
 

 
Computerized Adaptive Testing  

With the Bifactor Model 
David J. Weiss 

University of Minnesota 
and 

Robert D. Gibbons 
Center for Health Statistics 

University of Illinois at Chicago 
 
 

 

Presented at the New CAT Models session, June 8, 2007 

 

 



Abstract 
An algorithm designed to implement CAT with the dichotomous bifactor model is described.  
Performance of the algorithm was evaluated with several datasets from a 615-item personality 
instrument that scored on a general scale and four content scales.  Post-hoc simulation, including 
cross-validation, and live testing bifactor CAT data were analyzed in terms of reductions in test 
length for each scale, correlations with trait estimates from all items in each scale, bias, and 
accuracy.  Results showed very substantial reductions in scale and overall test length while 
maintaining correlations with full-scale scores above .90.  For the general scale, mean test length 
reductions of about 95% were observed in both post-hoc simulation and live testing; only about 
25 to 30 items were required, on average, to recover scale scores with a correlation above .90.  
Mean reductions of 68% to 90% were observed for the content scales.  Across all scales 
combined, the bifactor CAT algorithm reduced test length by an average of about 80% and 
resulted in an actual testing time mean decrease of approximately 93 minutes (82%). 
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Computerized Adaptive Testing With the Bifactor Model 
 

Most applications of computerized adaptive testing (CAT) have used unidimensional item 
response theory (IRT) models. These models are appropriate for many psychological variables 
that account for individual differences along a single psychological dimension.  These include 
ability type variables as well as many personality variables. 

Some psychological variables, however, are multidimensional.  These also include ability 
types of variables as well as personality variables.  Intelligence, for example, can be 
characterized as a single unidimensional construct along which individuals vary, or it can be 
described as a hierarchical construct that includes specific kinds of cognitive abilities (verbal 
ability, reasoning, quantitative ability) that have a common component that might be referred to 
as “general” intelligence.  Similarly, personality variables such as depression can be viewed as 
single construct, or as a “general” construct that has different components such as sleep 
disturbances, lethargy, and loss of appetite. For either intelligence or depression, or other 
variables that have a two-level structure, the applied measurement objective is to measure each 
individual examinee on the “general” component of each variable as well as each of the lower 
level more specific components.  

When a psychological trait is multidimensional, there are two general approaches to 
modeling it with IRT.  One is to apply multidimensional IRT models (Bock and Aitkin, 1981; 
Bock Gibbons and Muraki, 1988; Reckase, 1985; Reckase & McKinley, 1991), which result in 
item parameters for each item that describe the item’s contribution to each of the underlying 
traits that account for the item responses.  Application of these multidimensional IRT is similar 
to implementing a exploratory factor analysis of the item response data and, in essence, results in 
distributing the variance of each item among the factors that account for the data.  Once these 
item parameters are estimated, CAT could proceed by applying multidimensional CAT 
algorithms in conjunction with the multidimensional item parameters (e.g., Segall, 1966, 2000; 
van der Linden, 1999).  One problem with this approach is that multidimensional IRT parameter 
estimation methods have not been thoroughly studied and might require very large sample sizes.  
A second problem is that the resulting structure for the domain under investigation might not 
result in trait (θ ) estimates that provide the kind of information that is useful for applied 
purposes, such as measurements on the lower level components that are assumed to underlie the 
“general” variable.. 

A plausible alternative factor structure is the “bifactor” model (Holzinger & Swineford, 
1937). The bifactor solution constrains each item to have a non-zero loading on the primary 
dimension (e.g., depression) and a secondary loading on no more than one of the domain content 
(lower level) factors (e.g., sleep disturbance). The bifactor structure is plausible in mental health 
measurement, where symptom items that are related to a primary dimension of interest are often 
selected from underlying measurement sub-domains. It is also plausible for measuring 
intelligence and many other psychological constructs that have a two-level structure of a 
“general” variable and content-specific sub-domains 

Gibbons and Hedeker (1992) derived a bifactor model for binary response data, and Gibbons, 
Bock, Hedeker et. al. (2007) extended it for analysis of graded response data. Their estimation 
method permits the items to be sampled from any number of sub-domains. In the present context, 
the advantage of the bifactor model is that it yields an overall or “general” measure that can be 
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the focus of CAT, as well as measurement on the underlying sub-domains.  In contrast to the 
usual multidimensional IRT approach, the bifactor model is a confirmatory model and it retains 
that hypothesized content structure that is assumed to underly the construct being measured. 

Table 1 presents a schematic bifactor structure.  An “X” in the table indicates a high loading 
for the variable on a factor.  As Table 1 shows, the general factor is defined by the fact that all 
items have high loadings on it.  Each of the group factors has high loadings on a subset of the 
items, and each item is constrained to have a high loading on only group (or content) factor.  
This structure is specified in advance by the researcher.  The model is then fit to the data using a 
confirmatory factor analysis procedure using a computer program such as TESTFACT (Wood, 
Wilson, Gibbons, Schilling, Muraki, & Bock, 2002). If the model is a good representation of the 
data, the result is a set of item thresholds and factor loadings that can be converted into IRT item 
parameters.  For binary response data, there is a single threshold for each item, which is 
converted into the item difficulty (bi) parameter.  Because each item loads on the general factor 
and at most one content factor, there is also a discrimination (ai) parameter for each item on the 
general factor and one content factor. 

 
Table 1 

An Illustrative Bifactor Structure:  
An “X” Indicates a High Factor Loading 

Group Factor  
Item 

General
Factor 1 2 3 4 

1 X X    
2 X X    
3 X X    
4 X X    
5 X X    
6 X  X   
7 X  X   
8 X  X   
9 X  X   
10 X   X  
11 X   X  
12 X   X  
13 X    X 
14 X    X 
15 X    X 
16 X    X 
17 X    X 
18 X    X 

 
Because the bifactor structure is useful for characterizing a number of psychological 

constructs and existing multidimensional CAT procedures are inappropriate for use with the 
bifactor model, a CAT algorithm was developed to use with this IRT model.  This paper 
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describes that algorithm and reports on its utility in both post-hoc simulation and live-testing 
CAT. 

 
The Bifactor CAT Algorithm 
 
The bifactor CAT algorithm consisted of the following steps: 

1. Fit the bifactor model to an appropriately structured set of item responses. 

2. Convert the intercept parameter estimate for each item ( )iγ from the bifactor solution to 
the bi parameter of the 2-parameter logistic IRT model by  

Gi ib iaγ= −           (1) 

where is the item discrimination parameter for item i on the General factor, and the 
two-parameter logistic model is given by 

Gia

1( 1| , , )
1 exp[ D ( )]ij i i j

i j i

P u a b
a b

θ
θ

= =
+ − −

      (2) 

with uij = the response of examinee j to item i scored 1 for a keyed response and 0 
                otherwise,  

        jθ = the trait level of examinee j, and  

         D = 1.7. 

3. Implement CAT on the General scale for each examinee.  Each CAT was begun with an 
initial θ  estimate of 0.0, items were selected by maximum information, θ  was estimated 
using Bayesian modal estimation (MAP, or maximum a posteriori), and the CAT was 
terminated using a fixed standard error of the θ estimate (SEM), allowing the number of 
items to vary across examinees. 

4. Identify, for Content Scale 1, those items that were administered on the examinee’s 
General factor CAT.  These items will vary among examinees based on their estimated θ 
level on the General factor. 

5. Using the discrimination parameters from the bifactor solution for Content Scale 1, 
compute a θ estimate from these items, and use it as the CAT starting θ estimate for 
Content Scale 1. 

6. Implement CAT for Content Scale 1 using its discrimination parameters and an 
appropriate termination criterion.  The content scale CATs used the same set of CAT 
options as the General scale CAT with two exceptions (1) an examinee’s CAT on a 
Content scale used a variable entry θ estimate, based on Steps 4 and 5; and (2) although a 
fixed SEM was used to terminate the content scales, the values of the SEM varied among 
the scales. These values were based on the first set of post-hoc simulations in which post-
hoc simulation correlations were sought between CAT θ̂  and full-scaleθ̂  of .90 or 
greater.  The SEMs values associated with these results were used to terminate content 
scale CATs for subsequent post-hoc simulations and live CATs. 
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7. Repeat Steps 5 -7 for each additional content scale: 

a. Identify administered items from the General Scale for a given content scale. 

b. Estimate θ for the content scale from those items and their scale discrimination 
parameters. 

c. Implement CAT for that scale. 

Figure 1 illustrates how items administered on the General (G) scale were used in the bifactor 
CAT algorithm.  Hypothetical results are shown for three examinees.  Depending on their 
location on the General factor, as it was estimated by the General factor CAT, each examinee 
potentially received both a different number of items and a different subset of items. Figure 1a 
shows that Examinee 1 received 15 items, Examinee 2 received 16 items, and Examinee 3 
answered 13 items.  Of the items answered by each examinee, different subsets of items were 
associated with Content Factor 1 in the bifactor structure—these item numbers are shown in blue.  
Examinee 1 answered 5 items from Content Scale 1, Examinee 2 answered 7 items (with 1 item 
common with Examinee 1), and Examinee 3 answered only 3 items from Scale 1.  Figure 1b 
shows the five Scale 1 items answered by Examinee 1.  These items were used, in conjunction 
with their IRT discrimination parameters on Scale 1, to derive an initial θ estimate for Examinee 
1 on Scale 1, which was used to select the first item in Scale 1; the Scale 1 CAT than proceeded 
from that starting θ estimate. 
 

Figure 1 
Illustration of Item Usage in the Bifactor CAT Algorithm 

 
a. Items Administered by a CAT on the General Factor (G) 

to Three Hypothetical Examinees 
 

 

- 4 



b.  Using Scale 1 Items From the G Factor  
to Begin the Scale 1 CAT for Examinee 1 

 

 
 
 

Method 

Data 

Instrument.  The Mood-Anxiety Spectrum Scales (MASS: Cassano, Michelini, Shear, et al. 
1997; Frank, Cassano, Shear, et al., 1998) provided the data for this research.  The MASS 
consists of 626 items that score on a General Scale and four content scales.  All items are scored 
dichotomously, with higher scores reflecting higher levels of pathology.  Of the 626 items, 615 
were used in this study (the remainder of the items had insufficient variance to be useful).  All 
615 items were scored for the General scale.  The content scales were Mood (155 items), 
Obsessive-Compulsive (OBS: 183 items), Panic-Agoraphobia (PAS: 113 items), and Social 
Phobia (Shy: 164 items).  Figure 2 shows the scale information functions for each of the five 
MASS scales based on the bifactor analysis results. 
 

Figure 2 
Scale Information Functions for Five MASS Scales 

 
a.  General Factor Scale 

 
 
 
 
 
 
 
 
 
 

b.  Group Factor Scales 
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b. Content Scales 
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Participants.  Item response data were obtained from four groups of examinees, primarily as 

part of the Mental Health Computerized Adaptive Testing (MHCAT) study (Gibbons et.al., 
2008): 

1. Item calibration group. Data were from 800 participants in outpatient treatment for a 
mood or anxiety disorder at the Western Psychiatric Institute and Clinic in Pittsburgh, PA  
The MASS was computer-administered to this group  based on an optimal balanced 
incomplete block design that was designed to maximize the number of pairings of 616 of 
the 626 items while minimizing the number of items administered to each subject.  The 
FastTEST Professional Testing System (Weiss, 2006) was used to create 36 different test 
forms, each consisting of 154 items extracted from the four MASS subscales. Items were 
administered to 36 randomly assigned subgroups of research participants (sample sizes 
for the 36 groups varied from 17 to 28 with a median of 22). 

2. Post-hoc CAT calibration group (PH-1). Data for this group included complete responses 
obtained from paper-and-pencil administration of all 626 MASS items from 148 
depressed patients in an earlier study conducted jointly by the Universities of Pittsburgh 
(N = 90) and Pisa, Italy (N= 58).  These item responses were used as the basis for initial 
post-hoc simulations of the bifactor CAT algorithm.  The objective of these simulations 
was to use the bifactor CAT algorithm to determine the numbers of items required to 
obtain CAT θ estimates that correlated .90 or above with full-scale θ estimates for the 
five MASS scales. A number of standard error (SEM) termination criteria were examined 
until appropriate SEMs were obtained that satisfied the correlation criterion for all five 
scales. 

3. Post-hoc cross-validation group (PH-2).  Data for this group were obtained from 
complete responses to the MASS from computer administration of  615 MASS items.  
The 204 participants were from data collected by MHCAT. This group was used to 
cross-validate the post-hoc simulations in the PH-1 group.  In this group the bifactor 
CAT algorithm was implemented with the SEM termination values identified in the PH-1 
group and correlations between the CAT and full-scale, ˆsθ as well as test length for each 
scale, were observed. 

4. Live-testing bifactor CAT group.  Participants in this group were a subset of 156 
examinees from the PH-2 group who returned for an additional testing session an average 
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of 5.5 months after completing the full MASS at their earlier session.  For this group of 
156 examinees, the bifactor CAT was administered live using the FastTEST Professional 
Testing System (Weiss, 2006).  Data from the first PH-2 testing session were retrieved 
for these 156 examinees to provide test-retest results based on post-hoc bifactor CAT 
simulation at the first session and live bifactor CAT administration at the second session; 
the first session data for this reduced set of examinees are referred to as the PH-2-R 
group. 

 
Procedure 

 Post-hoc simulations were based on complete sets of item responses to the 615 MASS items 
(one item was eliminated because it had no variance).  Using the bifactor CAT algorithm 
described above, the program POSTSIM3 (Weiss, 2008) used the existing item responses in the 
CAT algorithm to “administer” a CAT to each examinee.  The resulting CAT ˆsθ were compared 
to the full-scale ˆsθ for each of the five MASS scales, and these CAT ˆsθ were compared to the 
full-scale ˆsθ  estimated from all the item responses in each scale. 

Live CAT administration was also based on the bifactor CAT algorithm, but MASS items 
were stored in the testing computer and items were presented to examinees one at a time.  Item 
responses were obtained by mouse clicks on the “yes”/”no” item responses on the screen, which 
highlighted when clicked.  Examinees were allowed to change item responses until they clicked 
on a green arrow in the top corner of the screen.  The response was then scored, θ  was estimated, 
and the next item was selected and presented.  Inter-item delays were always a second or less. 
 
Data Analysis 

Of interest was the efficiency of the bifactor CAT algorithm in recovering full-scale θ 
estimates with minimal loss of measurement quality for each of the five MASS scales separately 
and for all scales combined.  The following evaluative criteria were computed for each scale: 

1. Pearson correlations between bifactor CAT ˆsθ ( )Ĉθ  and full-scale ˆsθ ( )F̂θ . 

2. Bias:  The mean signed difference between CAT and full-scale θ estimates, 

bias 
( )C F

1

ˆ ˆ
N

i i
i

N

θ θ
=

−
=
∑

            (3) 

3. Accuracy: The mean absolute difference between CAT and full-scale θ estimates. 

accuracy 
C F

1

ˆ ˆ
N

i i
i

N

θ θ
=

−
=
∑

           (4) 

4. The average number of items required by CAT to recover full-scale θ estimates with a 
correlation of .90 or higher, or with a pre-specified SEM. 

5. Relationship between live-testing and post-hoc simulation CAT results. 
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Results 
Fit of the Bifactor Model 

Both unidimensional and bifactor models (using the content scales as secondary 
dimensions) were fitted to the 616 item responses obtained from the 800 research participants in 
the item calibration group. The bifactor model provided acceptable model-data fit and 
significantly improved model fit over the unidimensional model ( 2χ = 2,955, df = 616, p < 
0.001), supporting the scale’s multidimensional structure. That is, the bifactor results supported 
the contribution of each of the four MASS domains in addition to the primary domain for 
accounting for the MASS’s underlying factor structure. Figure 3 displays the relationship 
between the observed proportion endorsed and the proportion endorsed estimated by the bifactor 
model for the 616 items, reflecting the excellent fit of the bifactor model to the item responses. 

 
Figure 3 

Relationship Between Observed Proportion  
Endorsed and Estimated Proportion Endorsed  
From the Bifactor Model for 616 MASS Items 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance of the Bifactor CAT 

General scale.  Results for all scales are shown in Table 2.  For the General scale in the 
PH-1 group, the post-hoc simulation analyses revealed that on average, 24.4 items (range of 
18 – 55 items) were required to achieve ( )C F

ˆ ˆ,r θ θ  = .922.  The resulting target SEM was 

approximately .30.  When this SEM was used in the PH-2 cross-validation group, ( )C F
ˆ ˆ,r θ θ  

= .933 was obtained with an average of 23.76 items (range 18  – 77).  Bias was low for both 
groups: −.277 for PH-1 and −.095 for PH-2.  Accuracies of  .375 and .371, respectively, were 
consistent with the SEM termination value of .30.  Test length mean percentage reductions 
for both groups were 96%.  When the SEM termination criterion for the General scale was 
applied in live testing, an average of 30.64 items were administered, with a somewhat larger 
range than for both post-hoc simulations.  However, the mean percent reduction in test length 
was 95% in live testing versus 96% for the same examinees (PH-2-R) under post-hoc 
simulation. 
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Table 2 
Correlation of Ĉθ With ˆ ,Fθ Bias and Accuracy,  

Mean and Range of Number of Items Administered, and  
Percent Mean Reduction in Number of Items for Five Scales 

   Number of Items 

Scale and Group ( )C F
ˆ ˆ,r θ θ  Bias Accuracy Mean Range Reduction 

General Scale (615 Items, SEM = .30)  
   PH-1 .922 −.277 .375 24.45 18 – 55 96.02% 
   PH-2 .933 −.095 .371 23.76 18 – 77 96.14% 
   PH-2-R .931 −.063 .371 23.86 18 – 77 96.12% 
   Live CAT -- -- -- 30.64   18 – 184 95.02% 
Scale 1: Mood (155 Items, SEM = .35)  
   PH-1 .924 −.137 .334 27.16 16 – 60 82.48% 
   PH-2 .972 .098 .291 48.61 16 – 155 68.64% 
   PH-2-R .973 .078 .282 50.06 16 – 155 67.60% 
   Live CAT  -- -- 27.26 14 – 62 82.41% 
Scale 2: OBS (183 Items, SEM = .475) 
   PH-1 .931 −.219 .453 29.70 9 – 67 83.77% 
   PH-2 .915 −.048 .484 18.99 8 – 67 89.62% 
   PH-2-R .902 −.034 .508 18.53 8 – 67 89.87% 
   Live CAT -- -- -- 20.97 9 – 84 88.55% 
Scale 3: PAS (113 Items, SEM = .40)  
   PH-1 .948 −.270 .377 23.40 10 – 79 79.61% 
   PH-2 .958    .025 .341 21.94 10 –79 80.58% 
   PH-2-R .956    .045 .343 22.03 10 –79 80.50% 
   Live CAT -- -- -- 18.62  6 – 77 83.52% 
Scale 4: Shy (164 Items, SEM = .35)  
   PH-1 .953 −.215 .412 17.63 11 – 61 89.25% 
   PH-2 .968 −.119 .351 28.28   12 – 164 82.75% 
   PH-2-R .969 −.094 .341 27.52   12 – 164 83.20% 
   Live CAT -- -- -- 34.38   19 – 136 79.04% 

 

 
Content scales.   Results for the four content scales were similar to those obtained for the 

General scale.  Correlations between Ĉθ and F̂θ  were all in the .90s, ranging from .902 t
Bias for all scales and across all groups was negligible, with a slight predominance of small 
negative values.  Accuracies were generally consistent with the SEM termination values us
for each scale. Test length mean percentage reductions were somewhat smaller than for the 
General scale, ranging from about 68% to about 90%.  The mean number of items 
administered in the live CAT was generally consistent with the mean number admini
for the PH-2-R group; however, for Scale 2 the mean number of items in post-hoc simulation

o .973.  

ed 

stered 
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was 50.06 whereas for the same examinees in live testing a mean of only 27.26 items was
required to terminate the bifactor CAT on that scale. 

 

All scales combined.  Table 3 shows measures of central tendency for number of items 
administered to examinees by the bifactor CAT algorithm across all scales combined.  With 
the exception of the mean for live CAT administration, mean, median, and modal percent 
reductions were 80% and above for all groups.  Median number of items required to measure 
examinees on all scales was 100 for live CAT and 93.5 and 94.5 for the two post-hoc groups.  
Modes and means of number of items were slightly higher in live testing than in post-hoc 
simulation, with about a 6% maximum difference for the means.   

 
Table 3 

Mean, Median, and Mode of Total Number of Items  
Administered by CATs (n) on the Five Scales  

and Percent Reduction From 615 Items, for Three Groups 
 Mean Median Mode 
Group n % n % n % 

PH-1 97.90 84.1% 93.5 84.8% 77 87.5% 
PH-2 118.1 80.1% 94.5 84.6% 73 88.1% 
Live CAT 131.8 78.6% 100 82.1% 92 85.0% 

 

Actual test administration times were recorded for the 156 examinees in group PH-2-R 
who took the 626 MASS items by computer and who later took the bifactor CAT.  On initial 
test administration, the mean testing time was 114.81 minutes, with a SD of 46.13 minutes.  
When the examinees later completed the bifactor CAT, mean administration time was 22.05 
minutes (SD = 11.66).  This was an average time reduction of 82%, or a mean time saving of 
92.76 minutes. 

Correlations of θ estimates from post-hoc simulation and live CAT.  Table 4 shows the 
correlations among ˆsθ  for the PH-2-R group from both post-hoc and live CAT 
administration. The first row shows the test-retest correlations between the two CAT ˆsθ over 
the average five-month period.  These correlations ranged from .749 to .827, which compare 
favorably with the test-retest correlations between the live CATθ̂  and the full post-hoc ˆ,θ  
shown in the second row.  The former correlations were no more than .05 different from the 
latter, with the largest difference observed for the General scale.  The last row of Table 4 
shows the correlations between ˆsθ for this group when there was no time interval between the 
ˆsθ . 
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Table 4 

Correlations Among CAT ˆsθ and Full Scale ˆsθ  From the Five Scales 
for the PH-2-R Group Based on Post-Hoc CAT and Live CATs (N = 156) 

 Scale 
θ  Estimates General Mood OBS PAS Shy 

Live CAT θ̂  with post-hoc CAT θ̂  .776 .826 .797 .749 .827 
Live CATθ̂  with full post-hocθ̂  .826 .832 .829 .767 .847 
Post-hoc CATθ̂  with full post-hocθ̂  .931 .973 .902 .956 .967 
 

 
Conclusions 

The bifactor model provided a good fit to the MASS scale items.  The fit of  the bifactor 
model was significantly better than the fit of a unidimensional model, and the estimated 
proportions of keyed responses from the bifactor model closely fit the observed proportions. 

The CAT bifactor algorithm resulted in very substantial reductions in numbers of items (80% 
to 95%) in both post-hoc simulation and live bifactor CATs. while producing CAT θ estimates 
that correlated above .90 for all five MASS scales with θ estimates from the full sets of scale 
items.  Comparisons of the results from the post-hoc simulation groups indicated that standard 
error termination criteria identified in the first group that resulted in correlations above .90 cross-
validated well in the second post-hoc group, both in terms of correlations and reductions in 
numbers of items.    

The results of the post-hoc simulation generally well predicted the results of live bifactor 
CAT administration, thus supporting the usefulness of post-hoc simulation in the process of 
developing and implementing operational CATs.  Results from the live testing, based on a test-
retest design, showed high correlations between CAT θ estimates from the post-hoc simulation 
and retests of live CATs an average of about five months later  Across all scales of the MASS, 
number of items need to obtain θ estimates was reduced by the bifactor CAT algorithm about 
80% to 85%, with a mean testing time reduction of 82%, which translated to a mean saving of 
examinee testing time of approximately 93 minutes over administration of the full set of MASS 
items. 
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