from 0.0, 
the BCD with 0.2Γ =  may be adopted for item banks consisting of items with small number of 
different difficulty levels (such as n = 10 in the illustration). 

 

Figure 4. Number of Items Administered Using Each  
Item Selection Procedure With the Random-Stopping Rule 

 
 

 

Discussion 
Proposing the biased-coin up-and-down design as an alternative item selection algorithm in 

CAT, this study illustrated the procedure from the item response perspective, i.e., using an item 
response function. Since the BCD requires the arrangement of item characteristic levels, the one-
parameter IRT model was used for ease of implementation. Results from the simulation studies 
suggest that BCD is flexible enough to target any arbitrary percentile. Hence, it can be used for 
situations for which it is desired that a certain proportion of items is expected to be answered 
correctly. With respect to the accuracy in estimating the person’s θ level, BCD performed 
equivalent to or even better than the conventional MFI algorithm when the actual person θ was 
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not at or close to the limit of the item difficulties in the item bank. Hence, the results suggest that 
BCD is more flexible and should provide an efficient alternative to the conventional MFI 
method.  

During the study, it was found that the BCD depends on the starting difficulty level, as 
subsequent items selected have a higher or lower difficulty level. It is, therefore,  not very 
efficient when the item bank consists of items with a large number of different difficulty levels, 
as is seen from the simulation results with the random-stopping rule. Additional studies are 
needed to improve the BCD to make it more efficient. Moreover, as mentioned previously, this 
study only considered the simplest case where items differed only in their difficulty levels; they 
might also be different in their discrimination or guessing parameters. However, complexity 
arises in such circumstances with respect to selecting items using the BCD as each item 
characteristic level is a vector of two or three values. Future studies are needed to develop an up-
and-down algorithm that works well with the two- or three-parameter IRT models. 
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