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Abstract 
 
A multifacet bundle model, herein called the “iota model” was used to estimate "pathway" 
parameters through partially hierarchical testlets. The model is useful for computerized adaptive 
assessment in e-learning contexts, when students are receiving individualized, or personalized, 
delivery of content based on embedded assessments. Testlets in this case are small bundles of 
items that act as questions and follow-up probes to interactively measure and assign scores to 
students. Research considered whether testlets can serve as a valid and reliable design to collect 
data and implement interactions for personalized delivery of content, whether path scores 
through the testlet modeled to a cognitive framework can be considered equivalent, and how 
three testlet designs compared in the quality and consistency of data collected. An example is 
shown that is multistage CAT, in which sequential or preplanned pathways are adaptively 
presented to students within the testlets based on student responses, and updating of θ  and 
standard CAT algorithms can be used between the testlets. 

 
 

Acknowledgments 
Presentation of this paper at the 2007 Conference on Computerized Adaptive Testing 

was supported in part with funds from GMAC®. This paper is based on work supported 
by the National Science Foundation under Grant No. DUE: 0125651. The authors thank 

Sheryl Mebane, Nathaniel Brown, Jennifer Claesgens, and Angelica Stacy for their 
assistance and inspiration with instrument development, data collection, scoring, and 

interpretation of student learning patterns. 
 

Copyright © 2007 by the authors.   
All rights reserved.  Permission is granted for non-commercial use. 

 

Citation 
Scalise, K. & Wilson, M. (2007). Bundle models for computerized adaptive testing in e-

learning assessment.  In D. J. Weiss (Ed.).  Proceedings of the 2007 GMAC Conference on 
Computerized Adaptive Testing.  Retrieved [date] from 

www.psych.umn.edu/psylabs/CATCentral/ 
 
 
 
 
 

Author Contact 
Kathleen Scalise, 170L College of Education, 5267 University of Oregon, 

Eugene, OR 97403-5267. Email: kscalise@uoregon.edu 
 

http://www.psych.umn.edu/psylabs/CATCentral/


Bundle Models for Computerized Adaptive Testing  
in E-Learning Assessment 

 
Personalized Content in E-Learning 

In e-learning contexts, it is becoming increasingly common to adapt the flow of materials so 
that each student receives content that is tailored, or personalized, to meet particular needs 
(Scalise & Claesgens, 2005; Taylor, 2002; Trivantis, 2005; Turker, Görgün, & Conlan, 2006). 
This is sometimes called dynamically delivered content or data-driven content, both of which use 
the acronym DDC. The motivation for differentiated instruction (Tomlinson & McTighe, 2006), 
whether differentiated through teacher intervention or use of other strategies such as computer-
adaptive technology, includes that traditional curricular materials and assessments can lead to the 
production of inert learning activities, sometimes marginally responsive to where the student is 
in the knowledge acquisition cycle (Gifford, 1999; Hopkins, 2004). By comparison, 
differentiated instruction approaches are seen as moving teaching and learning activities toward 
the needs of the student. Technology can help teachers lower the resource barrier for 
differentiated instruction and also combine potentially powerful assessment tools with new 
information technologies to capture and analyze student data, rapidly deploy new media, 
facilitate collaboration, and provide other e-learning amenities such as asynchronous learning 
(Gifford, 2001; Parshall, Davey, & Pashley, 2000).  

Technology to deliver differentiated instruction is now readily available, with back-end 
databases and a variety of multimedia-rich streaming techniques for which the flow of content to 
students can be adjusted in near real-time (Turker, Görgün, & Conlan, 2006) . However, the 
inferential machinery necessary to decide who should get what, and thus the measurement 
approaches and assessment techniques by which such inferences will be made, are mainly 
lacking or show limited development (Scalise et al., 2006; Timms, 2000). The usual 
measurement concerns of high quality data and inferences can quickly derail efforts to make 
such inferences in an accurate and speedy fashion (Osterlind, 1998; Wilson & Scalise, 2003), 
threatening to undermine the usefulness of dynamically personalized learning objects and 
products . 

Many approaches have been taken to develop effective approaches to data-driven content, 
traditionally as in intelligent tutoring systems based on trying to capture how an expert instructor 
would assess students and assign material and attempting to code or program this "expert" 
knowledge into different types of expert systems. A variety of approaches have been taken such 
as information processing search space techniques, rule-based methods, and bug-based 
approaches (Russell & Norvig, 1995; Timms, 2000). However, major limitations include 
whether such systems can successfully capture the knowledge of experts and which expert's 
approaches, among many possibly competing models, might be preferable. Without effective 
ways to model, validate, compare, and test inferences about students, it is difficult to decide 
optimal directions for adaptivity. The proposed iota testlet model helps address concerns for a 
more robust evidence path. 

A number of challenges to the quality of the evidence are apparent in e-learning adaptivity. 
First, since e-learning content is intended to be an effective learning experience, the measures for 
adapting the flow often need to take place “bundled,” or grouped, within a particular learning 
context around which lessons, or lesson components, are designed (Scalise & Gifford, 2006). 
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This will usually violate the local independence assumption most commonly used in assessment 
modeling (Wainer & Kiely, 1987; Wilson & Adams, 1995). Secondly, as the content flow 
changes for different students and students move into different areas of learning, it often makes 
sense for students to receive different item sets. This introduces computerized adaptive testing 
(CAT), and such concerns as equating, alternate forms, and comparing students based on a 
variety of dynamic subtests (Eignor, 1993). Finally, as the intent in e-learning is to take 
advantage of the rich potential of the computer to deliver a variety of new media content, 
including audio, video, animation, and simulation, e-learning developers often want to use new 
media formats in item designs that reflect the nature of the learning materials (Parshall, Davey, 
& Pashley, 2000; Parshall, Spray, Kalohn, & Davey, 2002). These item formats can be 
complicated to model and compare (Scalise & Wilson, 2006). In this paper we explore the use of 
testlets combined with a new multi-facet bundle measurement model called the iota model to 
address these challenges. An example is shown that is multistage CAT, in which sequential or 
preplanned pathways are adaptively presented to students within the testlets based on student 
responses, and updating of θ  and standard CAT algorithms can be used between the testlets. 

Testlets or Item Bundles 
The item format we explore in this study is a CAT item type based on partially hierarchical 

item bundles, or testlets (Rosenbaum, 1988; Wainer & Kiely, 1987). Testlets have been 
described as useful for testing a variety of types of complex thinking (Haladyna, 1994). An 
introductory stimulus can be presented and then a variety of questions can be asked about the 
same or similar material, to probe the reasoning process. The stimulus for any item set can also 
vary, so that the item writer or content creator has tremendous opportunity for creative 
instructional designs, especially in technology settings, where the stimulus can be video, audio, 
animation, or simulation, as well as diverse learning objects such as works of art, written 
passages, cartoons, or references to an event, person or object, as Haladyna describes (1994). 
Although in 1994 Haladyna called the testlet an interesting format but futuristic, today the 
technology readily exists to implement the format in e-learning. 

A testlet or an item bundle is a small bundle or group of assessment tasks and questions that 
share some common stimulus material. The term “item bundle” is often used in the measurement 
literature and most commonly refers in large-scale testing to a linear format called a “composite 
item”. These items include some common stimulus material, such as a reading passage with a 
sequence of subsequent questions based on the passage. All examinees receive the same set of 
questions, in the same order. The term “testlet,” by comparison, is the term more often used by 
technology developers, and usually refers to CAT versions of item bundles, in which not all 
students receive the same item bundle but rather parts of the bundle are delivered adaptively. We 
will call this kind of adaptive item bundle a “testlet” throughout this paper. 

Testlets come in two formats: hierarchical and partially hierarchical (Wainer & Kiely, 1987). 
A diagram explaining the two formats is shown in Figure 1. All testlets begin with some 
common stimulus material, such as information and a question, and then students receive 
subsequent questions, or probes, adaptively depending on their responses. However, in 
hierarchical testlets, each path through the bundle of items has a unique score. In a fully 
hierarchical testlet, only one unique path through the bundle of items reaches each possible score 
outcome. In partially hierarchical testlets, different paths of questions and answers can achieve 
the same score. A partially hierarchical testlet would allow the same outcome or outcomes to be 
reached by multiple paths through the bundle of items, for instance if Items 4 and 5 both led to 
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outcome 3.The partially hierarchical design is more flexible as reasoning facets can be tracked 
and then valued as similar or described as different, depending on expert advice and the results 
of data analysis. 

 

Figure 1. Diagram of a Fully Hierarchical Testlet 

 
 

 

A wide variety of item types can be used within a single testlet. In prior work we have 
described a “Taxonomy of Item Types," see Table 1 (Scalise & Gifford, 2006), which shows 28 
item examples organized into a taxonomy based on the level of constraint in the item/task 
response format. The taxonomy describes 16 classes of item types with responses that fall 
somewhere between fully constrained responses (at left in Column 1) and fully constructed 
responses (at right in Column 7). We call these “intermediate constraint” items (Scalise & 
Gifford, 2006), which are organized with decreasing degrees of constraint from left to right. 
Fully constrained items include the traditional multiple-choice question, which is sometimes far 
too limiting to tap much of the potential of new information technologies, and fully constructed 
designs include the traditional essay, which remains a formidable challenge for computers to 
meaningfully analyze, even with sophisticated tools such as latent semantic analysis (Scalise & 
Wilson, 2006).  The Intermediate Constraint Taxonomy describes and gives examples of 16 
iconic intermediate constraint item types that feature a variety of innovations in the stimulus 
and/or in the response of the observation and might be useful, for instance, for automated scoring 
in computer-based testing. There is additional ordering in Table 1 that can be seen by what we 
call “within-type” when progressing down each column, with a general trend for the innovations 
to become increasingly complex from top to bottom.  Any of these item types potentially could 
be combined into testlets to create a wide range of possibilities for instructional design of 
interactive assessments. 
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Table 1. Intermediate Constraint Taxonomy for E-Learning Assessments and Tasks 
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The Iota Model   

Psychometrically, context effects and inter-item dependence are a threat to testlets, and need 
to be modeled by correct statistical models. Important sources for formal modeling options for 
testlets include Li, Bolt & Fu (2006), Wilson & Adams (1995) and Wainer & Kiely (1987). In 
testlet structures, clustered items usually are linked by attributes such as common stimulus 
material and common item stem, structure, and content (Wilson & Adams, 1995).  This suggests 
that the usual assumption of conditional or local independence between items necessary for item 
response modeling is not met within the testlet. Local independence in item response models 
"means that the response to any item is unrelated to any other item when trait level [or student 
performance level] is controlled" (Embretson & Reise, 2000). The local independence 
assumption is commonly stated as  

 
P(Xis =1 | X js,ξ i,θs) = P(Xis =1 |ξ i,θs)

exp s ij

j= 0r= 0

       (1) 

where Xis represents the score of student s on item i, Xjs represents the score of the same student 
on another item j, ξI represents a vector of item parameters for item i, and θs represents the 
performance ability of student s. One approach to addressing such within-bundle dependence is 
to treat each bundle of dependent items as a single item, awarding degrees of partial credit over 
the testlet depending on level of overall performance indicated by the series of responses, which 
can be called the bundle response vector (Wilson & Adams, 1995). 

Testlets previously have been psychometrically modeled in a variety of ways, most usually 
with some version of a partial credit model. The partial credit model is the more general of two 
polytomous Rasch models (Wright & Masters, 1982) commonly expressed according to 
Equation 2: 

P(Xis = x |θs) =
exp θs −δij( )

j= 0

x

∑

θ −δ( )
r

∑
mi

∑
         (2) 

for item i scored x = 0, …, mi, where Xis is the score of student s on item i, x represents a given 
score level, θs represents the parameter associated with the person performance ability of student 
s, r in the denominator represents a summation of terms over the steps, and δIj represents the 
parameter associated with the difficulty of the jth step of item i. 

Another modeling approach is testlet response theory (Wainer, et al., 2006), with a 3-
parameter logistic multi-faceted model “testlet effect," which is a special student ability that 
applies to all the items in a given testlet for that student. As Wainer describes, because the partial 
credit model collapses all response patterns over the testlet with the same number correct into the 
same category it can potentially lose information, whereas the testlet effect model preserves the 
individual item structure and retains the information. Alternative models for testlets (Li, Bolt, & 
Fu, 2006) treat the testlet effect as if it were another ability dimension in a multidimensional item 
response theory (IRT) model, with three different approaches to the general model, varying 
constraints on slope parameters and item discrimination parameters.   
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None of these models, however, directly address a critical question for CAT testlets in e-
learning—is it enough to consider the final score achieved in a testlet or is the “path,” or series of 
adaptive items, by which the score is achieved also important to consider? The iota model we 
discuss here is of importance in partially hierarchical testlets, when more than one path through a 
bundle of items achieves the same score. The iota model tests the question of how significant the 
pathways through adaptive testlets are. It does so with the addition of an iota pathway parameter, 
ιijp over pathway p, where the summation of all ιijp for the ni paths in a given item equals zero. 
The difficulty of a score level achieved according to a given path becomes δijp, where δijp = δI + 
ιijp. This generates the iota model shown in Equation, which was used to model the testlet data 
we describe here: 

P(Xis = x |θs) =
exp θs −δijp( )

p= 0

ni

∑
j= 0

x

∑

exp θs−δijp( )
p= 0

ni

∑
j= 0

r

∑
r= 0

mi

∑
       (3) 

The likelihood function for a standard IRT model is different from an item bundle model. In 
a standard IRT model the likelihood function is the product of the probabilities of scores 
achieved on the items, whereas for the bundle models such as the iota model it is the product of 
the probabilities of scores achieved on the bundles. 

To give an example of this second difference, take for instance a test with four dichotomous 
items calibrated under the Rasch model. For each of the items 1 through 4, students would 
receive either a 0 or 1 score on each item. The likelihood function the item score vector achieved 
by a student would be  

L = P x = y | P x = y | P x y | P x y |     (4) 1( 1s θ ) 2(s 2s θ ) 3(s 3s = θ ) 4 ( = θs is s)

L =

where Pn is the probability of achieving the score y that was actually achieved on item n by 
student s. Here the probabilities of achieving the score of either 0 or 1 on the items are multiplied 
together.  

Now compare this to the situation in which the same four items are arranged in two bundles 
and calibrated under the iota model. Instead of receiving four item scores, each student would 
receive two bundle scores. If the first bundle consisted of items 1 and 2, students could achieve 
these possible patterns over the two items of the bundle as: 

00 — student misses both items, coded as a score of "0" on the bundle 
01 — student misses item 1 and achieves item 2, coded as a score of "1" on the bundle 
10 — student achieves item 1 and misses item 2, coded as a score of "2" on the bundle 
11 — student achieves both items, coded as a score of "3" on the bundle 

The same situation would hold for the second bundle of two items, and the student would receive 
another score of 0-3 on this bundle, depending on their score pattern over the two items of the 
second bundle.  

The likelihood function for a bundle model such as the iota model then for these data 
becomes 

P x = y | P x = y |         (5) 1( 1s θ ) 2( θ )s s s2
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where Pn is the probability of achieving the score y that was actually achieved on bundle n by 
student s. Here the probabilities of achieving the scores 0 - 3 that were actually achieved on each 
bundle are multiplied together. 

Ideally, the ιijp and ιijp' components of the item difficulty should have relatively small 
differences over all paths for a given ιij, as equivalently scored item paths though the bundle 
should have near equal difficulties if the construct modeling assumptions hold. To model this 
assumption, the iota model, which is an ordered partition model (Wilson, 1992), is used. In this 
application, the various pathways to a single score within an item bundle are unique and, 
therefore, are given individual parameterizations even though they are scored the same. This 
model can be compared to the aggregate partial credit model for the data, in which the pathways 
are aggregated and treated as a single score, in order to gauge statistical significance of 
considering the iota pathway parameters individually as compared to the hierarchically more 
parsimonious partial credit model. The iota model is hierarchically nested within the partial 
credit model, and thus can be compared by a likelihood ratio chi-square test, with the difference 
in estimated parameters between the two models equal to degrees of freedom. 

Method 

In this paper we model testlet data from the University of California at Berkeley "Smart 
Homework" implementation of ChemQuery, an NSF-funded project in which one component 
consisted of data-driven content to individually tailor "smart" homework sets in high school and 
university level chemistry. The adaptivity approach of the homework sets is called BEAR CAT,  
since it draws on a CAT approach to the BEAR Assessment System (Wilson, 2005) for the 
specification of properties, or variables, of interest to measure. The BEAR CAT approach is a 
multistage CAT, in which sequential or preplanned pathways are adaptively presented to 
students within the testlets based on student responses, and updating of θ and standard CAT 
algorithms can be used between the testlets. 

The variables that the Smart Homework example measures are the Perspectives of Chemists 
(Claesgens, Scalise, Draney, Wilson, & Stacy, 2002) developed to measure understanding in 
chemistry by experts in the UC Berkeley Chemistry Department and School of Education 
(Wilson & Scalise, 2003). An overview of the first variable in this construct, Matter, is shown in 
Figure 2.  

Homework sets with 15 adaptive testlets per instrument were developed from a paper-and-
pencil open-ended item bank with construct modeling. Testlets of "learning facets" were 
developed using the large amount of data available showing actual student responses at a variety 
of levels. Item paneling and sensitivity reviews were also conducted. A storyboard example of a 
BEAR CAT testlet is shown in Figure 3. The scores to be assigned or the next item to be 
delivered are shown to the right of each distractor. A table showing the number of paths to each 
score appears at the bottom.  

In order to investigate a variety of instructional design approaches within the BEAR CAT 
bundles, three testlet designs were invented and used across content areas. The three bundle 
designs differed in the target level of the opening question, the number of allowed paths to the 
same score, and the range of item formats employed within the testlet. Note that the testlet 
designs were not intended to systematically explore all possible designs, or even a complete 
sequence of designs, but were selected to represent what might be some useful designs for  



Figure 2. Perspectives of Chemists Framework, Matter Variable 
Level of 
Success 

 
Big Ideas 

 
Descriptions of Level 

 
Item Exemplars 

Generation 
13-15 

 

Bonding models are used as 
a foundation for the 
generation of new 
knowledge (e.g., about living 
systems, the environment, 
and materials). 

Students are becoming experts as they gain 
proficiency in generating new understanding of 
complex systems through the development of new 
instruments and new experiments.  
 

a) Composition: What is the composition of complex systems? (e.g., 
cells, composites, computer microchips) 

b) Structure: What gives rise to the structure of complex systems? (e.g., 
skin, bones, plastics, fabrics, paints, food,)   

c) Properties: What is the nature of the interactions in complex systems 
that accounts for their properties? (e.g., between drug molecules and 
receptor sites, in ecosytems, between device components) 

d) Quantities: How can we determine the composition of complex 
systems? (e.g., biomolecules,  nanocomposites) 

Construction 
10-12 

 

The composition, structure, 
and properties of matter are 
explained by varying strengths 
of interactions between 
particles (electrons, nuclei, 
atoms, ions, molecules) and by 
the motions of these particles. 

Students are able to reason using normative 
models of chemistry, and use these models to 
explain and analyze the phase, composition, and 
properties of matter.  They are using accurate and 
appropriate chemistry models in their explanations, 
and understand the assumptions used to construct 
the models.  

a) Composition: How can we account for composition?  
b) Structure: How can we account for 3-D structure? (e.g., crystal 

structure, formation of drops,)  
c) Properties: How can we account for variations in the properties of 

matter? (e.g., boiling point, viscosity, solubility, hardness, pH, etc.)  
d) Amount: What assumptions do we make when we measure the 

amount of matter? (e.g., non-ideal gas law, average mass)   

Formulation 
7-9 

 

The composition, structure, 
and properties, of matter are 
related to how electrons are 
distributed among atoms.  

Students are developing a more coherent 
understanding that matter is made of particles and 
the arrangements of these particles relate to the 
properties of matter. Their definitions are accurate, 
but understanding is not fully developed so that 
student reasoning is limited to causal instead of 
explanatory mechanisms. In their interpretations of 
new situations students may over-generalize as 
they try to relate multiple ideas and construct 
formulas. 

a) Composition: Why is the periodic table a roadmap for chemists? 
(Why is it a “periodic” table?)  How can we think about the 
arrangements of electrons in atoms? (e.g., shells, orbitals)  How do the 
numbers of valence electrons relate to composition? (e.g., 
transfer/share) 

b) Structure: How can simple ideas about connections between atoms 
(bonds) and motions of atoms be used to explain the 3-D structure of 
matter? (e.g., diamond is rigid, water flows, air is invisible) 

c) Properties: How can matter be classified according to the types of 
bonds? (e.g., ionic solids dissolve in water, covalent solids are hard, 
molecules tend to exist as liquids and gases)  

d) Amount: How can one quantity of matter be related to another? (e.g., 
mass/mole/number, ideal gas law, Beer’s law)  

Recognition  
4-6 

 

Matter is categorized and 
described by various 
types of subatomic 
particles, atoms, and 
molecules.  
 

Students begin to explore the language and specific 
symbols used by chemists to describe matter. They 
relate numbers of electrons, protons, and neutrons 
to elements and mass, and the arrangements and 
motions of atoms to composition and phase. The 
ways of thinking about and classifying matter are 
limited to relating one idea to another at a simplistic 
level of understanding.           

a) Composition: How is the periodic table used to understand atoms and 
elements? How can elements, compounds, and mixtures be classified 
by the letters and symbols used by chemists? (e.g., CuCl2 (s) is a blue 
solid, CuCl2(aq) is a clear, blue solution) 

b) Structure: How do the arrangements and motions of atoms differ in 
solids, liquids, and gases? 

c) Properties: How can the periodic table be used to predict properties?  
d) Amount: How do chemists keep track of quantities of particles? (e.g., 

number, mass, volume, pressure, mole) 

Notions 
1-3 

 

Matter has mass and 
takes up space.  

Students articulate their ideas about matter, and use 
prior experiences, observations, logical reasoning, 
and knowledge to provide evidence for their ideas.  

a) Composition: How is matter distinct from energy, thoughts, and 
feelings?  

b) Structure: How do solids, liquids, and gases differ from one another? 
c) Properties: How can you use properties to classify matter? 
d) Amount: How can you measure the amount of matter? 
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Figure 3. Storyboard Showing Item Design for an Item Bundle on Ions and Atoms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

content developers, ranging in the complexity of item representation that could be used. The 
designs are: 

Design 1: Simple Linear. The first question in the item bundle targeted the first level in the 
construct framework. All items used within the bundle were standard multiple choice, with a 
single correct answer. Students achieving the correct answer at each level received a 
subsequent probe at the next level of the framework. The design is considered simple in item 
format (all standard multiple choice) and linear, in that levels are targeted beginning at 1 and 
extending up. 
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Design 2: Complex Split. The first question in the item bundle targeted the transition between 
two levels of a framework, with students "split" or filtered by the question into higher and 
lower levels for the next probe. Items used within the bundle drew on a variety of complex 
item types available through the Distributed Learning Workshop Homework Tool, including 
multiple answer, modify option, and open-ended, as well as multiple choice. The design is 
considered complex in item format and split in the filtering mechanism between levels. 

Design 3: Complex Linear or Split, With Permutations. Opening questions and probes in this 
testlet design could target levels consecutively or split students by filtering, and included all 
the complex designs of Design 2, with an additional design of "permutations." Permutations 
allowed the decision on whether to advance a student to the next level probe to be based on 
not a single student answer but a series of student answers, with the pattern of answers 
interpreted as meaningful against the construct. 

Note that although the intent of data driven content includes providing feedback and 
customized learning interventions attuned to the embedded assessments, in this study no 
feedback or interventions were included in the calibration stage, and students were instructed not 
to refer to outside resources in making their responses, in order to model a static rather than a 
possibly more dynamic, or changing, θ that might occur over the course of homework sets where 
active learning was taking place. 

Data were collected from 521 students involved in the BEAR CAT study: 399 students from 
UC Berkeley's second-year Chemistry 3B course, 67 students on completion of first semester 
chemistry at another California university in the medical pathway, most training to become 
nurses and 55 students completing first semester high school chemistry at a high school in the 
San Francisco Bay Area.  

To administer the adaptive testlets, the BEAR CAT smart homework sets were  deployed 
through the Homework Tool capabilities of the Distributed Learning Workshop Learning 
Management System (Gifford, 2001), with the Homework Tool modified to accommodate the 
adaptive instructional flow. The modified Homework Tool was successfully alpha tested in Fall 
2002 with an small pilot trial of about 70 students, and beta-tested in the full BEAR CAT study 
described here in Fall 2003.  

Results 

The testlets for the BEAR CAT sample group were first fit with a partial credit model, with 
data aggregated over pathways. Generalized item thresholds for the aggregated pathways (all the 
paths to the same score for a particular item) were compared to see if the same scores had similar 
difficulties across items. Criterion zones—standards for achieving each of the possible scores in 
the construct—were set based on the “criterion zone” rule, developed in conjunction with new 
approaches to standard setting, to maintain meaningful measures over time (Wilson & Draney, 
2002), in which each new criterion zone is specified at the first appearance of a generalized item 
threshold for that zone. Thresholds are considered to "misfit" if they cross more than one 
adjacent criterion zone.  

The reliability of the instrument calibrated under this model, in which the paths were not 
taken into consideration, was determined. Then the iota model was fit, taking the paths into 
consideration. The iota model is hierarchically nested within the partial credit model, and thus 
can be compared by a likelihood ratio chi-square test, with the difference in estimated parameters 
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between the two models equal to the degrees of freedom. Deviance [defined as −2 × 
log(likelihood)] between the two hierarchical models was compared to see if the iota model, 
which includes the path parameters, resulted in a significantly better goodness of fit, thus 
shedding light on whether, in this example case, it was necessary to model the path parameters 
through the item bundles, or whether paths could simply be aggregated by the framework-based 
level and treated with a standard partial credit model.  

Results from the path-aggregated partial credit analysis of the BEAR CAT testlets showed an 
expected a posteriori over persons variance (EAP/PV) reliabilities (Wu, Adams, Wilson, & 
Haldane, 2007) for the 15-bundle BEAR CAT instrument of .82. (EAP/PV reliability is 
explained variance according to the estimated model divided by total persons variance.) This 
compares to a reliability of .80 for an open-ended constructed instrument developed for the same 
construct; an example of an item of this type is shown in Figure 4.  
 

Figure 4. Example of a Constructed-Response Task and Associated Scoring 
 
You are given two liquids.  One of the solutions is butyric acid with a molecular formula of 
C4H8O2.  The other solution is ethyl acetate with the molecular formula C4H8O2.  Both of the 
solutions have the same molecular formulas, but butyric acid smells bad and putrid while ethyl 
acetate smells good and sweet. Explain why you think these two solutions smell differently. 
 
Notions 
(1-3) 

1 Response: If they have the same formula, how can they be different? 
 
Analysis: Student makes one macroscopic observation by noting that the 
molecular formulas in the problem setup are the same. 

 2 Response: I think there could be a lot of different reasons as to why the 
two solutions smell differently. One could be that they're different ages, 
and one has gone bad or is older which changed the smell. Another 
reason could be that one is cold and one is hot. 
Response: Using chemistry theories, I don't have the faintest idea, but 
using common knowledge I will say that the producers of the ethyl 
products add smell to them so that you can tell them apart. 
Response: Just because they have the same molecular formula doesn't 
mean they are the same substance. Like different races of people: black 
people, white people. Maybe made of the same stuff but look different. 
 
Analysis: These students use ideas about phenomena they are familiar 
with from their experience combined with logic/comparative skills to 
generate a reasonable answer, but do not employ molecular chemistry 
concepts. 

 3 Response: "Maybe the structure is the same but when it breaks into 
different little pieces and changes from liquid into gas they have a 
different structure in the center and have a different reaction with the air. 
(Shows drawing:) 
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Analysis: This answer acknowledges that chemical principles or 
concepts can be used to explain phenomena. Attempts are made to 
employ chemical concepts based on a "perceived" but incorrect 
understanding.  

 
 
Recognition  
(4-6) 

4  Response: "I think these two solutions smell different is because one 
chemical is an acid and most acids smell bad and putrid while the ethyl 
acetate smells good and sweet because its solution name ends with "ate" 
and that usually has a good sweet smell." 
 
Analysis: This response correctly cites evidence for the difference in 
smells between the two chemicals, appropriately using smell 
combinatorial patterns taught in class and chemical naming 
conventions, but does not explain the root cause as the difference in 
molecular structure between the two chemicals. 

 5 Response: "They smell differently b/c even though they have the same 
molecular formula, they have different structural formulas with 
different arrangements and patterns." 
Response: "Butyric acid smell bad. It's an acid and even though they 
have the same molecular formula but they structure differently." 
 
Both responses appropriately cite the principle that molecules with the 
same formula can have different structures, or arrangements of atoms 
within the structure described by the formula. However the first answer 
shows no attempt and the second answer shows an incomplete attempt 
to use such principles to describe the simple molecules given in the 
problem setup.  

 6 Response: (Begins with problem setup below, showing molecular 
formula of labeled butyric acid and same formula labeled ethyl acetate.) 

"The two molecules smell differently because the have different 

- 12 - 



molecular structures. The butyric acid contains a carboxylic acid 
structure (which smells bad) and the ethyl acetate contains an ester 
(which smells good). We can tell which molecule will smell bad and 
which will smell good by studying the molecular structure and by 
looking at the names. Any 'ACID' ending name will smell bad and any 
'-ATE' ending name will smell good." 
 
Analysis: Response cites and appropriately uses the principle that 
molecules with the same formula can have different structures. Student 
correctly cites rule learned in class pertaining to smell patterns in 
relation to functional groups identified by chemical name, and uses this 
information to begin to explore simple molecules. However, student 
stops short of a Level Three response, which could be made by 
examining structure-property relationships through, for instance, 
presenting possible structural formulas for the two chemicals and 
explaining the bonding involved. 

 

A standard error plot for the BEAR CAT instrument, shown in Figure 5a, indicates that the 
standard error for the BEAR CAT instruments is fairly flat, at about .1 logits over the student 
performance interval measured, and ranging from .09 to about .16 logits. The relative "flatness" 
of the adaptive BEAR CAT instrument as compared to the SEM plot shown in Figure 5b for the 
linear open-ended instrument reflects the computerized adaptive nature of BEAR CAT 
instruments. The adaptive approach can be viewed as a custom "series" of instruments intended 
to adjust the flow of items to have lower standard errors at the point of each student's individual 
measurement, thus as typical with CAT tending to flatten the usual u-shaped SEM plot shown by 
linear instruments.  

The iota model was fit to the same data as the partial credit model, but this time with the path 
scores not aggregated but modeled separately. The iota model is an ordered partition model, 
where partitions compare the equivalence of paths to the same score within testlets.  

Note that a first challenge for the iota model was sparseness of data for some paths, those 
which did not prove to be popular paths for students. To address this, only paths with all paths-
to-score including at least 5 responses in the 500-person dataset were included in this iota model 
calibration. About half of the total set of paths in the instrument met this "data-present" criteria. 
The remaining more sparse path groups were left aggregated for the iota measurement model 
runs, just as in the partial credit analysis model.  

The iota model did show significantly better fit (deviance 18956, parameters 119) as 
compared to the partial credit model (deviance 19207, parameters 104), yielding a difference in 
deviance of 250 on 15 degrees of freedom, which is statistically significant (p<.001). Most of the 
sister paths did fall within a single criterion zone according to this model, as shown in Figure 6. 
Only a single path in one testlet, labeled as testlet B1, showed quite a substantially different 
difficulty across criterion zones from the sibling paths in its score level, while one other path 
pair, in testlet B4, additionally split across a criterion zone because the path groups fell close to 
the zone cut score.  
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Figure 5.  Standard Error Plots Item Bundles 
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Figure 6. Locations of Sister Iota Paths  
in the Partially Hierarchical BEAR CAT Testlets 
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When these two iota path parameters were added to the partial credit model, reducing the 
degrees of freedom between the partial credit model and the iota model from 15 to 13, the 
deviance difference between models dropped substantially, from a delta of 250 to 142. While a 
delta of 142 on 13 degrees of freedom is still significant, if perceived from an effect size 
viewpoint the effect of taking into consideration the remaining paths is arguably small. This is 
because the sisters paths for the remaining path parameters all fell within the same criterion 
zones, or score bands of the construct, and were distinct from the other possible score levels. 
While one path might be slightly higher or lower in the score band, all the sister paths were 
shown as appropriate to receive the same score.  Furthermore, even the effect size of the two 
modeled paths could probably be considered relatively small since these were the sparsest paths 
modeled in the dataset and affected the scores of only a few people (less than 15 in each case in a 
dataset of almost 500) on a single bundle in which the instrument consisted of 15 total bundles. 

Using the partial credit model, all BEAR CAT item difficulty and step parameters fit within a 
standard range of  .75 to 1.33 (3/4 to 4/3)  mean square weighted fit (Wu, Adams, & Wilson, 
1998), for parameters in which the weighted fit T was greater than 2, as shown in Table 2.  Under 
the iota model, while most of the estimated parameters also fit within this tolerance, a few step 
parameters misfit somewhat beyond the criteria above, probably because of sparser data in these 
partitions, allowing outliers to have more effect. 

Note that, not to be discussed fully here, a comparison of instruments was undertaken to 
compare the testlet results against assessment results for comparison of open-ended constructed 
and multiple-choice instruments. About two-thirds of students scored at the same level on a 10-
point scale across the testlet and paper-and-pencil instruments, and no student differed by more 
than one level between instruments.  

In regard to classical item discrimination across instruments, all items on the BEAR CAT 
and open-ended instruments showed good item discrimination, with the open-ended 
discrimination on average somewhat higher (mean .64, SD .10) compared to BEAR CAT (mean 
.53, SD .06). The multiple-choice instrument item discrimination was the lowest (mean .21, SD 
.15). All item discriminations were positive and non-zero except for the last items on the 
multiple-choice instrument, which probably were too difficult for the high school population to 
which they were administered and therefore non-discriminating for this group, with item 
discriminations near or at zero. The trend of highest discrimination for fully constructed items to 
lowest discrimination for the multiple-choice items reflects a trend sometimes seen for 
constructed and selected response, with the usual time-versus-information trade-off in the item 
format. 

Overall, the BEAR CAT testlet instrument did achieve a higher reliability than the 
constructed response instrument (.82 as compared to .80) in less time, approximately 35 minutes 
as compared to 50 minutes for the informant group. However, rigorous comparison of BEAR 
CAT time across the entire sample was not possible because students completed the Smart 
Homework off-site, and were allowed to stay "logged-in" to their instruments during any breaks 
they wanted to take, making it impossible to know whether lag time was on task or on break. 
This was deemed appropriate for the instructional homework setting. Informant time data was 
based on observations of the informant group of students. 
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Table 2. Goodness of Fit Within Acceptable Ranges for All Item Bundles 
================================================================================ 
ChQ14 Run 1 (2004 1D, Bear Cat PC, item + item*step)        Tue May 18 11:09:02 
TABLES OF RESPONSE MODEL PARAMETER ESTIMATES 
=============
TERM 1: item 

=================================================================== 

------------------------------------------------------------------------------------------ 
   VARIABLES                               UNWEIGHTED FIT             WEIGHTED FIT 
---------------                        -----------------------   ----------------------- 
     item           ESTIMATE  ERROR^   MNSQ       CI        T    MNSQ       CI        T 
------------------------------------------------------------------------------------------ 
 1   PC4             -0.242   0.018    1.12 ( 0.86, 1.14)  1.7   1.09 ( 0.89, 1.11)  1.6   
 2   PC7             -0.667   0.022    0.67 ( 0.87, 1.13) -5.5   0.79 ( 0.79, 1.21) -2.2   
 3   PC11             0.411   0.017    1.05 ( 0.86, 1.14)  0.8   1.05 ( 0.88, 1.12)  0.9   
 4   PC12             0.613   0.018    0.98 ( 0.87, 1.13) -0.3   1.03 ( 0.84, 1.16)  0.3   
 5   PC16            -1.710   0.024    0.91 ( 0.87, 1.13) -1.3   0.93 ( 0.90, 1.10) -1.5   
 6   PC25             0.416   0.018    1.08 ( 0.86, 1.14)  1.1   1.05 ( 0.87, 1.13)  0.8   
 7   PC30a            0.106   0.018    1.19 ( 0.87, 1.13)  2.6   1.06 ( 0.88, 1.12)  0.9   
 8   PC34b            0.513   0.018    1.04 ( 0.87, 1.13)  0.5   0.97 ( 0.87, 1.13) -0.4   
 9   PC39ab          -0.708   0.023    0.98 ( 0.87, 1.13) -0.3   0.96 ( 0.90, 1.10) -0.7   
 10  PC44            -0.116   0.018    1.05 ( 0.87, 1.13)  0.7   1.03 ( 0.90, 1.10)  0.6   
 11  PC52a            0.557   0.020    0.87 ( 0.86, 1.14) -1.9   0.86 ( 0.84, 1.16) -1.8   
 12  PC81            -0.043   0.019    0.99 ( 0.86, 1.14) -0.1   0.95 ( 0.86, 1.14) -0.7   
 13  PC82            -0.171   0.018    1.09 ( 0.87, 1.13)  1.3   1.09 ( 0.91, 1.09)  1.8   
 14  PC83             0.299   0.017    1.25 ( 0.87, 1.13)  3.4   1.21 ( 0.88, 1.12)  3.3   
 15  PC84             0.741*  0.072    1.05 ( 0.87, 1.13)  0.7   1.01 ( 0.87, 1.13)  0.2   
-------------------------------------------------------------------------------- 
*Parameter estimate was constrained. 
Chi-square test of parameter equality = 11460.525,  df = 14,  Sig Level = 0.000 

TERM 2: item × step 
---------------------------------------------------------------------------------------- 
     VARIABLES                            UNWEIGHTED FIT             WEIGHTED FIT 
-----------------                     -----------------------   ----------------------- 
     item   step   ESTIMATE  ERROR^   MNSQ       CI        T    MNSQ       CI        T 
---------------------------------------------------------------------------------------- 
 1   PC4      0                       0.23 ( 0.86, 1.14)-17.0   1.02 ( 0.00, 2.39)  0.3  
 1   PC4      1     -2.796   0.107    1.02 ( 0.86, 1.14)  0.3   1.01 ( 0.80, 1.20)  0.2  
 1   PC4      2      0.512   0.104    1.15 ( 0.86, 1.14)  2.2   1.06 ( 0.83, 1.17)  0.7  
 1   PC4      3      1.158   0.122    1.16 ( 0.86, 1.14)  2.3   1.04 ( 0.75, 1.25)  0.3  
 1   PC4      4      2.669   0.165    0.90 ( 0.86, 1.14) -1.5   1.01 ( 0.27, 1.73)  0.1  
 1   PC4      5     -0.682   0.179    1.01 ( 0.86, 1.14)  0.2   1.00 ( 0.71, 1.29)  0.1  
 1   PC4      6     -0.860*           1.04 ( 0.86, 1.14)  0.5   1.04 ( 0.93, 1.07)  1.0  
 2   PC7      0                       0.17 ( 0.87, 1.13)-19.8   0.98 ( 0.04, 1.96)  0.1  
 2   PC7      1     -1.413   0.125    0.76 ( 0.87, 1.13) -3.8   0.92 ( 0.75, 1.25) -0.6  
 2   PC7      2      2.858   0.161    0.63 ( 0.87, 1.13) -6.4   1.00 ( 0.27, 1.73)  0.1  
 2   PC7      3     -0.456   0.174    0.90 ( 0.87, 1.13) -1.5   0.99 ( 0.71, 1.29) -0.0  
 2   PC7      4     -0.989*           0.71 ( 0.87, 1.13) -4.7   0.81 ( 0.85, 1.15) -2.8  
 3   PC11     0                       0.28 ( 0.86, 1.14)-14.7   0.97 ( 0.23, 1.77)  0.0  
 3   PC11     1     -2.084   0.174    0.93 ( 0.86, 1.14) -0.9   1.02 ( 0.76, 1.24)  0.2  
 3   PC11     2      1.412   0.129    1.30 ( 0.86, 1.14)  3.9   1.05 ( 0.40, 1.60)  0.3  
 3   PC11     3     -0.517   0.124    0.98 ( 0.86, 1.14) -0.2   1.03 ( 0.57, 1.43)  0.2  
 3   PC11     4     -1.980   0.117    1.10 ( 0.86, 1.14)  1.5   1.07 ( 0.94, 1.06)  2.0  
 3   PC11     5      2.285   0.108    1.12 ( 0.86, 1.14)  1.7   1.01 ( 0.58, 1.42)  0.1  
 3   PC11     6     -0.117   0.111    1.09 ( 0.86, 1.14)  1.2   1.00 ( 0.67, 1.33)  0.1  
 3   PC11     7     -0.517   0.119    0.91 ( 0.86, 1.14) -1.3   0.99 ( 0.83, 1.17) -0.1  
 3   PC11     8      0.889   0.172    0.84 ( 0.86, 1.14) -2.5   0.93 ( 0.76, 1.24) -0.5  
 3   PC11     9      0.627*           1.09 ( 0.86, 1.14)  1.3   1.00 ( 0.73, 1.27)  0.1  
 4   PC12     0                       0.65 ( 0.87, 1.13) -5.7   1.02 ( 0.21, 1.79)  0.2  
 4   PC12     1     -3.539   0.218    1.05 ( 0.87, 1.13)  0.7   1.02 ( 0.93, 1.07)  0.5  
 4   PC12     2      0.818   0.100    0.98 ( 0.87, 1.13) -0.2   1.00 ( 0.83, 1.17)  0.1  
 4   PC12     3     -0.087   0.105    0.97 ( 0.87, 1.13) -0.5   0.99 ( 0.85, 1.15) -0.1  
 4   PC12     4      3.379   0.136    0.74 ( 0.87, 1.13) -4.2   0.98 ( 0.00, 2.11)  0.2  
 4   PC12     5     -2.651   0.139    0.98 ( 0.87, 1.13) -0.3   0.99 ( 0.79, 1.21) -0.1  
 4   PC12     6      2.478   0.246    0.64 ( 0.87, 1.13) -5.9   0.94 ( 0.18, 1.82) -0.0  
 4   PC12     7     -0.447   0.287    1.25 ( 0.87, 1.13)  3.4   0.94 ( 0.45, 1.55) -0.1  
 4   PC12     8      1.498   0.583    0.33 ( 0.87, 1.13)-13.4   0.88 ( 0.00, 2.04) -0.1  
 4   PC12     9     -1.451*           0.86 ( 0.87, 1.13) -2.1   0.95 ( 0.65, 1.35) -0.2  
 5   PC16     0                       0.59 ( 0.87, 1.13) -7.0   1.01 ( 0.00, 2.13)  0.2  
 5   PC16     1     -1.705   0.102    0.93 ( 0.87, 1.13) -1.0   0.94 ( 0.93, 1.07) -1.8  
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 5   PC16     2      1.705*           0.92 ( 0.87, 1.13) -1.2   0.93 ( 0.94, 1.06) -2.1  
 6   PC25     0                       0.84 ( 0.86, 1.14) -2.5   1.08 ( 0.16, 1.84)  0.3  
 6   PC25     1     -2.269   0.212    1.70 ( 0.86, 1.14)  8.4   1.16 ( 0.75, 1.25)  1.3  
 6   PC25     2      0.978   0.144    0.64 ( 0.86, 1.14) -5.9   1.00 ( 0.51, 1.49)  0.1  
 6   PC25     3      0.468   0.135    1.21 ( 0.86, 1.14)  2.8   1.03 ( 0.36, 1.64)  0.2  
 6   PC25     4     -1.307   0.130    0.98 ( 0.86, 1.14) -0.2   1.01 ( 0.72, 1.28)  0.1  
 6   PC25     5     -1.104   0.115    1.05 ( 0.86, 1.14)  0.8   1.03 ( 0.92, 1.08)  0.9  
 6   PC25     6      1.761   0.107    1.09 ( 0.86, 1.14)  1.3   1.01 ( 0.68, 1.32)  0.1  
 6   PC25     7     -0.144   0.112    0.96 ( 0.86, 1.14) -0.6   0.99 ( 0.77, 1.23) -0.0  
 6   PC25     8     -0.262   0.128    0.85 ( 0.86, 1.14) -2.2   0.96 ( 0.87, 1.13) -0.6  
 6   PC25     9      1.879*           0.78 ( 0.86, 1.14) -3.3   0.95 ( 0.61, 1.39) -0.2  
 7   PC30a    0                       0.79 ( 0.87, 1.13) -3.3   1.01 ( 0.62, 1.38)  0.1  
 7   PC30a    1     -0.665   0.105    1.71 ( 0.87, 1.13)  8.6   1.12 ( 0.78, 1.22)  1.0  
 7   PC30a    2      0.276   0.108    1.29 ( 0.87, 1.13)  4.0   1.03 ( 0.77, 1.23)  0.3  
 7   PC30a    3      1.264   0.127    0.93 ( 0.87, 1.13) -1.0   1.02 ( 0.59, 1.41)  0.2  
 7   PC30a    4     -0.409   0.144    0.96 ( 0.87, 1.13) -0.6   1.00 ( 0.77, 1.23)  0.1  
 7   PC30a    5      2.327   0.357    1.06 ( 0.87, 1.13)  0.9   1.00 ( 0.33, 1.67)  0.1  
 7   PC30a    6     -2.794*           0.96 ( 0.87, 1.13) -0.6   0.99 ( 0.92, 1.08) -0.1  
 8   PC34b    0                       0.66 ( 0.87, 1.13) -5.7   1.10 ( 0.24, 1.76)  0.4  
 8   PC34b    1     -1.782   0.274    0.40 ( 0.87, 1.13)-11.7   0.83 ( 0.68, 1.32) -1.1  
 8   PC34b    2     -1.005   0.174    1.75 ( 0.87, 1.13)  9.0   1.15 ( 0.81, 1.19)  1.5  
 8   PC34b    3      0.626   0.129    0.85 ( 0.87, 1.13) -2.3   1.01 ( 0.67, 1.33)  0.1  
 8   PC34b    4      2.622   0.121    0.79 ( 0.87, 1.13) -3.4   1.02 ( 0.00, 2.39)  0.3  
 8   PC34b    5     -2.650   0.120    0.95 ( 0.87, 1.13) -0.7   1.01 ( 0.68, 1.32)  0.1  
 8   PC34b    6     -0.843   0.112    0.98 ( 0.87, 1.13) -0.3   1.00 ( 0.85, 1.15)  0.0  
 8   PC34b    7     -0.684   0.104    0.93 ( 0.87, 1.13) -1.0   0.99 ( 0.94, 1.06) -0.4  
 8   PC34b    8      3.880   0.451    0.72 ( 0.87, 1.13) -4.5   0.96 ( 0.16, 1.84)  0.0  
 8   PC34b    9     -0.164*           0.83 ( 0.87, 1.13) -2.6   0.94 ( 0.36, 1.64) -0.1  
 9   PC39ab   0                       0.38 ( 0.87, 1.13)-12.0   0.99 ( 0.21, 1.79)  0.1  
 9   PC39ab   1     -1.752   0.101    1.08 ( 0.87, 1.13)  1.1   1.05 ( 0.89, 1.11)  0.8  
 9   PC39ab   2      1.758   0.135    0.97 ( 0.87, 1.13) -0.4   0.99 ( 0.82, 1.18) -0.0  
 9   PC39ab   3     -0.006*           0.93 ( 0.87, 1.13) -1.0   0.94 ( 0.94, 1.06) -2.1  
 10  PC44     0                       0.80 ( 0.87, 1.13) -3.2   1.04 ( 0.00, 2.12)  0.3  
 10  PC44     1     -3.142   0.106    1.23 ( 0.87, 1.13)  3.1   1.15 ( 0.88, 1.12)  2.3  
 10  PC44     2      1.482   0.100    1.00 ( 0.87, 1.13)  0.1   1.02 ( 0.75, 1.25)  0.2  
 10  PC44     3      2.610   0.109    0.88 ( 0.87, 1.13) -1.9   1.02 ( 0.21, 1.79)  0.2  
 10  PC44     4     -1.424   0.111    1.04 ( 0.87, 1.13)  0.6   1.01 ( 0.78, 1.22)  0.1  
 10  PC44     5      0.621   0.140    1.02 ( 0.87, 1.13)  0.4   1.00 ( 0.81, 1.19)  0.0  
 10  PC44     6     -0.148*           0.86 ( 0.87, 1.13) -2.2   0.91 ( 0.93, 1.07) -2.5  
 11  PC52a    0                       0.10 ( 0.86, 1.14)-22.7   1.05 ( 0.00, 2.39)  0.3  
 11  PC52a    1     -2.284   0.507    0.30 ( 0.86, 1.14)-14.1   0.78 ( 0.51, 1.49) -0.9  
 11  PC52a    2      0.687   0.262    1.61 ( 0.86, 1.14)  7.3   1.03 ( 0.14, 1.86)  0.2  
 11  PC52a    3     -2.247   0.233    1.04 ( 0.86, 1.14)  0.6   1.04 ( 0.75, 1.25)  0.4  
 11  PC52a    4      0.174   0.146    1.03 ( 0.86, 1.14)  0.4   1.02 ( 0.70, 1.30)  0.2  
 11  PC52a    5     -1.308   0.124    0.98 ( 0.86, 1.14) -0.3   0.99 ( 0.92, 1.08) -0.2  
 11  PC52a    6      0.237   0.104    0.99 ( 0.86, 1.14) -0.1   1.00 ( 0.90, 1.10)  0.1  
 11  PC52a    7      0.646   0.132    0.83 ( 0.86, 1.14) -2.5   0.93 ( 0.84, 1.16) -0.9  
 11  PC52a    8      3.387   0.581    1.00 ( 0.86, 1.14)  0.1   0.95 ( 0.00, 2.08)  0.1  
 11  PC52a    9      0.708*           1.38 ( 0.86, 1.14)  4.8   0.94 ( 0.00, 2.31)  0.1  
 12  PC81     0                       0.38 ( 0.86, 1.14)-11.9   1.03 ( 0.23, 1.77)  0.2  
 12  PC81     1     -1.512   0.103    1.13 ( 0.86, 1.14)  1.9   0.99 ( 0.74, 1.26) -0.0  
 12  PC81     2      0.512   0.099    1.00 ( 0.86, 1.14)  0.1   1.02 ( 0.71, 1.29)  0.2  
 12  PC81     3      0.341   0.100    1.03 ( 0.86, 1.14)  0.5   1.02 ( 0.74, 1.26)  0.2  
 12  PC81     4      1.617   0.105    0.93 ( 0.86, 1.14) -1.0   1.01 ( 0.52, 1.48)  0.1  
 12  PC81     5     -1.395   0.109    0.98 ( 0.86, 1.14) -0.2   1.00 ( 0.91, 1.09) -0.1  
 12  PC81     6      0.437*           0.98 ( 0.86, 1.14) -0.3   0.98 ( 0.94, 1.06) -0.8  
 13  PC82     0                       0.24 ( 0.87, 1.13)-16.8   0.96 ( 0.00, 2.92)  0.3  
 13  PC82     1     -4.604   0.118    1.24 ( 0.87, 1.13)  3.3   1.16 ( 0.91, 1.09)  3.3  
 13  PC82     2      3.590   0.104    0.81 ( 0.87, 1.13) -3.0   1.02 ( 0.40, 1.60)  0.2  
 13  PC82     3      0.000   0.106    0.92 ( 0.87, 1.13) -1.2   1.01 ( 0.60, 1.40)  0.1  
 13  PC82     4      0.766   0.112    0.89 ( 0.87, 1.13) -1.6   0.99 ( 0.62, 1.38)  0.0  
 13  PC82     5     -0.533   0.121    1.02 ( 0.87, 1.13)  0.3   1.02 ( 0.87, 1.13)  0.4  
 13  PC82     6      0.781*           0.91 ( 0.87, 1.13) -1.3   0.94 ( 0.89, 1.11) -1.2  
 14  PC83     0                       0.83 ( 0.87, 1.13) -2.7   1.06 ( 0.31, 1.69)  0.3  
 14  PC83     1     -1.823   0.132    0.89 ( 0.87, 1.13) -1.7   1.08 ( 0.76, 1.24)  0.7  
 14  PC83     2      1.322   0.112    2.18 ( 0.87, 1.13) 13.0   1.06 ( 0.44, 1.56)  0.3  
 14  PC83     3     -1.280   0.109    1.25 ( 0.87, 1.13)  3.4   1.06 ( 0.76, 1.24)  0.5  
 14  PC83     4      0.926   0.102    1.01 ( 0.87, 1.13)  0.1   1.03 ( 0.61, 1.39)  0.2  
 14  PC83     5     -1.570   0.100    1.06 ( 0.87, 1.13)  0.9   1.04 ( 0.93, 1.07)  1.1  
 14  PC83     6      5.262   0.121    0.85 ( 0.87, 1.13) -2.2   0.98 ( 0.00, 2.94)  0.3  
 14  PC83     7     -3.044   0.121    1.63 ( 0.87, 1.13)  7.8   1.02 ( 0.70, 1.30)  0.2  
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 14  PC83     8     -0.191   0.142    1.23 ( 0.87, 1.13)  3.2   1.02 ( 0.82, 1.18)  0.3  
 14  PC83     9      0.398*           2.23 ( 0.87, 1.13) 13.4   0.94 ( 0.85, 1.15) -0.8  
 15  PC84     0                       0.68 ( 0.87, 1.13) -5.4   0.97 ( 0.72, 1.28) -0.1  
 15  PC84     1     -1.441   0.148    1.07 ( 0.87, 1.13)  1.0   1.02 ( 0.88, 1.12)  0.4  
 15  PC84     2      0.960   0.107    0.97 ( 0.87, 1.13) -0.4   1.02 ( 0.68, 1.32)  0.2  
 15  PC84     3      0.396   0.104    0.98 ( 0.87, 1.13) -0.2   1.01 ( 0.55, 1.45)  0.1  
 15  PC84     4     -1.987   0.103    1.02 ( 0.87, 1.13)  0.3   1.00 ( 0.90, 1.10) -0.0  
 15  PC84     5      0.064   0.112    1.03 ( 0.87, 1.13)  0.4   0.99 ( 0.89, 1.11) -0.2  
 15  PC84     6      3.534   0.251    2.16 ( 0.87, 1.13) 13.0   0.97 ( 0.00, 2.09)  0.1  
 15  PC84     7     -1.314   0.275    0.74 ( 0.87, 1.13) -4.2   0.94 ( 0.49, 1.51) -0.1  
 15  PC84     8      1.916   0.711    2.26 ( 0.87, 1.13) 13.8   0.92 ( 0.00, 2.30)  0.1  
 15  PC84     9     -2.127*           2.43 ( 0.87, 1.13) 15.2   0.98 ( 0.66, 1.34) -0.1  
-------------------------------------------------------------------------------- 
*Parameter estimate was constrained. 

Item fit statistics and internal consistency for the three types of bundles were compared. The 
issue here was to see whether item fit varied systematically by the type of testlet design. Since 
the three item designs went from a relatively simple bundle structure to structures of increasing 
complexity, the probability of introducing hidden variables and thus unmodeled 
multidimensionality might be expected to increase from testlet design 1, the simplest, to design 
3, the most complex. As reported above for the aggregate partial credit model, goodness of fit 
across all items and step parameters was within the tolerance described for all three testlet design 
structures, as shown in Table 3.  

Table 3. Item Information Function Summary for the 15 BEAR CAT Bundles 

 
Bundle 

 
Name 

 
Design 

 
Peaks 

  Info  
  Peak 

 
Range 

Range 
Unit 

 
Shape 

  1   4 1 .5 4.1 -1 to 2 3 .3 at left 
  2   7 2 -.3 2.2 -2 to 1.5 3.5 .3 at left 
  3 11 1 .7 4.5 -1.5 to 3 4.5 .2 at left 
  4 12 2 1.2 7.8 -.5 to 2.5 3 sharper 
  5 16 1 -.2 .29 -3 to 3 6 no drop left 
  6 25 2 .3 4.9 -1.5 to 2.5 4  
  7 30a 2 .4 4.8 -2 to 1.8 3.8 sharper 
  8 34b 3 .4 5.5 -2.3 to 3 5.3 1 at right 
  9 39ab 2 .1 .91 -3 to 2.5 5.5 .25 at left 
10 44 3 -.5 4.3 -1 to 2 3  
11 52a 3 -.2 3.3 -2 to 3 5 1 at right 
12 81 2 .3 3.7 -2.5 to 2 4.5 .2 at left 
13 82 2 .6 4.5 -.7 to 2 2.7  
14 83 1 .5 5.2 -2 to 2.3 4.3  
15 84 1 1.3 5.1 -2 to 2.5 4.5 step peak 

left 

 

Most of the item bundles also showed good internal validity, with generalized item 
thresholds falling with predicted criterion zones according to the criterion zone specifications 
rules previously mentioned, except for nine of the 88 generalized item thresholds:  
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1. One level within one testlet that was determined to have inadvertently "missed" the 
targeted content level by including advanced relational concepts when subsequently 
reviewed by content experts. 

2. The drift of three parameters within "new" testlets that did not have the benefit of being 
constructed from informant datasets from prior open-ended administrations. 

3. The lowered difficulty of one testlet in the Design 3 category that was determined to offer 
increased opportunity for guessing because the permutations item design allowed 
students three opportunities to "guess" on selected response screens and assigned equal 
credit for guessing at all three points.  

An exploration of the "informative power" of categorically different item types within the 
BEAR CAT instrument also was undertaken, summarized in Table 3. Based on comparisons of 
item information functions, examples of which are shown in Figure 7, there were no significant 
correlations between bundle design type and where the items information functions peaked, how 
much information the items offered, or the range over which they measured. Also there did not 
appear to be any relationship between design type and aspects of the item information function 
shape. Of course, bundles that included more score levels showed higher item information, but 
this is a previously well-known feature of partial credit items. Based on this evidence, all three 
types of item bundles seemed to perform reasonably similarly across the range of students 
measured, and no significant problems were seen except for the previously described multiple-
guessing opportunities in cross-screen permutation items.  
 

Figure 7. Examples of Item Information Functions  
From Items in Each Bundle Design Category 

 
a.  Bundle Design 1 
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b. Bundle Design 2 

 
c. Bundle Design 3 
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 “Within” and “Between” Testlet Adaptivity 

Thus far we have discussed dynamically adapting assessment for e-learning within a testlet 
structure. Advantages here, as discussed, include controlling for local dependence with testlets, 
allowing a rich assembly of item formats to create complex items, identifying a procedure for 
accessing or equating paths to scores within an adaptive set of items, and potentially allowing 
feedback and learning interventions with high quality evidence within a testlet, but at a grain size 
appropriate to address single standards or learning objectives. We note here that adaptivity is 
also possible between testlets, or between sets of dependent items. Here, as a testlet just becomes 
an item score in this approach, standard CAT algorithms, pool exposure approaches, and 
equating techniques can apply between testlets. Combining BEAR CAT "within-testlet" 
adaptivity with standard CAT approaches for "between-testlet" adaptivity further increases the 
potential flexibility of instructional and measurement designs for e-learning products. 

Summary and Conclusions 

DDC suggests a means for tailoring the learning experience for students by changing or 
modifying materials, representations and interventions online in near real-time. Although many 
approaches in the past have been attempted to create adaptive streams of material for e-learning, 
for instance through traditional intelligent tutoring systems and other expert systems, many 
efforts have had limited ability to verify, compare, and test the efficacy of approaches, and to 
establish rigorously defensible measurement systems with verified scientific properties of 
validity and reliability (accuracy and precision), and some have offered limited flexibility in the 
complexity and contextualization of instructional design.  

These results from the "Smart Homework" application suggest that adaptive testlets 
combined with a measurement model such as the iota model might be one basis to establish 
evidence-centered measurement properties in e-learning, when models fit. We found reasonably 
high reliability for the iota model instrument with 15 testlets—an EAP/PV reliability of .82, as 
compared to a slightly lower reliability of .80 for the non-adaptive paper-and-pencil comparison 
post-test instrument with constructed response answers. Evidence of the higher reliability 
showed in the somewhat flatter standard error plot for BEAR CAT as compared to the 
constructed response instrument, with an average BEAR CAT standard error of .1 logits. Also, 
students were able on average to generate this slightly more reliable score on the adaptive BEAR 
CAT testlet instrument in about 35 minutes in observational studies as compared to about 50 
minutes as reported by teachers for the paper-and-pencil post-test instruments. The greater 
efficiency is not unexpected as a main advantage of CAT instruments is often considered to be 
time efficiency in reaching an accurate estimate of student ability.  

The BEAR CAT item difficulty and step parameters showed good item fit under the partial 
credit model, with all fitting within a standard tolerance range for parameters in which the 
weighted fit T was greater than 2. The iota model was found to be a significantly better fit to the 
data than the partial credit model, with a difference in deviance of 250 with 15 degrees of 
freedom. It was possible to determine which paths most contributed to the effect size, with only 
two of 15 paths in the item set under consideration substantially contributing to the effect size.  

About two-thirds of students measured at the same level on both the testlet and paper-and-
pencil instruments. No students differed between the two instruments by more than one level of 
the ten possible levels. Instruments adapted well over a wide range of abilities, representing 
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students drawn from first semester high school chemistry students to university-level students at 
the completion of three years of study in chemistry (one year in high school and two years in 
college). 

Three different testlet designs were developed and successfully alpha and beta tested with 
adaptivity in the Distributed Learning Workshop Learning Conductor Homework Tool. All three 
bundle designs showed good item discrimination, with a mean of .53 (SD = .06). The intent of 
the three designs was to cover a reasonable range of increasing item design complexity. Most of 
the item bundles showed good internal validity, with no systematic problems noted except for the 
drift of three parameters within testlets that did not have the benefit of being constructed from 
informant datasets from prior administration of similar open-ended items, and the lowered 
difficulty of one item bundle in the Design 3 category that was determined to offer increased 
opportunity for guessing. No substantial difference in item information was found systematically 
across the three designs, except for the previously well-known result that more score categories 
within the testlet increased item information, provided categories were well distinguished and 
reasonably populated. 

Though tools, content and interfaces of the testlet research project were primitive, reflecting 
the exploratory nature and small scale of the trial, many students reported satisfaction with such 
an adaptive approach to e-learning and to tailoring of materials in near-real time to student 
ability level, based on qualitative data results. Difficulties for the approach include sparseness of 
data to some adaptive paths within testlets, the challenge of identifying appropriate latent spaces 
for assessment with construct modeling, and the relatively large data sets needed for item 
response modeling of testlets.  
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