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Abstract 

Computerized adaptive testing (CAT) has the advantage of delivering tests in an interactive manner such 

that the ability or latent traits are more effectively estimated. Until now, most research concerning item 

selection rules in CAT has been built upon either item response theory (IRT) or cognitive diagnostic 

models (CDM) separately. The only study that combined these two approaches together was done by 

McGlohen and Chang (2008). They proposed a two-stage method, in which a “shadow” test functioned 

as a bridge to connect information gathered at   for IRT, and information accumulated at   for CDM. 

In this paper, we develop a one-stage method to build a CAT featuring reliable cognitive diagnosis. The 

major idea is to treat diagnostic information as various constraints, and by using a maximum priority 

index (MPI) method to meet these constraints the cognitive diagnosis can be done reliably at the end of 

the test. Several priority functions are proposed, some based upon formal measures of information, like 

Kullback-Leibler information, and others only utilize the knowledge of which items measure what 

attributes, as provided by the Q matrix. Simulation studies and their results are reported. We show how 

utilization of information-based methods both yields higher classification rates for cognitive diagnosis 

and achieve accurate   estimation. Item exposure rates are also considered for all competing methods. 
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Obtaining Reliable Diagnostic Information  

Through Constrained CAT 

Computerized adaptive testing (CAT) has become popular in many high-stakes educational 

testing programs. In this research, we study the utility and efficiency of modifications of the 

constraint weighted a-stratification approach to CAT that guarantees efficient estimation of a 

trait ( ) will provides sufficient diagnostic information to report scores on fine-grained skills. 

In educational testing research, specialized latent class models for cognitive diagnosis have 

been developed to classify mastery or non-mastery of each attribute in a set of attributes the 

exam is designed to assess. As in item response theory (IRT), item parameters can be of interest. 

However, the ultimate goal of applying diagnostic models is to classify examinees into one of 

several different categories describing their attribute profiles. These attributes can take many 

forms, depending on the application, but often correspond one-to-one with specific skills needed 

to answer items on an exam or other psychological assessment.  In many cases, dependency in 

the skills or attributes can be explained by a single continuous and broadly-defined  , and such a 

fine breakdown of the skills required for an exam is often secondary to the primary goal of 

estimating the standard unidimensional  . We propose techniques for use in CAT that primarily 

aim to efficiently estimate  ,  but also satisfy test constraints that allow to examinees to be 

classified according to specific skills that have been identified for a particular exam. 

A trend for greater diagnostic feedback has led to the recent development of numerous 

models of skills diagnosis, with the aim of assessing mastery of several very specific skills. We 

consider the novel problem of conducting CAT for estimation of , but with the recognition that 

a breakdown of performance on more specific skills might also be desired.  

Weighted a-Stratification 

CAT is often utilized for testing because it can tailor items to the ability of the examinee to 

obtain an efficient estimate of an examinee's ability. The preferred estimator of ability is the 

maximum likelihood estimator ˆmle , which is the value of    that maximizes the conditional 

likelihood function of the responses. Under smoothness conditions on the item response 

functions (IRF), ˆmle  is asymptotically 
1

0 0N( , ( ) )I  
 where 0  is the true value of  and 0( )I   

is the Fisher information at 0 . 

The function 0( )I    is a useful measure of the precision with which the J items can serve to 

measure ,  as a function of . An efficient but impractical method for conducting CAT is to 

implement the maximum information criterion (MIC), which is to select the next item as the item 

that would maximize the item specific information function at the current value of ˆmle . Though 

it is efficient, the MIC results in extremely poor utilization of the item bank. 

  Due to the need to balance item exposure, among other concerns, the success of a CAT 

algorithm must be measured in several ways. Through simulation, the mean-squared error of 

 estimates can be examined for tests of fixed length using the various item selection procedures.  

However, practical testing concerns require that non-statistical criteria should also be considered 

in the evaluation. Test construction often must satisfy content-related constraints. Conducting 

CAT under these constraints has been studied by many researchers. Methods based on the use of 
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linear programming have been developed by van der Linden(2000). These techniques set out to 

optimize an objective function for accuracy while controlling for several constraints. We focus 

on less technical and highly practical extensions of the item bank stratification method of Chang 

and Ying (1999) that addresses the issue of test constraints. 

The notion behind a-stratification is that high discrimination parameters are most useful late 

in a test and are not needed as badly in the early stages when there is considerable uncertainty 

about the   parameter. The item bank is divided into several strata, usually three or more, so that 

the distribution of difficulty parameters in these strata remains roughly constant. This is 

accomplished by ordering the items by their difficulty parameters and taking adjacent groups of 

M (number of strata), and separating them into M different bins according to the size of their 

corresponding discrimination parameters. This results in M strata that have nearly balanced 

difficulty parameters, and nearly ordered distributions of discrimination parameters. Item 

selection in a-stratification involves ascending through these M strata, matching ̂  with a similar 

difficulty parameter within the current stratum. Through stratification, item exposure balance is 

achieved. 

Test constraints can easily be incorporated by an extension, constraint weighted a-

stratification. This involves dividing the item bank into strata in the same way as the unweighted 

version. However, rather than matching the   estimate with the nearest difficulty parameter 

within the current stratum, it computes priority indices for the items corresponding to constraints, 

and among the set of items with difficulty parameters within some distance, ,  of the   

estimate, it selects the item with the highest priority. Cheng and Chang (2006), proposed a two-

stage method for doing this, first addressing lower bounds on item content constraints before 

turning to upper bounds. 

Two-Phase Item Selection 

Each flexible content balancing constraint involves a lower bound and an upper bound. Let 

s  denote the number of items to be selected from content area s. It must satisfy the following 

two (in)equalities: 

s s sl u   (1) 

and 

1

S

s

s

L


  (2) 

where sl and su  are the lower bound and upper bound respectively (s = 1,2 .., S, and S is the total 

number of content categories) and L is the test length.  

Two-phase item selection handles the lower bounds in the first phase and the upper bounds in 

the second phase. The first phase of item selection involves 1L  items, where 1

1

;
S

s

s

L l


  the 

second phase involves 2L  items, where 2 1L L L  . In the first phase, the priority index becomes  

1

( ) js

S
c

j s

s

p f


  (3) 
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where C is a J × S constraint relevancy matrix with entries c taking the value 1 if item j is 

relevant to constraint m, and 0 otherwise. When constraint s reaches its lower bound sl , sf  

becomes 0, then this constraint category will become unused and no more items can be selected 

from it until the other constraint categories are fulfilled. In this way all the lower bounds will be 

met at the end of the first phase.  

In the second phase, the sf s are computed by: 

.s s
s

s

u x
f

u


  (4) 

Similar to the first phase, when constraint s reaches its upper bound su , sf  and jp  will be 0, and 

no more items from this constraint category will be selected as long as there are other categories 

left unfulfilled. 

One-Phase Item selection 

To further reduce the complexity and increase the efficiency of a-stratification, Cheng et al. 

(2008) streamlined the process to include only a single phase.  In this case the priority score 

becomes 

1 2

1

( ) ,js

S
c

j s s

s

p f f


  (5) 

where  

1

1
,s s

s

s

u x
f

u

 
  (6) 

and 

2

( ) ( )
,s s

s

s

L l t x
f

L l

  



 (7) 

where t is the number of items currently administered. The function 1sf measures the distance 

from the upper bound. sL l  is the upper bound of the sum of the number of items that can be 

selected from other content categories. When 2 0sf  , the sum of items from other content 

categories has reached its maximum. Because 1sf is decreasing and 2sf is increasing with sx , the 

index jp strikes a balance between the two to keep the number of items from constraint category 

s between the lower and upper bounds. 

 

Cognitive Diagnosis 

The demand for more formative assessments to be used for in-class diagnostic purposes 

implies a need for a more fine-grained analysis at the subscale level. Cognitive diagnosis regards 

the subscales as attributes; by partitioning the latent space into smaller cognitive “attributes”, it 

can evaluate the student with respect to each attribute. Therefore, students receiving the same 

total score may have entirely different attribute profiles. Various cognitive diagnosis models 
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(CDM) have been proposed, and they model the probability of correctly answering an item as a 

function of an attribute mastery pattern. In this paper, we focus on cognitive diagnosis models 

that are latent class models structured in part by a Q matrix, a matrix that relates items to 

attributes. Different cognitive diagnosis models are often distinguished by whether attributes 

enter the response process by a conjunctive rule that requires simultaneous possession of them or 

by a compensatory function in which some attributes can partly compensate for lack of others.  

These models for cognitive diagnosis all require knowledge of which attributes are needed 

for which items, and differ by how the attributes are utilized. Let be a K-dimensional vector for 

which k indicates whether or not an examinee possesses the thk attribute for 1,2,....., .k K Let Q  

be a J K  matrix referred to as a Q matrix (Tatsuoka, 1985), with ( , )j k  entry jkq  denoting if 

thj  item requires the thk attribute. An example of a conjunctive model is the DINA 

(Deterministic Input, Noisy output And  gate) model (Junker & Sijtsma, 2001). The IRF of the 

DINA model is, 

1
( 1 ) (1 ) ,ij ij

ij i j jP Y s g
 




    (8) 

where for all i, ( 0 1)j ij ijs P Y     and ( 0 0)j ij ijg P Y    are the probabilities of slipping 

and guessing, respectively, for the thj  item, and ij is the ideal response which relates the attribute 

pattern of an examinee and the thj  row of ,Q  

1

jk

K
q

ij ik

k

 


  (9) 

The variable ij  indicates whether the examinee possesses all the attributes needed for answering 

the thj item. Computing item parameter estimates for the DINA model can be done with the EM 

algorithm (Haertel, 1989), or by use of Markov chain monte carlo methods (de la Torre & 

Douglas, 2004; Tatsuoka, 2002). Templin et al. (2008) discuss how to fit cognitive diagnosis 

models, including the DINA model as well as the remaining models in this section ,and provide 

software. 

The NIDA (Noisy Input, Deterministic output And gate) model, introduced by Maris (1999), 

and named in Junker and Sijtsma (2001), considers slips and guesses at the attribute level, where 

skills are applied in sequence to construct an overall response. 

For the NIDA model,  ij  indicates whether the thi examinee correctly applied the thk attribute 

in completing the thj item. Slipping and guessing parameters are indexed by attribute rather than 

by item, in the case of the DINA model, and are defined by ( 0 1, 1)k ijk ik jks P q      and 

( 1 0, 1)k ijk ik jkg P q     . ( 1 0)ijk jkP q   is set equal to 1, regardless of the value of ik . 

In the NIDA model an item response ijY  is 1 if all sijk are equal to 1, 
1

K

ij ijk

k

Y 


 . By assuming 

the sijk  are independent conditional on the vector i , the IRF is 
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1

1 1

( 1 , , ) ( 1 , , ) [(1 ) ] .jkik ik

K K
q

ij i ijk ik k k k k

k k

P Y s g P s g s g
    

 

       (10) 

The NIDA model is extended by a reduced version of the reparameterized unified model, called 

the reduced RUM. The IRF of the reduced RUM is 

*(1 )*

1

( 1 ) .ik jk

K
q

ij i j jk

k

P Y r


 




    (11) 

The parameter *

j is the probability of answering correctly for someone who possesses all of the 

required attributes, and *

jkr   is a parameter between 0 and 1 that represents the penalty for not 

possessing the thk attribute. Though the parameters of the reduced RUM appear different than the 

slipping and guessing parameters of the NIDA, they correspond to a reparameterization that 

keeps the model identifiable when slipping and guessing probabilities are allowed to vary across 

items. 

Compensatory models differ from conjunctive models by allowing examinees to partly 

compensate for lack of some attributes by possession of others. Such models usually include an 

additive term in the IRF. Compensatory models can often allow for more equivalent classes in 

response probabilities, but might not be derived under a specific theory for the response process. 

The general diagnostic model (GDM) of von Davier (2005) is taken as the representative of a 

latent class compensatory model. The GDM has IRF 

1

1

exp[ ]

( 1 ) ,

1 exp[ ]

K

j jk jk ik

k
ij i K

j jk jk ik

k

q

P Y

q

  



  







 

 




 (12) 

which looks much like a logistic multidimensional IRT model, but has binary latent variables 

rather than continuous latent variables.  In this paper, we will focus on the DINA model as our 

underlying cognitive diagnosis model. 

Higher-Order Latent Trait Models 

Due to the two-fold aim in our research, we needed a model which can incorporate both a 

unidimensional and an attribute vector . This can be accomplished by viewing the attributes as 

the specific knowledge required for examination performance, and modeling these attributes as 

arising from a broadly defined latent trait resembling the of item response models, so that we 

can construct the relationship between general aptitude and specific knowledge. This approach 

was proposed by de la Torre and Douglas (2004) and termed as higher-order latent trait models. 

They combined the IRT model and diagnostic model by assuming conditional independence of 

response Y given  , and also assuming that the components of  are independent conditional on 

 . The particular relationship between   and   they consider is logistic regression, given as 

0

0

exp( )
( 1 ) .

1 exp( )

k k
k

k k

P
  

 
  


 

 
 (13) 
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When conditioning on a latent vector of binary skills , the conditional distribution of the 

data follows the cognitive diagnosis model. Therefore, the higher-order model contains a 

hierarchy, where the cognitive diagnosis model forms Level 1 and the logistic regression model 

forms Level 2. If the DINA model is used as a Level 1 model, the whole model is called a 

“higher-order DINA model”, and we will adopt it as our underlying model.  

Priority Indices with Cognitive Constraints 

Five different methods for item selection were studied in simulation. One method was simply 

random item selection. This can obviously be expected to perform well for balancing item 

exposure, but it cannot be expected to provide efficient estimation of  or classification of . A 

second method was one-stage a-stratification, as described above, using four strata of IRT 

discrimination parameters. a-stratification would be expected to work well in balancing item 

exposure and estimating , but it does not recognize any cognitive diagnosis constraints that 

should assist in classification of . 

The next three methods utilize cognitive diagnosis information in varying levels. All adapt 

one-stage weighted a-stratification, but involve priority indices that incorporate some knowledge 

of the cognitive diagnosis model. The items are stratified according to IRT discrimination 

parameters, and within each stratum item selection involves optimizing a priority function.  

Q Control 

It is intuitive that how accurate an attribute is measured depends in part on the number of 

items measuring that attribute, since when more items measure an attribute, more information  is 

accumulated with respect to that attribute. Therefore, one method is to set upper and lower 

bounds on how many items should measure each attribute, sl and su , and use this information in 

the priority index along with the IRT information. Let jb denote the difficulty parameter of the 

thj item, and jkq denote the Q matrix entry for the thj item. The priority index is 

1

1
( ),

ˆ

K

j jk jk

kj

P f I q
b  



  (14) 

where 

( ) ( )1
[ ][ ] ,

k k jkk k
jk

k k

L l t x qu x
f

u L l

    



 (15) 

with L denoting total test length, kx denoting number of items used so far that are relevant to the 

thk attribute, and t denoting the number of items already administered. We refer to this method as 

Q control. Here, ( )jkI q is an indication function, so jkf will take different forms depending upon 

the Q matrix element. We made a modification here to make sure that every item, no matter how 

many attributes they measure, will have the same number of multipliers of jkf ; this will enforce 

all the jP  to be on the same scale for comparison.  This method can be expected to balance items 

over the attributes and over the different skills determined by the K attributes, but it does not 

explicitly discriminate between items with good and bad diagnostic qualities. 
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Q(1  s)(1 g) Control 

As an extension to the Q-control method, and depending on which cognitive diagnosis model 

is used, simple modifications can be created that utilize the quality of the items. For example if 

the DINA model is used, we can define the method Q(1-s)(1-g) control by using exactly the 

same sjkf  given above, but altering jP  to 

1

1
(1 )(1 ) ( ).

ˆ

K

j j j jk jk

kj

P s g f I q
b  

  


  (16) 

Because js and jg denote probabilities of deviation from ideal response patterns, (1 )(1 )j js g   

serves as a measure of the discrimination or reliability of the thj item, and Q(1-s)(1-g) control 

incorporates this. 

KL Information Control 

A final method, KL Information-control, is more formal and uses indices of reliability for 

cognitive diagnosis models developed by Henson and Douglas (2005). Let w and v  denote two 

distinct attribute patterns. The Kullback-Liebler distance between the distribution of the thj item’s 

response, assuming w  is the correct pattern, is given by, 

( )
log .

( )

u

u

v

j

juv

j

P x
D E

P x







  
   

    

 (17) 

Here, jx is the response to the thj item; it can take the value of either 1 or 0; ( )
u jP x is the 

probability of getting the response jx given the ability pattern u . This item-level information 

can be summed up to form the test information, and this additive property sets the foundation for 

the method. The cognitive diagnosis information index (CDI), which is a summary of the item’s 

overall discriminating power, is constructed as follows: 

( 1)

1
.

2 2
j juvK K

u v

D D




   (18) 

It is obtained by simply averaging over all possible combinations of attribute patterns (Henson & 

Douglas, 2005).  However, since this index is only an overall measure of item information, it 

does not specify the amount of information the item provides for each attribute. Therefore, the 

overall information needs to be broken down to retrieve the attribute-level information, which 

indicates the contribution of an item to the correct classification for each attribute. To form the 

attribute level information index, juvD can be summarized by averaging over all pairs of attribute 

patterns w and v  that differ only on the thk attribute (Henson., et.al, 2008): 

( 1)

1
,

2
k

jk juvK
d D




   (19) 

where k  indexes all pairs of attribute patterns that differ only on the thk attribute. The quantity 
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jkd then summarizes the ability of the thj item to distinguish between examinees who are very 

similar to one other, but with one possessing the thk attribute and the other not. The 

corresponding priority index is 

1

1
( ) .

ˆ

K

j k k jk

kj

P u x d
b  

 

  (20) 

Note that the ku  and kx  are no longer integers, as those in previous methods.  In order to make 

this method feasible,  ku  is carefully chosen according to the attribute-level test information. 

Also note that this Kullback-Leibler index, as opposed to specific indices based on model-

specific item parameters, is a general index that can apply to all CDMs. For any given model, 

one could define this attribute-level information index and incorporate it into priority index for 

item selection. 

Simulation Study 

The simulation study, which compared the five methods, involved generating an item bank 

under a higher-order DINA model for investigating the distinct aims of cognitive diagnosis and 

unidimensional IRT.  

Examinee Generation 

In order to simulate data for which a cognitive diagnosis model and a unidimensional IRT 

model both have applications, we chose the higher-order DINA model of de la Torre and 

Douglas (2004). In this case, we needed to generate two sets of parameters for the examinees, 

one was the broad general ability, , the other was the fine-grained dichotomous vector, , and 

they followed the second level of the model. It is reasonable to believe that the attributes are 

correlated in the population. Therefore, in order to make the results more general, we considered 

two cases, one in which attributes were highly correlated and one in which they were not. The 

correlation of attributes is controlled by the slope in the higher-order part of the model. 3,000 

higher-order s were generated from N(0, 1). Then to generate ,  

=[1.2712, 1.4176, 1.2656, 1.8755, 0.8083]  and =[0.6306, 0.7083, 0.6328, 0.9377, 0.4042]   

were chosen respectively for the high- and low- correlation case. The correlation coefficient 

between two attributes in the high-correlation case ranged from 0.22 to 0.370, while all below 

0.10 in the low-correlation case. We assumed that each attribute was moderately difficult to 

master. Therefore, the thi examinee’s mastery for attribute k was  

1       if ( 1 ) 0.5
.

0      otherwise

k

k

P  


  
 
  

(21) 

We checked the entire breakdown of the proportion of examinees with each attribute pattern 

in both conditions, and the distributions were reasonable; when the correlation was low, the 

distribution over these 32 patterns was more flat. 

Item Bank Construction 

The item bank size was predetermined to be 800. The first step was to carefully define a Q 
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matrix for the entire item bank such that the number of items measuring each attribute was 

balanced, ranging from 386 to 422, and the number of items measuring different numbers of 

attributes followed a certain pattern which mimicked the real item bank well, i.e., more than half 

of the items measured two or three attributes, approximately 20% measured only one attribute, 

and the rest measured either four or five attributes.  We then simulated a bank of DINA model 

slipping and guessing parameters for 900 items, which followed lognormal distributions, and 

discarded those items with extremely high or low slipping/guessing parameters, resulting in 800 

items.  

Then, based on the slipping/guessing parameters and the two sets of  simulated true s, we 

generated two 1000-by-800 complete response matrices separately according to the DINA 

model, and retrofitted the matrices with the two-parameter logistic (2PL) model by BILOG 

calibration. As a result, we obtained a (discrimination) and b (difficulty) parameters for the same 

800-item bank for the two conditions. Table 1 provides the distribution of item parameters for 

the DINA model (s and g) and the 2PL model (a and b) under the two conditions. Meanwhile, we 

have 0̂ from the output, which is the limiting value of̂ obtained by estimating  with responses 

to the entire bank of items using the 2PL model. Data showed that the correlation between the 

higher-order true 0 and this limiting 0̂  was 0.79 and 0.81 in the two cases, respectively, 

indicating that the 0̂ from the somehow misspecified  2PL model converged approximately to the 

true 0  in the limiting sense. Therefore, the higher-order model yielded 2PL-like data and thus 

the “wrong” 2PL model gave a meaningful quantification of  , which was used as the “truth” in 

our method evaluation. 

Item Selection Procedures 

The item bank was partitioned into four equally large strata such that the a parameters were 

in ascending order while b parameter distributions were roughly the same across the strata. 

Without knowing any information about the examinee, the first item was randomly selected from 

the item bank, and the rest of the items were selected based on the constrained weighted a-

stratification method, with different priority indices discussed above. To make things more 

general, we considered two test lengths, 21 and 41 items. The two values were intentionally 

chosen to simplify the simulation: in addition to the first item, for the shorter test with 21 items, 

5 items were chosen from each stratum, while for longer test, 10 items were selected from each 

stratum. 
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Table 1. Summary Statistics for Item Parameters in the  

High Correlation and Low Correlation Conditions  

 

High Correlation 

 

Minimum 

 

Maximum 

 

Mean 

Standard 

Deviation 

   Slipping .001 .299 .0907 .085 

   Guessing  .001 .498 .143 .141 

   a .199 3.626 1.282 .591 

   b 2.672 1.978 .009 .899 

Low Correlation Min Max Mean S.D. 

   Slipping .001 .299 .0907 .085 

   Guessing  .001 .498 .143 .141 

   a .20 3.63 1.1825 .591 

   b 2.672 1.778 .009 .859 

Generation of Item Scores in CAT 

During the CAT procedure, given each examinee’s true attribute pattern, scores for each 

administered item were generated based on the DINA model. Then, after obtaining the 

probability of a correct response, ( 1 )ij iP Y  , a random U(0,1)  variable u was generated, and 

the score ijY  was: 

1          If u P( =1 )

0          otherwise

ij

ij

Y
Y

 
 


 (22) 

Note that once an item is selected, both the̂ and̂  were updated for choosing the next item.  

Estimation of General Ability and Attribute Patterns 

For the attribute pattern estimation, since the slipping/guessing parameters of the DINA 

model were known, the posterior probability of each attribute pattern was calculated by 

computing the likelihood for all possible attribute patterns based on the examinee’s performance 

and multiplying by the prior. The posterior mode [i.e., the maximum a posterior (MAP)] method 

was used to obtain̂ . 

For  estimation, at the beginning of the test, when the number of administered item was less 

than five or the response pattern was all 0 or 1, we used the expected a posteriori (EAP) method 

(see Bock & Mislevy, 1982) with a standard normal prior and 81 quadrature points; otherwise we 

used the maximum likelihood estimation (MLE) method. 

Evaluation Criteria 

Once an item selection method is proposed for CAT, it is important to determine how well 

the method performed in terms of estimation accuracy and test security. One natural way is to 

compare its performance to random item selection methods. To check the attribute estimation, 

the proportion of attributes that were correctly identified was recorded, namely, the recovery 

rate. The recovery rate of attribute mastery was computed marginally for each attribute and for 

the entire attribute pattern, as well. Concerning θ estimation, note that the θ of the higher-order 

DINA model was used to generate data, but the somewhat misspecified 2PL model was assumed 
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when fitting item parameters and evaluating ̂ when conducting CAT. Consequently, when 

evaluating the performance of  estimation, we did not refer to the higher-order trait of the 

DINA model used to generate data, but rather the limiting value of ̂ obtained by estimating  

with responses to the entire bank of items, i.e., the 
0̂  from BILOG output.     estimates were 

compared to their true values by computing the mean squared error,  

  2

0

1

1 ˆ ˆMSE ( ) .
m

i i

im
  



   (23) 

In order to check the exposure rate balance, the minimum, maximum, mean, standard 

deviation and several percentiles of the exposure rate distribution were calculated in addition to 

the chi-square index,  

2 2

1

( ) / ,
N

j j j

j

er er er


   (24) 

where jer  is the exposure rate of item j, and /jer L N  is the desirable uniform rate for all 

items. This chi-square index captures the discrepancy between the observed and the ideal item 

exposure rates, therefore quantifying the efficiency of item bank usage; the smaller the value, the 

more efficiently the item bank was used. 

Results 

Estimation results are given in Table 2. For a 41-item test with high correlation, recovery 

rates for the attributes were high for all of the methods, but were highest for KL information and 

Q(1s)(1g) methods, particularly when looking at the whole attribute patterns. These methods 

also performed better in  estimation. That is partly because both of these methods favor items 

with low slipping and guessing parameters, and when fitting the 2PL model, such good 

diagnostic items also result in high discrimination parameters, so that more information for is 

obtained, even when stratifying the discrimination parameters.  

Table 3 displays item exposure results. Due to the fact that all experimental methods 

employed a-stratification, item exposure balance was under quite reasonable control, though 

random item selection optimized balance. The results for the shorter test length of 21 items show 

a more pronounced advantage for KL information, and item exposure results were still quite 

comparable for the methods, except for random item selection which performed very poorly at 

classification and estimation, but balanced exposure almost perfectly. 
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Table 2. Recovery Rates by Attribute, and MSE() for Two 

Correlation Conditions and Two Test Lengths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Recovery  Rate  

Method Attribute 1 Attribute 2  Attribute 3 Attribute 4 Attribute 5 Pattern MSE( ) 

High Correlation, 41-Item Test 

   Stratified only 0.995 0.9997 0.9833 0.9663 0.9667 0.919 0.14 

   Q control 0.9973 0.9957 0.988 0.9897 0.9757 0.9517 0.0975 

   Q (1  s)(1  g) 0.9987 0.9973 0.9903 0.9913 0.978 0.9583 0.0935 

   Information  0.9997 0.9973 0.9967 0.996 0.9933 0.984 0.067 

   Random 0.9353 0.9473 0.972 0.9577 0.9423 0.8273 0.195 

High Correlation, 21-Item Test 

   Stratified only 0.975 0.9707 0.9633 0.969 0.9387 0.8487 0.144 

   Q control 0.974 0.9733 0.9677 0.971 0.9377 0.8543 0.132 

   Q(1  s)(1  g) 0.9787 0.9783 0.971 0.9743 0.9387 0.8647 0.25 

   Information  0.9907 0.979 0.979 0.9883 0.966 0.9177 0.105 

   Random 0.875 0.919 0.916 0.9007 0.8887 0.6953 0.649 

Low Correlation, 41-Item Test 

   Stratified only 0.9933 0.9997 0.9793 0.9197 0.9427 0.8530 0.293 

   Q control 0.9867 0.9897 0.9777 0.955 0.939 0.8693 0.168 

   Q(1  s)(1  g) 0.9923 0.994 0.9757 0.953 0.942 0.878 0.151 

   Information  0.9990 0.9967 0.9960 0.9953 0.9883 0.9763 0.125 

   Random 0.9403 0.9503 0.9673 0.958 0.9433 0.8273 0.312 

Low Correlation, 21-Item Test  

   Stratified only 0.9690 0.9863 0.9560 0.8777 0.9087 0.7540 0.274 

   Q control 0.9480 0.9527 0.9490 0.9243 0.9113 0.7723 0.228 

   Q(1  s)(1  g) 0.9580 0.9640 0.9560 0.9247 0.9140 0.7830 0.235 

   Information  0.9877 0.9733 0.9700 0.9803 0.9507 0.8867 0.157 

   Random 0.8593 0.8987 0.9 0.888 0.885 0.663 0.379 



-13- 

 

Table 3. Exposure Rate Distribution for Two 

Correlation Conditions and Two Test Lengths 

Method Min 25% 50% 75% 90% Max Mean S.D. 2  

High Correlation, 41-Item Test         

   Stratified only .0003 .0153 .0340 .0695 .1176 .2317 .05125 .0501 39.18 

   Q control .0000 .0080 .0316 .0642 .1159 .5030 .05125 .0669 69.81 

   Q(1  s)(1  g) .0000 .0097 .0326 .0620 .1152 .5040 .05125 .0660 67.96 

   KL Information  .0007 .0134 .0328 .0662 .1146 .4853 .05125 .0575 51.72 

High Correlation, 21-Item Test         

   Stratified only .0013 .0100 .0183 .0310 .0479 .2197 .0262 .0302 27.841 

   Q control .0007 .0090 .018 .0303 .0536 .2933 .0262 .0307 28.72 

   Q(1  s)(1  g) .0003 .0097 .0186 .0306 .0543 .2107 .0262 .0287 25.22 

   KL Information  .0010 .0093 .0181 .0310 .0532 .2143 .0262 .0287 24.95 

   Random .0183 .0243 .0263 .0280 .0300 .0367 .0262 .0027 0.253 

Low Correlation, 41-Item Test         

   Stratified only .0007 .0176 .0363 .0743 .1253 .1853 .05125 .0431 29.075 

   Q control .0007 .0150 .0343 .0685 .1259 .5297 .05125 .0543 46.134 

   Q(1  s)(1  g) .0000 .0166 .0360 .0680 .1183 .4510 .05125 .0524 42.863 

   KL Information  .0003 .0140 .0345 .0673 .1143 .5867 .05125 .0593 54.969 

   Random .0397 .0483 .0513 .0540 .0566 .0643 .05125 .0041 0.235 

Low Correlation, 21-Item Test         

   Stratified only .0023 .0106 .0190 .0320 .0490 .1513 .0262 .0247 18.604 

   Q control .0007 .0093 .0183 .0319 .0536 .4113 .0262 .0298 27.12 

   Q(1  s)(1  g) .0007 .0106 .0181 .0325 .0543 .3073 .0262 .0271 22.38 

   KL Information  .0010 .0096 .0176 .0315 .0512 .4287 .0262 .0330 33.270 

   Random .0183 .0243 .0263 .0280 .0300 .0367 .0262 .0027 0.235 
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For the 41-item test and low correlation case, Table 2 shows that KL information was even 

more valuable. This was a more challenging case because of the near independence of the 

attributes. As a result, classifying the whole vector was more difficult because less information 

can be compiled about the joint distribution. The Q(1s)(1g) method came in a distant second.  

The trend remained in the 21-item test.  To summarize, all four methods based on a-stratification 

yielded similar item exposure properties, but classification of   and estimation of   was best 

when using KL information. In all cases, the Q(1s)(1g) method performed second best, but did 

much worse when the attributes were not tightly associated. 

Discussion 

When a single examination is used for a standard unidimensional score and for skills 

diganosis, one has to consider how these distinct aims can be addressed at once. The higher-

order DINA model illustrates how data can appear to follow an IRT model, when in fact there is 

local dependence that can only be eliminated by conditioning on a vector of binary skills. The 

standard  still has a useful interpretation as a general and broad level of knowledge or ability 

and fitting logistic IRT models can be quite a good approximation when conducting CAT and 

assigning a ̂ . CAT can be conducted in a manner that assigns this critical score, but can also 

diagnosis presence or absence of each component of an attribute vector. Therefore, it can afford 

practitioners with the opportunity to rank order the examinee while diagnose them in a way that 

leads to tailored remediation. 

Several priority scores were considered for modification of weighted a-stratification. The 

most efficient method directly utilized Kullback-Liebler information, though a simple priority 

score based on slipping and guessing parameters performed nearly as well. Using only Q-matrix 

information was not as effective, but can be used to achieve balance across the attributes. These 

conclusions are most apparent when inspecting results for the shorter exam, and for classification 

of the entire attribute vector. 

CAT can be expanded to perform cognitive diagnosis, even when fitting ordinary IRT 

models, by calibrating the item bank with a cognitive diagnosis model such as the DINA, and 

considering both models in the item selection procedure. Unidimensional IRT provides a 

simplification of test data by assuming a single latent trait. Cognitive diagnosis models rectify 

this to some degree by recognizing several dimensions, but also make the assumption that latent 

variables are binary. By utilizing both models in a testing program, we can reach a useful 

compromise that achieves an ordering of the broad knowledge of examinees, but offers a finer 

breakdown that can be used for reporting, and provides valuable information for remediation. 
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