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Abstract 
 

Algorithms developed for item selection in computerized adaptive testing are exclusively from the 
item response theory perspective, where responses are examined at the item level. They are limited 
when all item characteristics are not readily known. This paper illustrates an item selection algorithm 
using person response functions. When targeting a single percentile, median difficulty level can be an 
estimate of the person’s ability level. Often however, estimating more than one percentile or the 
entire person response function is desirable. This study considered optimal designs that either 
minimize the variance of one percentile estimate or a function of the variance-covariance ellipse  
jointly for all parameter estimates. Due to the problem that an optimal design for nonlinear models 
depends on unknown parameters, sequential up-and-down designs for approximating optimal designs 
are considered. Examples are provided to illustrate the efficiency of the procedures. 
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Up-and-Down Procedures for Approximating Optimal Test 
Designs Using Person Response Functions  

In recent decades, the popularity of computerized adaptive testing (CAT) in educational 
and psychological test administrations has increased dramatically. Although CAT can be 
contrasted with test administration in traditional modes (e.g., paper and pencil), it is actually 
much more than mere presentation of assessment stimuli by computer. Traditional assessment 
presentations are typically “flat,” where all examinees respond to all items and scores are 
calculated using a simple, summing model, although many types of scores can be derived. In 
contrast, CAT typically uses a maximum likelihood procedure to sequentially approximate an 
examinee’s ability or trait level during the assessment, based solely upon the number of items 
presented and the examinee’s individual pattern of correct endorsements (Wainer et al., 2000). 
After some initial “anchoring” to get the process started, each newly-presented item provides 
more data for another sequential, and more accurate, estimation. Thus, in CAT the “test” is 
not a single set of items that all examinees respond to but, rather, is composed of items 
uniquely matched to an examinee’s trait level, meaning that each individual responds to a 
different set of items (except examinees who have identical response patterns). Presumably, 
through successive approximations ever better trait estimates are made with each additional 
response. Eventually, the estimation asymptotes at some level; and, as next-presented test 
items yield only inconsequential improvements, the process stops. The final trait estimate is 
the examinee’s reported score.   

Algorithms developed for item selections in CAT such as the maximum information 
method (e.g., Thissen & Mislevy, 2000) are exclusively from the item response perspective, 
where responses are examined at the item level. They perform well only when the exact 
forms of item response functions (IRFs) are known. However, these algorithms are limited in 
situations where the item characteristics are not readily known. This paper introduces item 
selection from a person response perspective and focuses on using an up-and-down design to 
estimate an examinee’s trait level. Up-and-down methods are mainly used by biologists for 
sensitivity testing. Lord (1970) first applied them in sequential designs for tailored testing and 
soon stopped using them, recommending other methods. Since then, up-and-down designs 
have not been of interest in the CAT literature because they are less efficient when the exact 
form of an item response function is known. They are, however, attractive for item selection 
from the person response perspective, especially when one knows only item difficulty levels. 
It can be shown that with this approach a trait (θ) estimate targets certain percentiles of 
interest in relation to the difficulty level of the overall test, such as the median difficulty level 
(parallel to ED50 in bioassay). When this is mapped as a function, it is termed the location of 
the person response function (PRF; Lumsden, 1978; Sijtsma & Meijer, 2001; Trabin & Weiss, 
1983), or sometimes the threshold difficulty level. The adaptive design targeting only the 
median is usually taken to be the classical up-and-down design of Dixon & Mood (1948; von 
Békésy, 1947; cf. Lord, 1970; 1971).  

 Often, in educational measurement, estimating more than one percentile or the entire 
PRF is desired. To illustrate this, a test can easily be constructed with a set of arbitrarily 
chosen 10 (or some number) distinct difficulty levels. Nevertheless, such a design is found to 
be less efficient than optimal designs adopted in areas such as bioassay (e.g., see Figure 1, 
where the efficiency of the design is shown to be consistently smaller than that for the 
D-optimal design for persons with an average θ or with θ two standard deviations above the 
mean). This study considered optimal designs that either minimize the variance of one 
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percentile estimate or a function of the variance-covariance ellipse jointly for all parameter 
estimates. The latter is more meaningful for measuring psychological variables.  

 

Figure 1. The Efficiency [det(M-1)] of a Design With 10 Distinct  
Difficulty Levels Relative to the D-Optimal Design 

a. θi = 0 

 

b. θi = 2 
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A difficulty arises in formulating the PRFs because they cannot be directly known, as 
they are nonlinear and rely on unknown parameters. One way to overcome this problem is to 
use sequential designs to approximate optimal designs. This study focused on using 



 

sequential up-and-down designs for the approximation of a range of response estimates. For 
estimating the median difficulty level (such as the ED50), the so called c-optimal design 
prescribes selecting items so as to minimize the variance of the estimator. In practice, this 
amounts to selecting all items at the median difficulty level. The c-optimal design can be 
approximated by the classical up-and-down test.  

For estimating all the model parameters, the so called D-optimal design prescribes 
selecting items so as to minimize the determinant of the parameters’ variance-covariance 
matrix. For PRFs, the D-optimal procedure is to select items at two percentiles not at the 
median difficulty level. The D-optimal procedure can be approximated by using two 
independent biased coin up-and-down procedures (Durham & Flournoy, 1994) that target the 
optimal percentiles. 

It has to be noted that up-and-down designs do not rely on the form of the model and thus 
are nonparametric in nature. Regardless, to study the properties of the designs in appraising 
mental constructs, an underlying person response model was assumed in this study.  

IRFs and PRFs 

In modern measurement theory, IRFs are a class of probabilistic functions illustrating the 
interaction between examinees and test items. For the binary responses (0 and 1) of test item 
endorsement, denoted as Y, the parametric probability functions of correct responses are 
usually modeled by a logistic or by a normal ogive item response model. As an illustration, 
the two parameter logistic (2PL) IRF specifies that the probability of a correct answer to item 
j, denoted by ( )P θ  is j

1( ) ( 1| ) ,P P Yθ θ= = =
1 exp{ ( )}j j

j jα θ β+ − −
 (1) 

Where jα and jβ denote the discrimination and difficulty parameters for item j and θ  
denotes the continuous latent trait parameter scale, with iθ being the trait level for person i. 
The IRF describes the probability of a correct response as a function of θ and fixed item 
parameters (e.g. jα  and jβ  in the 2PL IRF). When the slope parameter jα is assumed to be 
the same for all items, the logistic form of the model is known as the Rasch model  

Analogous to the IRF, the PRF describes the probability of a correct response as a 
function of item difficulty and a fixed person parameter. Hence, what constitutes a person 
response must be defined appropriately for each person. Let Yi be the random response 
variable for person i and let Yi = 1 if the person has a correct response, and let Yi = 0 
otherwise. A continuous latent difficulty scale, denoted byβ , is assumed, with jβ being the 
location of item j in the population of all the items. For a given person i with trait level iθ , the 
PRF is defined by  

( ) ( 1| )i iP P Y . (2) β β= =

The probability function can be any non-increasing function of the difficulty scale 
parameter,β . In this study, the following logistic form was assumed: 

1( ) ,
1 exp{ ( )}i

i i

P β
δ θ β

=
+ − −

 (3) 
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where iδ is the slope parameter for person i. iδ can be interpreted as how different the 
person’s probability is in correctly responding to easy and difficult items respectively and is 
assumed to vary from person to person. 

Given that the nth item administered to person i has difficulty level ( ) B n β= , the 
probability of correct response is ( ) [ ( ) 1| ( ) ]i iP P Y n B nβ β= = = . The θ level that yields a 
target difficulty level Γ  ( 0 ) is defined as 1<< Γ θΓ , so [ ( ) ]iP Y n 1| ( )B n θΓΓ = = = . Under 
the logistic PRF, it can be shown that i100 /( )iED θ γ δΓ = + − , where log[ / (1 )]γ = Γ −Γ . 
Hence, the latent trait level, iθ , is actually the median difficulty level (ED50) for person i.  

The remainder of the paper is organized as follows. First, we describe optimal designs for 
educational and psychological measurement and discuss why they require successive 
approximations. Next, we review the classical up-and-down design and generalize it as 
needed to target arbitrary percentiles. Then, we show how the up-and-down design can be 
used to approximate the optimal designs. Finally, we give examples and evaluate their 
performance.  

Optimal Designs 

An optimal design is defined as a design that minimizes or maximizes some criterion 
function (Atkinson & Donev, 1996). Optimal designs emerged from the framework of design 
of experiments developed by Fisher (1935), with recent important developments in the 
literature, including Silvey (1980), Atkinson and Donev (1992), Pukelsheim (1993), and 
Fedorov and Hackl (1997). In the implementation of optimal designs in psychometric studies, 
all designs are considered approximate designs, which means that the designs are actual 
conditional probability measures. This suggests that a design consists of (1) a set of items 
with various difficulty levels, and (2) the assignment of a proportion of the fixed number of 
items to each difficulty level. Optimal (approximate) designs have been adopted to target the 
efficient estimation of item parameters (e.g., Berger ,1992; Berger, 1994; Buyske, 1998; 
Stocking, 1990, among others) as well as trait parameters (e.g., Berger & Mathijssen, 1997). 
Typically, these presentations focus on the 2PL IRF for parameter estimation. The focus here 
is on optimal trait estimation using PRFs. 

For the logistic PRF specified in equation 3, in which items only differ in their difficulty 
levels, a design is denoted by ξ , 

1 2 Kβ β β⎧ ⎫

1 2

.
w w

ξ = ⎨ ⎬

0kw ≥

1

K

k=
∑

Kw⎩ ⎭

[ , ,..., ]T
Kβ β β=β

 (4) 

The vector 1 2 consists of K distinct difficulty levels and is referred to as 
a vector of optimal design points. The { k } are weights that indicate the proportion of times 
items of each difficulty level are presented to an examinee. It is assumed that  for k = 
1, ..., K,  

w

1kw =

1 K N≤ ≤

  

and , where N is the total number of items presented to the examinee. When K = N 
and 1w N=k  for all K levels, all items have different difficulties; on the other hand, if k = 1, 
then all N items have the same difficulty level. It is possible to view a design as a discrete 
probability measure with a probability distribution defined over the design space which, in 
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this case, is all items that are available in an item bank. In this study, an optimal item is an 
item with optimal values for the item difficulties.  

If the proportion of correct responses in each of K classes or groups is given by p = [p1, 
p2, …, pK,]T, then even with dependent observations from up-and-down designs, the 
likelihood function of iθ givenβ andp is 

(1 )( ) [1 ( )]
1

j j
K

w p w pL F Fβ β −= −∏ j j
j j

k=

 (5) 

(Rosenberger, Flournoy & Durham, 1997). The asymptotic efficiency of the maximum 
likelihood estimators of the person parameterθ is related to the Fisher information matrix 

( | , )iM θ β W defined below. The objective of using an optimal design for the estimation of θ 
parameters is to maximize information on the parameters. This can be done by selecting 
values forξ that will maximize some function of the information contained by the information 
matrix.  

White (1973) showed how the results of linear design theory can be adapted to nonlinear 
models, including binary regression models. The non-linearity of the person response 
relationship (as is shown in equations 3 and 4) implies that the measure of information is 
dependent on the unknown parameters so that one has to specify a best guess or approximate 
them through sequential procedures in order to construct an applicable design. In the 
literature, several local optimality criteria have been proposed that are defined on the 
information matrix. This study focused on the c-optimality and D-optimality criteria. 

C-optimal Design 

The c-optimal design minimizes the variance of the maximum likelihood estimate of the 
100Γ percentile difficulty level (ED100Γ in bioassay). The asymptotic variance of the 
median difficulty level (ED50), .5μ̂ (which is equivalent to îθ ), can be written as: 

.5ˆvar( ;μ 1) (T
iM ) ,ϑ ξ c−= c  (6) 

where , ( )1 0 T=c ( , )T
i i iθ δ= ( ; )iM, andϑ ϑ ξ  is the Fisher information matrix. The (v; s)th 

element of the Fisher information matrix can be written as 

2

[ ( ; )]  log( ( )) ( ).vs i
v s

M P dϑ ξ β ξ β
ϑ ϑ

= −
∂ ∂∫

.5ˆ

∂  (7) 

If the total number of items presented to the examinee is N, then the large sample variance 
estimate of μ is va . .5ˆr( ) / Nμ

Ford et al. (1992) stated that c-optimal design for estimating a percentile consists of one 
difficulty level cβ  if c is proportional to some functions of ( )c i i cz δ θ β= −

1.575
 for 

 for the logit function, or 2.399 cz− ≤ 2.399≤ 1.575 cz− ≤ ≤  for the probit function. In 
this particular case, to minimize the variance of îθ , a design is considered c-optimal if it has 
the difficulty level, ( ) 0.5i cPcβ , such that = . β
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D-optimal Design 

The D-optimal design is used when one wishes to estimate both parameters iδ and iθ , the 
case in this study where iδ is a slope parameter denoting the difference of the person’s 
probabilities in correctly responding to easy and difficult items, and iθ is a specified trait 
level. When done repeatedly for all θ levels in the examinee population, the result is an 
estimate of the entire person response function ( )iP β . The local D-optimality criterion 
guarantees (asymptotically) a minimum volume of the confidence ellipsoid (Karlin & 
Studden, 1966) for linear models and is used as a criterion for nonlinear models as well. 

A design *ξ  is locally D-optimum if over all designs, 

*det{ ( ; )} sup det{ ( ; )}.i DM ξ iMϑ ξ ∈= ϑ ξ  (8) 

The D-optimal criterion actually prescribes the set of difficulty levels that maximize the 
determinant of Fisher’s information matrix (cf. Atkinson and Donev, 1996). Due to the 
complexity of Fisher’s information matrix, the analytical determination of these designs has 
proved difficult. 

However, the D-optimal design has been derived for commonly used ogive models 
including the logit and probit of IRT applications. It has the two support points, 1β and 2β , 
such that 1( ) 0.083iP β =  and 2( ) 0.917iP β = for the logistic model (White, 1975) and 

1( )iP 0.058β = and 2 )(iP 0.942β =  for the probit model (Abdelbasit & Plackett, 1983). 

Sequential Design 

The problem that an optimal design for nonlinear models depends on unknown 
parameters (the case with the person response models) can be resolved through sequential 
approximations. Sequential statistical procedures are those in which the next experiment is 
determined using the results from a previous trial. Up-and-down methods offer one way of 
sequentially administering test items. It is also a novel application using PRFs and may 
provide information useful when developing tests in educational and psychological domains. 

Up-and-Down Designs 

In psychometric studies, up-and-down designs are useful for estimating iθ  corresponding 
to a prespecified difficulty level . They may also be used to estimate an entire 
person-response function, and they may do so much more efficiently than with D-optimal 
designs, as demonstrated below. It is important to realize at this point that the up-and-down 
designs do not rely on specific form of the models and that the parametric person response 
relationships are useful in evaluating or examining the performance of the design in 
educational adaptive testing situations. 

,  0 1Γ < Γ <

The practical, defining characteristics of an up-and-down design are twofold, including (1) 
a finite set of possible items with difficulty levels, say 1 1 K{ ,..., ; ... }B Kβ β β βΩ = < < , and (2) 
after an initial item is administered, the next item has either the same difficulty or one level 
higher or lower.  

Let ljp denote the probability of assigning difficulty level j given the last item was at 
difficulty l. Given that an examinee receives an item with difficulty kβ , denote the probability 
that the next items administered have difficulties 1kβ − , kβ and 1kβ + by ,, 1k k−p ,k kp and , 1k kp + , 
respectively, with  and , 1 , , 1 1k k k k k kp p p− ++ + = 1, 1 ,K Kp p− 1 0+= = . The ,, 1−k kp ,k kp  and 

- 6 - 



 

, 1k k are transition probabilities. In a classical up-and-down design, difficulty levels cluster 
around the median difficulty level (ED50), as described below. 
p +

The Classical Up-and-Down Design 

Lord (1970) applied the classical up-and-down method to adaptive testing for 
measurement purposes. Select the first item with a certain difficulty, i.e., set (1) kB β= , for 
some k Bβ ∈Ω , where (1)B is random or fixed [e.g., (1)B might be the difficulty level thought 
to be closest to the target θΓ ]. Then given ( )B n kβ= , proceed sequentially as follows: 

For ( )B n kβ= , k = 2, …, K-1,  

1

1

,   ( ) 0
( 1)

,   ( ) 1
k

k

if Y n
if Y n

β
β

−

+

=⎧
+ = ⎨ =⎩

B n .

1

 (9) 

For ( )B n β= ,  

1

2

,   ( ) 0
( 1)

,   ( ) 1 
if Y n
if Y n

β
β

=⎧
+ = ⎨ =⎩

B n .  (10) 

For ( ) KB n β= ,  

1,   ( ) 0
( 1)

,   ( ) 1
K

K

if Y n
if Y n

β
β

− =⎧
+ = ⎨ =⎩

B n .

i

 (11) 

Then, defining ( ) 1 ( )iQ Pβ β= − , the procedure conforms to the following transition 
probability matrix 

11 12 1 1

21 22 23 2 2

1, 2 1, 1 1, 1 1

0 0 ( ) ( ) 0 0
0 ( ) 0 ( ) 0

0 0 0 0
0 0 ( ) 0 (

i i

i i

K K K K K K i K i K

p p Q P
p p p Q P

p p p Q P

β β
β β

β β− − − − − − −

⎡ ⎤

, 1

)
0 0 0 0 ( ) ( )K K KK i K i Kp p Q Pβ β−

.

⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

P

⎣ ⎦⎣ ⎦

 (12)

 

Evaluating up-and-down designs, Lord (1970, 1971) concluded that they are more 
efficient for higher and lower trait level examinees. The classical up-and-down design targets 
the median difficulty level. For D-optimal designs, other difficulty levels must be targeted 
and for these, the Biased Coin Design (BCD) of Durham and Flournoy (1994) can be adopted. 
The BCD has a number of advantages in that it can target any arbitrary fractile, converges 
quickly, and has minimum variance among a large class of up-and-down designs (Bortot & 
Giovagnoli, 2005).  

The Biased Coin Up-and-Down Design 

The BCD is illustrated here. Let h be the probability that a biased coin comes up head. 
Fix h as a function of the odds of the correct response rate as follows (Durham & Flournoy, 
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1994): 

,  0< 0.5
1 .

1 ,  0.5 1.0
h

Γ⎧ Γ ≤⎪⎪ −Γ= ⎨ −Γ⎪ ≤ Γ <
⎪ Γ⎩

ain,  difficult

 (13) 

Ag  select the first item with a certain y, i.e., set (1) kB β= , for some k Bβ ∈Ω ,, 
where (1)B  ( ) kB n β= , proceed sequentially as follows: is random or fixed. Then given

1. For 0 0.5< Γ ≤ : ( ) kB n β= , k = 2, …, K-1, 

.
1

1

,   ( ) 0
( 1) ,   ( ) 1     

,   ( ) 1     

k

k

k

if Y n
B n if Y n and coin flip yields tails

if Y n and coin flip yields heads

β
β

β

−

+

=⎧
⎪+ = =⎨
⎪ =⎩  (14) 

For 1( )B n β= ,  

2

.
,   ( ) 1     if Y n and coin flip yields headsβ =⎩  (15) 

For ( )

1,   ( ) 0  { ( ) 1     }
( 1)

if Y n or Y n and coin flip yields tails
B n

β = =⎧
+ = ⎨

B n Kβ= ,  

.
,   ( ) 1K if Y nβ =⎩  (16) 

2. For 0.5 1.0≤ Γ < : ( ) kB n

1,   ( ) 0
( 1) K if Y n

B n
β − =⎧

+ = ⎨

β= , k = 2, …, K-1, 

1

.

k

1,   ( ) 0     
( 1) ,   ( ) 0     

,   ( ) 1

k

k

if Y n and coin flip yields heads
B n if Y n and coin flip yields tails

if Y n

β
β

β

− =⎧
⎪+ = =⎨
⎪ =+⎩  (17) 

For 1( )B n β= ,  

2

.
,   ( ) 1if Y nβ =⎩  (18) 

For ( )

1,   ( ) 0
( 1)

if Y n
B n

β =⎧
+ = ⎨

B n Kβ= ,  

.
,   ( ) 1  { ( ) 0     }K if Y n or Y n and coin flip yields tailsβ = =⎩  (19) 

1,   ( ) 0      
( 1) K if Y n and coin flip yields heads

B n
β − =⎧

+ = ⎨
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Continue sequentially until a stopping criterion is met. 

In the special case that , 0.5Γ = 1h = (the coin always comes up heads), the BCD 
reduces to the classical up-and-down design described above.  

Defining 1h h= − , the BCD has transition probability matrix 

11 12

21 22 23

1, 2 1, 1 1,

, 1

1 1 1

2 2 2

1 1

0 0
0

0

0 0

( ) ( ) ( ) 0 0
( ) ( ) ( ) 0
0

( ) ( ) ( )
0 0 (

K K K K K K

K K KK

i i i

i i i

i K i K i K

p p
p p p

P
p p p

p p

Q hP hP
Q hP hP

Q hP hP
Q P

β β β
β β β

β β β
β β

− − − − −

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥

1

) ( )i K i K⎣ ⎦

0 0.5< Γ ≤ 0.5 1.0≤ Γ <

 (20) 

for , whereas for , it is  

1 1

2 2 2

1 1 1

( ) ( ) 0 0
( ) ( ) ( ) 0
0 .

( ) ( ) ( )
0 0 ( ) ( ) ( )

i i

i i i

i K i K i K

i K i K i K

Q P
hQ hQ P

P
hQ hQ P

hQ hQ P

β β
β β β

β β β
β β β

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 (21) 

As long as ( )iP β  is bounded away from 0 and 1 for all Bβ ∈Ω , this matrix is regular, i.e., 
there exists some n for which all elements in the matrix Pn are positive. Because regular 
random walks converge exponentially fast to their stationary distributions, asymptotic results 
hold for moderately small sample sizes. This is useful, since many educational and 
psychological testing scenarios comprise small groups of examinees.  

Asymptotic Distribution of Difficulty Levels Administered 

Durham and Flournoy (1994) also described how Markov chain theory can be used in the 
biased coin up-and-down design. Here, let klim ( ( ) )k n iP B nπ β→∞= =

k

be the asymptotic 
(stationary) probability that an item of difficultyβ will be selected. Let Nk(n) denote the 
number of items (out of n) having difficulty level kβ ; and, finally, Rk(n) denotes the number 
of those answered correctly. Then, kπ is also the limiting proportion of items having 
difficulty level kβ , i.e., . Therefore, we call the setlim /n k n→∞ ( )N n { , 1,..., }k k Kπ π= = the 
asymptotic difficulty distribution. The asymptotic difficulty probabilities can be calculated 
from the transition probabilities as follows (Karlin & Taylor, 1975 p.107): 
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1,

2 , 1

1,1
1

2 2 , 1

,   2, , ,

1 .

k
j j

k
j j j

kK
j j

k j j j

p
k K

p

p
p

π

π

−

= −

−−

= = −

= =

= +

∏

∑∏

…

 (22) 
Before initiating a test, it is advisable to explore expected outcomes under a variety of 

hypothetical response functions. Inserting prior estimates of the difficulty probabilities 
{ ( )}i kP β  into Equations 20 or 21 yields prior estimates of the transition probabilities and 
inserting these into Equation 23 yields prior estimates of the asymptotic difficulty distribution 
{ kπ }. Thus, one can evaluate the large-sample performance of the experiment under a variety 
of possible scenarios, keeping in mind that reducing the interval between the possible 
difficulties will reduce the spread of the difficulty distribution.  

It is necessary to make certain reasonable assumptions to obtain the desired properties of 
the difficulty scale parameterβ , as mentioned above. Suppose that only item difficulty (β ) 
levels are known. Additionally, given an examinee i with fixed iθ , we assume that the PRF is 
a non-increasing function, i.e., the probability of endorsing an easier item correctly is higher 
than the probability of endorsing a more difficult item correctly so that 1i k i k( ) (P P )β β +> . 
Given that the probability of correct response decreases with the increase in difficulty, the 
asymptotic difficulty distribution is unimodal with mode betweenθΓ and the θ levels adjacent 
toθΓ  (Durham & Flournoy, 1994). Thus, difficulties are clustered around the θ having target 
difficulty level .  Γ

To define the mode of the asymptotic difficulty distribution explicitly, let ( )M π denote the 
set of all difficulties in BΩ having absolute maximum probabilities in the set { kπ } and call 

( )M π the modal set. Define the distributionπ to be unimodal if there exists at least one 
integer M such that  

1    k k

1    k k

for all k M
for all k M

π π −≥ ≤
π π+ ≥ ≥  (23) 

The minimum value in the modal set, denoted Mβ , is called the mode of the difficulty 
distribution. If the interval between difficulties is a constantΔ , then | | / 2Mβ θΓ− ≤ Δ , that is, 
the most frequent difficulty is within / 2±Δ of the targetθΓ . In addition, the spread of 
difficulties is completely determined by the slope parameter iδ of the response function model 
and by size of the intervals between difficulty levels.  

Up-and-Down Designs for Approximating Optimal Designs 

As noted earlier, locally non-sequential optimal designs administer items at some level 
that was assumed to be optimal. However, their performance relies on a fairly accurate prior 
specification of the unknown parameters. To circumvent the problem, sequential 
approximations are used. Up-and-down designs, targeting arbitrary fractiles (e.g., quantiles), 
do not require prior specification of the parameters and thus can be adopted to approximate 
optimal designs for parameter estimation of person response functions (Giovagnoli & 
Pintacuda, 1998). Mugno et al. (2004) used up-and-down procedures to estimate several 
percentiles simultaneously and found that the multiple-objective adaptive designs are more 
efficient and very robust against poor and/or biased prior information.  

This study approximated both c-optimal and D-optimal designs. The former involves only 
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one design level for estimating îθ , hence, only one up-and-down design is needed to 
approximate it. Actually, this approximation is the same as using the up-and-down design to 
approximate the median difficulty level. On the other hand, for the D-optimal design, two 
up-and-down designs were used with one targeting each optimal design level. Denote by 'ξ  
an experiment consisting of two distinct sequential designs '

1ξ and '
2ξ with equal sample sizes. 

Then the information '( ;iM )ϑ ξ  for the whole experiment is  

' '
1

1 1( ; ) ( ; ) ( ; ).
2 2i iM M M '

2iϑ ξ ϑ ξ ϑ= + ξ  (24) 

Examples 

Examples are given in this section to illustrate the asymptotic difficulty distributions as 
well as the efficiency of up-and-down design approximating optimal designs.  

Asymptotic Difficulty Distribution 

Asymptotic distributions of difficulty levels used in adaptive testing are obtained and 
plotted in Figures 2a to 2d for the classical up-and-down design, BCD targeting at the 17.6th 
quantile, BCD targeting at the 82.4th quantile, and up-and-down procedures approximating 
the D-optimal design, respectively. Three test situations were considered where an examinee 
with iθ = 0 was given 5, 15, or 30 items. The item bank contained items with difficulty levels 
equally distant from β = -3 to 3. For example, with 5 items, the difficulty levels were β = -2.4, 
-1.2, 0, 1.2, and 2.4. In addition, the slope parameter iδ is taken to be 2 or 0.5.   
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Figure 2. Asymptotic Distributions of Difficulty Under Three Different Situations 
When the Slope is 2 (Left Panels) or the Slope is 0.5 (Right Panels) 

a. Items Having 5, 15 and 30 Peculiar Difficulties  
With the Classical Up-and-Down Design (Γ=.5)  

 

 

b. Items Having 5, 15 and 30 Distinct Difficulties  
With the Biased Coin Design (Γ=.176)  
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c. Items Having 5, 15 and 30 Distinct Difficulties  
With the Biased Coin Design (Γ=.824)  

 

 

d. Items Having 5, 15 and 30 Distinct difficulties  
With Up-and-Down Approximating D-Optimal Design Points (Γ=.176 & Γ=.824)  

 

Consistent with theory, the plots demonstrate three important features. First, both classical 
up-and-down design and BCD have asymptotic distributions with one mode. The mode is at 

iθ = 0 for the classical up-and-down design, and it shifts to left and right for the biased coin 
designs targeting the 17.6 and 82.4 quantals, respectively. Second, the up-and-down method 
approximated the two level D-optimal design; however, it resulted in a bimodal distribution 
which is a mixture of the distributions given in Figures 2b and 2c. Third, as the number of 
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distinct difficulty levels increased, the asymptotic difficulty distributions were increasingly 
smooth and targeted the quantal(s) more precisely. Fourth, the smaller the slope in the 
person-response function, the more widely spread the difficulty distributions were. 

Up-and-Down Design Approximating Optimal Designs 

This section compares the up-and-down design approximating the c-optimal design with 
that approximating the D-optimal design. A criterion is to be defined for the comparison and 
it usually depends on different situations. When the main interest is on the entire 
person-response curve, a smaller determination of the variance-covariance matrix (det{M-1}) 
indicates relatively more efficiency of the design. On the other hand, when the main interest 
is on only îθ , the median difficulty level variance ( .5ˆVar( )μ ) is used as the criterion for the 
comparison. Sometimes experimental data are used for purposes other than those considered 
in the experimental design. This section explores the effect of such use. 

In the examples that follow, situations were considered with various distinct difficulty 
levels equally spaced from β = -3 to 3 and with different slopes ranging from δ = 0.5 to 5 for 
persons with iθ = 0 or persons with iθ two standard deviations above the mean, iθ = 2.  

Whole curve efficiency (det{M-1}). As mentioned previously, when the main interest is 
in the entire curve, the determinant of the variance-covariance matrix is used to compare 
various optimal designs. The efficiency of the c-optimal approximation relative to the 
D-optimal approximation, which was obtained by taking the ratio of the det{M-1} for the 
D-optimal approximation to the det{M-1} for the c-optimal approximation, is displayed in 
Figure 3a for persons with θ = 0 and in Figure 3b for persons with θ = 2 . For ease of 
demonstration, the odd and even numbers of difficulty levels are separated into two plots. 
Any values above 1 indicate greater whole curve efficiency for the c-optimal approximation 
and values below 1 indicate greater whole curve efficiency for the D-optimal approximation. 
From asymptotic theory for exact designs all values were expected to be less than 1.0. 
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Figure 3. The Efficiency [det(M-1)] of the Up-and-Down Approximation for the  
c-Optimal Design Relative to the Up-and-Down Approximation  

for the D-Optimal Design  

a. Items With a Different Number of Distinct Difficulty Levels  
are Administered to Examinees with θi = 0  
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b. Items With a Different Number of Distinct Difficulty Levels  
are Administered to Examinees With θi = 2  

 

Generally, the two figures indicate that  

1. When the slope,δ , is small (smaller than 1), i.e., when the person’s probabilities of 
correctly endorsing easy and difficult items are not much different, the D-optimal 
approximation is more efficient across the whole curve with different slopes, and 
therefore is preferred to the c-optimal approximation regardless of number of distinct 
difficulty levels. 

2. The D-optimal approximation also is more efficient than the c-optimal approximation 
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when there are 23 or more distinct difficulty levels, regardless of how different are the 
person’s probabilities of correctly responding to easy and difficult items. 

3. For situations with small numbers of distinct difficulty levels and large slopes,δ , the 
c-optimal approximation is more likely to be preferred to the D-optimal approximation.  

4. When comparing plots across the two θ levels, it is easy to see that with 15 or more 
distinct difficulty levels, the efficiency line patterns are generally the same. It is with 
small numbers of difficulty levels that efficiency line patterns differ. The difference 
appears between odd and even number of difficulty levels as well as between persons 
with an average θ and persons with a high θ . 

To further understand the whole curve efficiency, Figure 4 displays the person-response 
curves with different slopes iδ  ( iδ varies from 0.5 to 5) for persons with θ = 0 and 2. The 
solid lines are person-response curves for persons with θ = 0 and the dotted lines are those for 
persons with θ = 2. Comparing the solid lines across the six plots, it can be seen that as the 
slope iδ becomes steeper, small numbers of difficulty levels fail to contain information to 
describe the whole curve. Therefore, the D-optimal approximation is less efficient than the c-
optimal approximation. The dotted curves are the curves for persons with θ = 0 shifted 
toward the left. Allowing for this shift, we see the same effect. That is, multiple difficulty 
levels in the steeply descending region of the person-response function are required in order 
to have efficiency (in the sense of D-optimality).  

 

Figure 4. Person Response Functions With Different Slopes  
(δi = 0.5, 1, 2, 3, 4 and 5) and θi = 0 (Solid Curve) or θi = 2 (Dashed Curve) 

 

It can hence be understood that when obtaining the whole curve efficiency displayed in 
Figure 3b, various distinct difficulty levels ranging from -3 to 3 were again used for the 
shifted curves. Therefore, as the curves are steeper, small numbers of distinct difficulty levels 
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are less likely to gather enough information to estimate the whole curve. Hence PRFs with 
small differences for a person’s probabilities in correctly endorsing easy and difficult items 
(presumably 1iδ ≤ ) are recommended for D-optimal approximation when the interest is on 
estimating the entire curve.  

Median Difficulty Level Variance ( .5ˆVar( )μ ). Sometimes the main interest is only in 
estimating the median difficulty level for a person, .5μ̂  (or îθ  denoted previously), instead  
of the entire person response curve. Then, the variance or the standard deviation of this 
particular percentile estimate is a useful measure of design quality. The design with smaller 
variance .5ˆVar( )μ  is said to be more efficient in estimating the median difficulty level. 
According to this definition, it is believed that the c-optimal approximation should be more 
efficient in estimating this percentile.  

Median difficulty level variances are plotted for the c-optimal approximation in Figure 5a 
and Figure 5b as a function of the slope iδ for persons with θ = 0 and 2, respectively. 
Generally, the variance gets smaller with a higher number of distinct difficulty levels and 
with larger slope. Almost all variances are smaller than 22, except for the extreme situation in 
which item banks have only 3 distinct difficulty levels, θ = 2, and the slope of the 
person-response curve is steeper than iδ = 3.5. This point can be further illustrated using  
Figure 4. That is, using 3 difficulty levels equally spaced from β = -3 to 3 (i.e., β = -3, 0, 3), 
the median difficulty level is estimated less precisely as the slope gets steeper, for less 
information can be gathered from only a small portion of the shifted curve. 

 

Figure 5. Asymptotic .5Va ˆr( )μ for the Up-and-Down  
Approximation to the c-Optimal Design (Γ=.5) 

a. θi = 0  
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b. θi = 2 

 

 

To compare the c- and D- optimal design approximations, we considered the gain in the 
standard deviation of .5μ̂ defined by  

.5ˆ(SD )μ  = 
. .

.

D opt c opt

c opt

SD SD
SD
− −

−

−
.              (25) 

Figures 6a and 6b plot the percent gain in .5ˆ( )SD μ for persons with iθ = 0 and iθ = 2, 
respectively. It is suggested from the figures that (1) the percent gains in .5ˆ( )SD μ were almost 
all positive, indicating that the D-optimal approximation was less efficient than the c-optimal 
approximating in estimating the median difficulty level alone; (2) the average gain was about 
22% for iθ = 0 and 15% for iθ = 2; (3) with more distinct difficulty levels, the c-optimal 
approximation was more desirable than the D-optimal approximation; and (4) the pattern for 
small numbers of distinct difficulty levels varied across the plots. However, when there were 
13 or more difficulty levels and the slope was larger than 2.5, the pattern of gain in .5ˆ( )SD μ  
was similar for persons with different θ levels. 
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Figure 6. Gain in .5ˆ(SD )μ by Using the Up-and-Down Approximation to the D-Optimal 
Design Instead of the Up-and-Down Approximation to the c-Optimal Design  

a. θi = 0 
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b. θi = 2 

 

 

Conclusions 

For optimal item selection procedure in adaptive testing, optimal designs can be 
constructed to target the median difficulty level (c-optimality) or the entire person-response 
curve (D-optimality). The current study used sequential up-and-down designs from the 
person response perspective to approximate the c- or D-optimal design. It is concluded that 
both approximation procedures performed well in various adaptive testing situations. 
Comparing the two procedures, the up-and-down design approximating the c-optimal design 
was more efficient when the main focus was on estimating the median difficulty level, 
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whereas the up-and-down design approximating the D-optimal design was more efficient 
when the main focus was on estimating the whole person-response curve. In effect, the latter 
worked better when there were no less than 23 distinct difficulty levels. With small numbers 
of difficulty levels, it is yet unclear as to which procedure performed consistently better. 
Therefore, tests are recommended to be constructed with large numbers of distinct difficulty 
levels when D-optimality is of interest.  

This study illustrated an item selection procedure from the person response perspective, 
which uses sequential up-and-down designs to target an arbitrary percentile of interest or the 
entire person response functions. This new approach leaves open a series of questions that 
need to be addressed, such as: how the up-and-down design compares with the conventional 
maximum information algorithm for item selection; how the person response perspective 
compares with the item response perspective; and how practical issues such as starting point, 
stopping rule, item exposure , etc., affect the estimation of person trait levels. 
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