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Abstract

In estimating the operating characteristic (OC) of an item, in contrast to parametric estimation,
nonparametric estimation directly approaches the entire conditional probabilty curve, without
assuming any mathematical form. Samejima proposed several nonparametric methods in the
1970s and 1980s, under several multi-year research contracts with the Office of Naval Research.
Later, one of them, the conditional p.d.f. approach, was adapted to the environment of
computerized adaptive testing, utilizing its strengths. In the present research, the truncated
logistic model, which leads to higher accuracy in estimating the item characteristic functions
(ICFs) of dichotomous items, was used. The results of simulations showed that this method
faithfully depicted even complicated changes in nonmonotonic ICFs using as few as 1,202
hypothetical examinees.
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Nonparametric Online Item Calibration

Parametric Versus Nonparametric
Estimation of Operating Characteristics

Operating Characteristic of a Discrete Item Response

Let 6 be the latent trait, K, be any discrete response to item g and k, denote its realization.
The operating characteristic (OC) Pr. (0) , of a specific discrete item response £, is defined by

P (0) = prob.[K, = ky| O]. (1)

When item g is a dichotomous item, the binary item score is denoted by U,, with u, (=0 or
1) as its realization. The item characteristic function (ICF), P4(0) , is defined by

Py(0) = prob.[U, = 1| 0] . (2)
The three-parameter logistic model (3PL) (Birnbaum, 1968), whose ICF is defined by
Py0) = cg+ (1 —co) [1 +exp{-Da, (0-b)}]", 3)

with D usually set equal to 1.702, is the most widely used model for the multiple-choice test item
in paper-and-pencil testing as well as in computerized adaptive testing CAT).

Differences Between Parametric and Nonparametric Estimations

In parametric estimation of the OC or ICF, a mathematical form is presumed, and thus the
estimation is reduced to that of item parameters (e.g., a4 , b, and ¢, in the three-parameter
logistic ,model, or 3PL), whereas in nonparametric estimation no mathematical forms are
assumed for the OC or ICF, and researchers let their research data discover itself. Thus
parametric estimation has an advantage of simplicity, while developing a method of
nonparametric estimation is naturally more difficult and challenging. From the truly scientific
standpoint, however, the latter is more appropriate because it will make us avoid molding our
data into a specific mathematical formula that might not be relevant. Thus it is advisable to use
nonparametric estimation more often, especially on the initial stage of research.

Lord (1970) has developed a nonparametric estimation method and applied it for SAT Verbal
Test data, and concluded that Birnbaum’s 3PL may be supported for those test items. One
restriction of Lord’s nonparametric method is that it works only for a large set of data, like those
collected at the Educational Testing Service. Later, based on separate rationales, Samejima
(1981, 1984b, 1998), Levine (1984), Ramsay (1991), etc., developed approaches and methods
that do not require such a huge set of data.

The Conditional P.D.F. Approach

Samejima (1998) proposed three different nonparametric approaches, and concluded that the
conditional p.d.f. approach (CPDFA) might be the most realistic approach in the sense that it
works well without taking too much CPU time, and it is possible to handle many target items
together until the last stage where the procedure is branched to estimating OCs of separate target
items. For its rationale and mathematical logic, the reader is directed to Samejima (1998) and/or
her many ONR research reports (most of which are still available on request).



The final outcome of the CPDFA is:
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where s is an individual examinee, 7 denotes a strictly increasing transformation of ability 8, 7s
is the maximum likelihood estimate (MLE) of ability 7 for

individual s , ¢3(r | 75) denotes the estimated conditional density function of 7, given 75, and

Wi(z;7s) is the estimated differential weight function (DWF) such that
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The procedure of using Equation 4 as the estimate of the OC or ICF is called the Differential
Weight Procedure (DWP). When DWF is set equal to unity for all zand 7, , Equation 4
becomes
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and the procedure of using Equation 6 as the estimate of OC or ICF is called the Simple Sum
Procedure (SSP).

It is noted that Equation 5 is the OC or ICF itself, so there is no way to estimate it except for
using the outcome of SSP as its estimate. Thus if the outcome of SSP (Equation 6) turns out to
be close enough to the true OC or ICF, it can serve as a good estimate of DWF, and it is expected
that the outcome of DWP will become a better estimate of the OC or ICF than that of the SSP.

Simulated Data and Research Procedure
Selection of a Set of 300 Core Items (Old Test)

From the 2,131 dichotomous items that LSAC previously administered, that are represented
by three estimated parameters, a, , by and ¢, in Equation 3 of the 3PL, 300 core items were
selected to serve as the item pool for online item calibration. Thus, an effort must be made to
select core items that provide large enough amounts of test information for a wide range of
ability to make estimation of the ICFs of new, target items accurate.

Because the ¢, (guessing parameter) in the 3PL provides nothing but noise, first, all items
whose estimated ¢, were 0.2 or greater were discarded from the original 2,131 items, and only
the remaining 1,452 items were considered.

Second, because the first a, b, parameters in the 3PL no longer serve as the discrimination
and difficulty indices, respectively, some was needed device to make the appropriate selection of
the core items. Figure 1a illustrates how the ¢, parameter in the 3PL makes the item easier than
the parameter b, indicates, and also less discriminating than the parameter a, indicates,



compared with the ICF in the logistic model (2PL) (solid line) and that in the normal ogive
model (dotted line), in both of which by is the value of 6 at which the ICF is equal to 0.5, and a,
is proportional to the slope of the ICF at 0 = b,.

Thus, the ICF of each item is approximated by that of the 2PL, as illustrated in Figure 1b, for
the interval of @ higher than the critical value 6, (Samejima, 1973) below which the basic
function does not decrease monotonically, (or, almost equivalently, the item response
information function (Samejima, 1969, 1972, 1973) for the correct answer assumes negative
values,) to avoid multi-modal likelihood functions (Samejima, 1973, Yen et. al., 1991).

Figures 2a and 2b, both from Samejima (1973), illustrate the non-monotonic basic function
of uy = 1 (Figure 2a) in the 3PL, and examples of multi-modal likelihood functions for response
patterns that include such an item response. (For details, see Samejima, 1973.)

Thus, in the truncated 2PL the ICF can be written as

= 0 for —
P8 or —oo < @ < b,
gl ){= [ 1+ exp[—D ay(6 — b)) | for 6, <60 <o ™
where
1
SQ = m Iﬁgcg + bg - (8)

Based on the truncated 2PL model specified above, 300 core items were selected in such a way
that their difficulty parameters in the truncated 2PL distributed as evenly as possible for a wide
range of ability, and also their discrimination parameters in the truncated 2PL were as high as
possible. Table 1 illustrates the first page of the table that was actually used for the core item

selection. In this table, items are arranged in the order of the difficulty parameter b; in the
truncated 2PL.

Hypothetical Examinees and CAT Using the Core Item Set As the Item Pool

Birnbaum (1968) has shown that the test information function, /(#), can be obtained as the sum
of all item information functions for dichotomous items, and Samejima (1969, 1972, 1973)
showed the same conclusion for general discrete items that includes graded response items.
(Note that this is an outcome, not the definition of the test information function.) Samejima
(1973) also defined the item information function /,(6) as the regression of the item response
information function, /x(@), and she has shown that her definition of /,(0) includes Birnbaum’s
item information function as a special case. Because in this paper both core items and target
items were dichotomous items, it is sufficient to use Birnbaum’s item information function such
that

LG . o

LO) = seya< po)

where P’g(0) 1is the first derivative of Py(6) with respect to 0.

-3.



Figure 1

FIGURE la: Illustration of the Meanings of Item Parameters, a, and by
in 3PL, in Comparison with Those in 2PL.

Item Characteristic Curve

FIGURE 1b: Approximation of an ICF in 3PL by 2PL for the Interval,
(max[@,, P, (0.05)], P, '(0.95)) to Provide Truncated 2PL.
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Figure 2

Figure 2a: Non-Monotone Basic Function for U, =1in 3PL
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Table 1. 1,452 Items Selected From LSAC’s 2,131
Dichotomous Items Discarding Those With ¢, > 0.20 (First Page Only)
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1157 ITEM 18028 0.37822 -3.37052 0.14800 -4.24532 0.42311 O.47851
1158 ITEM 1559 0.41675 =3.34507 0.14800 =-4.14356 0. 47367 O.54447
A%2 ITEM 2002 O.41888 -3 26208 QLlILE0 —4.18898 0.48993 0.55530
942 ITEM 434 0.31169 =-3.25877 0.13340 =d.48153 0. 34308 0.3TE20
304 ITEM 252 0.41455 =3,13E28 0.08410 =4.77829 0. 53560 0.56148
1434 0.32341 -3.0TER3 0.13980 -—4.19128 4.36094 0.40534
1576 0.34300 -3.07028 0.12590 -4.28803 0.39535  0.43806
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1123 ITEM 1620 0.53026 =-3.01856° 0.14360 -3.6T440 0. 63764 0. 77781
§72 ITEM 1616 0.63202 -2.96038 ©.13700 <-3.3433% 0. 7TBO0LT 0.97277
1 E35 ITEM 1570 0.58076 =-2.892310 0.103%0 -3.77i08 0.75381 O.88050
11 1023 ITEM 1375 0.75491 =2.91284 0.13860 -3.30063 0.93425 1.20736
12 S4i ITEM 1560 0. 38485 < ~2.89372 0.10350 —d.17246 0.4T7282 0.52333
13- 1149 ITEM 1457 0.46732 -2.8687T8 - O0.14630 -3.59723 0.55524 0. ETAEE
14 659 ITEM 1972 0.34535 -2.085185 0.13150 -=3,97468 0.40102 ©0.45553
18 754 ITEM 1625 0.209168 =2.83021 Q.12200 —4.29547 0.32897 0.36208
16 658 ITEM 659 0.63989 -2.B1357. 0.11780 =3.49912 0.8182€ 1.00128
17 534 ITEW 1573 0.5361F -2.80178 0.10250 =-3.71398 0.69660 ©.807D3
18 804 ITEM 1717 0.36215 =-2.77801 0.12830 -3.88151 0.4Z7TE6E 0.48959
i9 532 ITEM 1575 0,31860 ~2.73944 0.10350 ~4.28575 o.37Te78 0.41395
20 32 ITEM 1833 0.83397 =-2.72219 0.11550 -3.25660 1.08295 1.36914
21 33 ITEM 1569 0.57216 =2.T0413 0.103%0 =-3,56350 0.74879 0.88333
22 927 ITEM 1668 0.69019% =-2.T02T8 ©.13270 =3.25834 0.86600 1.10450
23 1124 ITEM 1619 0.60422 =-2.66388 0.14360 =-3.1641 0.85503 1.11496
24 930 ITTEM 1473 0.74811 -2.65927 0.13270 =3.17491 0.93874 1.21535
25 834 ITEM 3034 0.57422 -2.63508 0.13080 -3.68118 0.44589 0.51554
28 T4Z2 TTEM 1649 0.39941 -2.62283 0.132300 -3I.6TEES 0. 48807 0.56661
27 10 ITEM 1703 0.7T7231 -Z.60784 0.12830 -3.1l18848 0.98341 1.26347
28 025 ITEM 656 0.601E68 =2.60266 0.12940 =3.25580 0.-75586 O.34644d
29 9S04 ITEN 1748 0.37012 -2.55253 0.13250 =3.62815 0.44078 0.51442
30 755 ITEM 1548 0.00818 <=Z.30875 0.13200 =3.10541 1.04024 1.33046
31 1103 ITEM 1773 0.51824 =2.58863 0.14080 =3.27735 0.68333& 0.75072
32 £72 ITEM 1680 0.57387 -2.56040 0.11880 -3.30732& 0.73860& 0.839€89
337 Tie ITEM 1642 9.38811 -2.55848 0.13300 -3.60808 0.49086 0.56985
=T 438 ITEM 2I1F 0.55615 -2.3535600 0.08730 -3.56802 0. T4945 0.BE4ZT
as A57 ITEM 1981 0.T1063 =2.54583 0.13150 -=3.09998 0.85319 1.15337
38 S42 ITEM 15858 0.32934 -2.54612 0.10350 -4.03708 0.35992 0.44215
37 533 ITEM 1574 0.44730 =2.54074 0.10350 =3.E3740 0.57481 0. EE0A1
38 298 TITEM 1182 0.5£296 =2_.52462 0.06310 ~-3,.74802 0.79431 0.87324
33 970 ITEM 1618 0.93067 -2.5138=% 0.137T00 -2.50438 1.1666T 1.55601
40 B85 IYTEM 1556 0.48006 -2, 50653 0.13190 =3.3042% 0.59564 0.-T261%
41 1283 ITEN 491 0.37T188 -2.5037¢ G.16760 =3.33687 0. 42187 o.52252
42 882 ITEM 1932 0.T4369 -2.50372 0.13190 =-3.01817 0. 34043 1.7z
43 1134 ITEM 1563 Q9.31721 -2.50352 014410 =3.59€99 0.36087 0.42103
880 TITEM 1464 0. 85220
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Figure 3 presents, by smallest dots, the square root of the test information function for the
total set of 300 core items thus selected following the truncated 2PL. It can be seen in Figure 3
that the core item set provided standard errors of estimation as small as 0.25 or less for the
interval of 6, (-3.0, 3.4), taking the reciprocal of the square root of test information as an
approximated standard error of estimation.

1,202 examinees were hypothesized, with @ distributed uniformly for the interval of &,
(-3.0, 3.0). Using the set of core items as the item pool, by the monte carlo method a sequence
of binary item scores (response pattern) of each hypothetical examinee was produced in the CAT
environment, that is, after each presentation of a core item, based on the current response pattern,
the examinee’s MLE of 6 was evaluated, and an item with the largest amount of item
information at the current MLE of @ out of the remaining core items in the item pool was

selected and presented.



Figure 3

Square Root of the Test Information Function of 300 Core Items
Following the Truncated 2PL.
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In so doing, following the truncated 2PL, the amount of item information below the critical
value 6, was set equal to O for each core item, so that the item would never be presented if the
examinee’s current MLE of 6 was below the critical value 6,. Thus the use of the truncated 2PL
instead of the 3PL for the core items avoided the possibility for some response patterns to have
multi-modal likelihood functions (Samejima, 1973), which happen more often than many
researchers are aware (Yen at al, 1991).

Five stopping rules were used, that is, presentation of new items was stopped and the testing
for the examinee in question was ended when the estimated standard error of estimation (SE),
1.e., the reciprocal of the square root of the test information function at the current MLE of 6,
reached or exceeded 0.25, 0.32, 0.40, 0.50 , respectively, and also regardless of the estimated SE
when the number of presented core items reached 40 for the sake of comparison. Note that in
CAT each examinee takes a customized subset of the core items, and thus the amount of test
information was evaluated as the sum total of /,(6)’s in Equation 9 over the subset of
individually customized items.

Figures 4a and 4b illustrate the number of the core items selected and presented to each of
the 601 examinees in half of the total group (Figure 4a) and the square root of the amount of test
information evaluated at the true value of 6 (not at its MLE) (Figure 4b) when the SE = 0.32
stopping rule was used. It was observed that for the intervals of 6, (-3.0,-1.7) and (2.3. 3.0),
substantially larger numbers of items had to be presented compared with the interval between the
two, because of the scarceness of informative items in these intervals.



Figure 4

FIGURE 4a: Number of Items Presented to Each Examinee When the
S5E = 0.32 Stopping Rule Was Used, in Comparison with
40 Items. {Outcomes of the First Half Group of 601 Examinees Only.)
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Concurrently with the above CAT, 25 target items that did not belong to the core item set and
whose ICFs were to be nonparametrically estimated were administered to each hypothetical
examinee non-adaptively, scored, and kept separately until a later stage.

Transformation of 0 to T That Has a Constant Information Function

On the right hand side of Equation 4 or Equation 6)there is no &, but 7 is used that has a one-
to-one mapping with 6. This transformation is given by

1
r= [ 1@t + Gy (10)

where Cp is an arbitrary constant to adjust the origin of 7, and C; is another arbitrary constant.
Let 7*(r) denote the test information function based on the transformed ability, 7. It can be seen
from the transformation formula Equation 10 that

vI'(T) =6 . (11)

Equation 11 indicates that the test information function of 7 has a constant value, and its square
root equals C;in Equation 10. By a general characteristic of MLE, the MLE of 7 is given by

7 = 7(8,) . (12)

where V is a response pattern, or sequence of item scores of the customized items scores, and v
denotes its realization, év is the MLE of the examinee’s ability based on response pattern is v,
and 7, is the MLE of 7 for the response pattern J'=v. Because an examinee s has one and only
one v, hereafter, 6, and 6 are used interchangeably, and so are 7, and 7, , év and HAS ,and 7» and
75, respectively.

An advantage of transforming 6 to r by Equation 10 is that: (1) F(7 | 7), the conditional

distribution of 7 given 7, can be approximated by N(z, C;”""?), and (2) because of this the first
through fourth conditional moments of 7, given7 , can be approximated by

B(t|%) = ﬂ+-é—,§ d%logg[ﬁ} : (13)
Var.(r | %) = -1? {H% ;%logg(ﬁ}-} : (14)
g - 1 [ d® :
E{r —E(r |#)} | ] = cs {E;EIUEH(W)} : (15)
E[fr—B(r | &)} |7 = Gl;’ {3+£1§ [%lcgg(’ru}] (16)
+% {;;mgg(ﬁ}]“ +—é¥ [E‘% log 9(7)]}

-9.



where g( 7 ) is the probability density function of 7 .

A close look of Equations 13 through 16 discloses that if the probability density function,
g(7), is well approximated by a four-times differentiable function, all the four moments on the

left-hand side of those equations can be evaluated. Because 8. for each of the 1,202 hypothetical
examinees are observable, using Equations 10 and 12, 1,202 values of 7 were obtained, and
using the method of moments the least squared polynomial can be obtained as an estimated g(7 )
(Samejima & Livingston, 1979).

Figure 5

FIGURE 5a: Frequency Distribution of MLE of n for the 1,202
Hypothetical Examinees. Stopping Rule: SE=0.32.
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FIGURE 5b: Least Squares Polynomials of Degrees 3 and 4 for the Set
of 1,202 MLEs of T Obtained with the SE=0.32 Stopping
Rule, Computed by the Method of Moments.
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Figure 5a presents the frequency distribution of the 1,202 values of 7» with a small interval
width of 0.10 . The polynomials of degree 3 and 4 fitted by the method of moment are shown in
Figure 5b. It is noted that in the latter figure these two curves are substantially different from
each other. Hereafter, we shall call it the Degree 3 Case when the polynomial of degree 3 is used
as the estimate of g(7 ) in Equations 13 through 16 for each of the 1,202 7 s, and the Degree 4

Case when the polynomial of degree 4 is used.

Using Pearson’s criterion k and other indices (Elderton & Johnson, 1969) such that

K = Bi{Bz + 3)*
T 426, -3 - 6)(46. - 36) (17)
6 = iﬂ':;“ : (18)
7
i 7@' (19)

where u,, s and uy are second, third, fourth moments about the mean 4 . In this research,

these moments were replaced by the conditional moments obtained for each 7s by Equations 13
through 16, respectively, in each of the Degree 3 and 4 Cases. The values of these indices
branch each of the 1,202 conditional distributions to one of the Pearson system distributions, and
its approximated probability density function, ¢(z |7s), can be calculated as a function of 7.

Note that the entire procedure was done separately for each of the Degree 3 and 4 Cases and the
outcomes were compared with each other.

Table 2 presents the first page of the output showing the process of selecting one of the
Pearson’s distributions in the Degree 3 Case, in the ascending order of z,. In this table, Type 8
indicates a normal distribution and Types 9 and 10 are junk distributions for convenience, and
Type 1 and 2 are asymmetric and symmetric Beta distributions, respectively, following Pearson’s
naming. Frequency distributions of those types are shown as Table 3, for each of the Degree 3
and 4 Cases.

When f; =0 and S, = 3, they indicate a normal distribution for ¢(z |7s). Table 3 makes it

clear that the majority of conditional distributions are approximated by normal distributions, in
both Degree 3 and 4 Cases.

Pearson’s Type 2 distribution, that is, a symmetric Beta distribution, also has 5; =0. In
Table 2, there are seven Type 2 distributions observed. A close examination of their values of
[, however, clarifies that these values are very close to 3, ranging from 2.940 to 2.974.

Even Pearson’s Type 1 distribution, an asymmetric Beta distribution with ;> 0, that
appears ten times in Table 2, with the exception of s = 32 that has ; = 0.896 and S, = 0.786, for
all the other nine f; ranges from 0.006 to 0.051, and also /5, ranges from 2.673 to 2.924,
indicating that they are close to normal distributions. Both Type 1 and Type 2 (and Type 9 and
Type 10, if any) distributions show up at very low and very high values of 7, and they are
seldom seen at intermediate values of 7s. This result is consistent with the author’s many other
results of the CPDFA in non-CAT environments.

-11 -



Table 2: First Page of the Output Showing the Pearson’s Indices and the Type
of Pearson Distribution Assigned to Each of the 1,202 Examinees for the Degree
3 Case and Stopping Rule SE = 0.32 (1 = Asymmetric Beta Distribution, 2 =

Symmetric Beta Distribution, 8 = Normal Distribution)

o ]
BURIECT aE WEAH MOMENTS ABOUT MEAM BETAL BETAS CRITERION TR Ind
I Ima
I8m) (IEBJ)  ( TAU ) ] 3 4
1 1801 =3.37808 =3.36118 e.00607 000413 0.02104 0.026 1.751 =0 040 1 1
3 1803 -3.8MAT4 =3.62009 809033 0. 00064 0. 02087 0.000 1.004 =0.011 (] 3
3 ueed  -3.00871 -3 03734 B.00660 500101 B.03788 0.081 3.974 -0.018 ] 3
4 L0 =3.243089 =3.14833 9.00214 o.00160 0. 03408 B.08% 2097 =0.83% i 1
5 1608 -3.0057¢ -2,.91130 0. 09569 0.00136 8.03718 0.083 3.964 -0.018 2 5
& 1006  =2.905M =3.91128 B.00560 9.00128 2.03718 0.003 2.964 -0,018 ] ]
7 1807  -3.11489 =3, 02048 6.09303 0.00177 2.03590 0.084 1.M2 -0.031 ] 7
[0 P TE ) =1.3202% B.50358 9.00548 301047 B.0%51 2.6M3 «0.048 i []
§ 1008  -3.3371% «3.13088 B.001E8 . 58347 303434 b.088 3.0 -0. 830 i ]
16 1816  «3.34384 =3.33148 G.aanln 0. 00263 B3NS B.01p 2.82% 0. 008 i 1]
13 1831 -2.30748 1. 36558 B.10000 B.00023 B3 B.0%0 2.998 =0.0887 [] 11
11 1013 -3,.322218 1] 0.09247 800243 003442 o000 2.907 -0.028 i 13
13 1813 -3.33067 =2.37036 [®11171 0. 00013 0.03993 0.080 3.994 ~0.007 ] 13
14 1814 -3.35381 -3. 38044 [WIITEY 5.00038 0.02508 0.080 2994 -0. 087 ] 14
15 1618 -2.71483 -3. 65670 8.0%013 550068 003878 0.000 3.908 -8, 033 ] is
16 1616 -3.17688 =3.0851% 809367 0.00313 0.03811 0.008 3.934 ~9.038 i 14
17 117 -2.02100 =31, 78798 B.09724 9.00008 B.0a033 0001 .97 =004 L] 17
18 1018 -3.54008 3. 49073 .00 804 0.00840 0.03938 0.000 1.9M =0. 009 ] i
1% 191 -2.83458 =3, 78098 009724 0.00008 002038 0.001 197 =0.814 ] 13
16 1838  <3.87T7R 3. 03058 o.e0883 0.00097 B.e378L 0001 2.578 =0.018 [ ] H1 ]
31 1031  -3.70588 =3.73302 0.89763 e.040870 B.024d 0.001 3.0 =0.813 [ ] -
23 1033  -2.9628% -3, 88098 009887 8.00119 0.063733 50032 2.967 0,017 2 22
13 1023 =3.THE03 =2. 738 0. 09755 d.00001 0.02008 G.091 a.901 =0.013 [ ] 3
34 1o -3.40480 =3. 15068 0099487 B.00030 0.0257) 0.000 2.99) -0.008 ] FL
35 1838 -3.75480 =3, 69833 0.88708 080074 0.03088 0001 2903 =0.033 [ 1
2 1edd  -3.00078 =3. 93788 0.05847 6.80133 0.037T08 8003 1.983 -8.028 3 4
37 1837 -3.707M4 =3, B0 E0 [ M1 0. 00067 003078 9.080 i.988 -8.013 [ n
30 1838 -3.40189 =3.30880 6. 08448 980507 0.03934 v 0043 1.76% 0. 0448 i an
13 1g3y 337 =3.03893 0.09371 090081 0.03883 o.004 .04 -8.033 2 s
3 1038 -3.75131 =3.69131 [ W ilt] 0.00873 003058 0.001 1.90) =9.011 [ »w
3 1631 -3.3%484 =3.11841 608084 0.00338 0. 03488 0.007 2.918 =0.037 i n
33 1033  -3.66588 =3.47833 6.86414 6.018538 B.0831Y 6058 0.788 =0.007 i 1
33 1633 -3.64561 -3.55088 0.00058 000080 0. 63083 b.000 a.sm -8.811 i 4]
34 1034 -3.10768 =3.14843 0. 10834 5.008837 0.83018 0.008 3998 0. 008 ] M
35 1835 -2.75MB =3.863337 009707 B.R0ET4 0.03087 e.001 .90 ~0.013 ] b1

TABLE 3: Frequency Distributions of Pearson Type
Distributions for Each of Degrees 3 and 4

Cases. Stopping Rule: SE=0.32.

Each of type numbers 1-7 indicate Pearson type member except:

Degree 3 Case Degree 4 Case
TYPE | FROC. TYPE .
1 53 1 143
2 T8 2 108
3 1] 3 0
4 ] 4 0
5 1] 5 0
& 0 [] 0
7 0 7 0
i 1,070 5 911
9 | 9 34
10 0 10 &
TOTAL | 1,202 TOTAL| 1202 |

thruldimﬁuim_'

& Others

10: Undefimed
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For the above reasons, and because of the confirmation that mixture of a small number of
non-normal distributions practically does not affect the outcome of SSP nor DWP in the non-
CAT environment, normal distributions were used for the estimated ¢(z |7s) for all 7s s, based

on only the first two conditional moments. Dominance of the normal distribution is no surprise;
it can be interpreted by relating it to the Dutch Identity (Holland, 1990).

Substituting those approximated conditional densities, ¢(z |7s), into Equation 6. the

estimated ICF is obtained as the outcome of SSP for each of the twenty-five target items; using
this outcome as the DWF in Equation 4, the estimated ICF was obtained as the outcome of DWP
for each target item.

In addition, the criterion operating characteristic is defined as the outcome obtained by
using the true ICF as the DWF in Equation 4. This criterion indicates the limitation of the whole
procedure adopted in the research; that is, the outcome of SSP or DWP cannot exceed the
criterion operating characteristic in accuracy of estimating the true ICF, unless part or all of the
procedures used in the research is revised. Note that only the use of simulated data makes it
possible to obtain this criterion.

Since in the present research dichotomous items are exclusively used, it will be called
criterion ICF and abbreviated by Cr.ICF.

Results

As it turned out, the estimated ICFs were practically the same for each target item in the
Degree 3 and 4 Cases, although these two polynomials of degrees 3 and 4 approximating g(z,)
are substantially different (Figure 5b). Figures 6a through 6d illustrate comparisons of the
outcomes of SSP, between Degrees 3 and 4 Cases, and between two stopping rules, SE = 0.32
and 40 item. It can be seen that for the same stopping rule the estimated ICFs are practically
identical with each other. As was expected, however, outcome of the 40-item stopping rule and
that of the SE = 0.32 stopping rule were substantially different, and the latter was closer to the
true ICF than the former, in each of the Degree 3 and 4 Cases.

Figures 7a through 7h present the true ICF, the outcome of SSP, that of DWP, and the Cr.ICF
for four nonmonotonic ICFs (7a through 7d) and for four monotomic ICFs, including very
accurately estimated ICFs and less accurately estimated ICFs. In Figure 7a, the true ICF of item
T183 had a relatively simple nonmonotonicity, and the Cr.ICF was very close to the true ICF.
The outcome of SSP was already close to the true ICF and Cr.ICF, but the outcome of DWP
showed a slightly closer fit. The true ICF of item T111 had a little more complicated
nonmonotonicity, but tendencies similar to those observed for item T183 were also recognized,
and the same was true with item T148, although its Cr.ICF haf larger discrepancies from the true
ICF for the interval of @, (=0.1, 1.2). Regardless of these differences, in all three sets of
outcomes nonmonotonicities in the true ICF were well detected.

-13 -



ITEM CHARACTERISTIC CURVE

FIGURE 6: Comparison of the S5P Outcomes of the Target Item T103 between
Degree 3 Case and Degree 4 Case, and between the Stopping Rule:
SE=0.32 and 40 Item Stopping Rule.

FIGURE 6a: Degree 3 Case, Stopping Rule: SE=0.32,
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FIGURE 6b: Degree 3 Case, Stopping Rule: 40 Items.
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Outcomes for item T012 in Figure 6d are of interest. The true ICF of this item had a
relatively flat part for the interval of 6 (-3.0, 0.6), and a very steep part for the interval of 8,
(0.6, 3.0). Although the Cr.ICF for the latter interval of @ was close enough to the true ICF, and
the outcome of DWP showed some improvement over that of SSP, in the former interval of 6
the Cr.ICF itself had substantially large windings, and these windings are exaggerated in the
outcome of DWP compared with that of SSP. One conceivable reason for these windings is the
way 1-transformation was made (Figure 4b), another might be the relatively small number, 300,
of items in the item pool, and consequently the standard error of estimation in the stopping rule
had to be as large as 0.32. It is necessary to pursue all conceivable reasons, and further
refinement of the present method is desired.

If the windings are considered as errors when they occur in the relatively flat part of the true
ICF, smoothing of that part of estimated ICF might be legitimate. For the outcome of DWP for
item TO12, smoothing was tried by fitting the least squared polynomials of degree 3 and 4, as
shown in Figure 7d, though these two curves were practically identical. If the estimated ICF by
DWP is replaced by one of these curves for the interval of 6, (—3.0, 0.0), a substantial
improvement will occur in the outcome of DWP.

True ICFs of the items B465, B101, B439 and B424 in Figures 7e through 7h are monotonic,
that were taken from 3PL ICFs. The first two are examples of accurate estimation in the sense
that the Cr.ICF was very close to the true ICF, and the outcomes of both SSP and DWP were
close to these two. There are slight windings in Cr.ICF and also in the outcomes of SSP and
DWP, especially for item B101, however, and they were exaggerated in the outcome of DWP
caused by the use of the outcome of SSP as DWF.

Figures 7g and 7h are example of not so slight windings in the Cr.ICF, and they are more
exaggerated in the outcome of DWP. In Figure 7h, assuming those windings are errors,
smoothing by the least squared polynomials of degree 3 (green) and degree 4 (light blue) of the
DWP outcome are drawn.

Estimated ICFs in these eight figures are the outcomes in the Degree 3 Case. As was
mentioned earlier, the outcomes in the Degree 4 Case turned out to be very similar to those in the
Degree 3 Case.

Discussion and Conclusions

In general, Cr.ICFs were close to their respective true ICFs, and both the SSP and DWP
outcomes were close to both curves, indicating the success of the present nonparametric online
item calibration approach.

Both SSP and DWP detected nonmonotonicity of ICFs accurately when it existed. In
general, when nonmonotonicity existed, the outcomes of DWP tended to be closer to both the
true ICF and Cr.ICF than those estimated by SSP.

Sometimes windings were observed in the estimated ICFs when the true ICF, or part of it,
was relatively flat, or slowly and monotonically increasing in 6. They were observed even in the
criterion ICFs, indicating that further improvement of the method is necessary, and/or increase in
the sample size might be needed. However, assuming that windings for relatively flat part(s) of
the ICF were errors, smoothing can be effectively made, using the least squared polynomial of a
relatively small degree (e.g., 3 or 4) by the method of moments. Irregularity in some estimated
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ICFs might be ameliorated if the number of core items is increased, so that the stopping rule of,
say, SE = 0.2 or less becomes possible.

The present online item calibration is perfectly applicable for graded responses both for core
items and target items and, moreover, their inclusion in the core item set and use of them for
items that are presented at the early stage of CAT to branch the examinees roughly over the
ability scale should make CAT more efficient. (Note that, in general, a graded response item
provides larger amounts of information than a dichotomous item; Samejima, 1969.)

It is interesting to note that, even if a researcher uses parametric estimation of OCs or ICFs
the results might have characteristics of the outcomes of nonparametric estimation. A good
example is the failure in recovering the values of the three parameters in the 3PL that has
repeatedly happened in the past. A strong reason for this failure is that the third parameter, ¢, , in
Equation 3 is nothing but noise and it is practically impossible to estimate its value because
inclusion of more examinees on lower levels of & will create greater errors in the estimates of
their ability levels .

Both SSP and DWP are useful in clarifying and using information provided by incorrect
alternative answers of multiple-choice items, in addition to that provided by the correct answer.
Figure 8§ presents two examples of the estimated operating characteristics of the incorrect
alternative answers by SSP, called plausibility functions, discovered from the data collected for
the 11 level Vocabulary Subtest of the lowa Tests of Basic Skills (Samejima, 1984a, 1994).
These examples indicate that incorrect alternative answers might have differential information
that could be used in ability estimation, online or off-line. It is advisable to include such
incorrect answers, the plausibility of which appeal to the examinees of different levels of ability.

Figure 9 presents the ICF and the plausibility function of the most plausible incorrect
alternative answer of a hypothetical multiple-choice test item following Samejima’s (1979)
model, illustrating that both choices can be used in ability estimation, using a truncated normal
ogive or logistic model for the correct answer (upper graph) and similarly for the most plausible
incorrect answer.

The truncated 2PL or normal ogive model has many other effective applications, especially
in the CAT environment. Although nonparametric item calibration is important, there has not
been strong enough interest among researchers and practitioners. The present research is not
really completed, but there are several things that need further investigation. The author invites
the reader to participate in such investigations, as well as to use the present method for his/her
own research and inform the author of its outcomes.
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Figure 8

Examples of Plausibility Functions of Four Distractors Estimated by
CPDFA, Based on the Empirical Data on the Level 11 Vocabulary Test
of the Iowa Tests of Basic Skills.
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Figure 9

Operating Characteristics of the Correct Answer (above) and the Most
Plausible Incorrect Answer (below) of an Hypothesized Five- Choice
Item, Following Samejima’s Model for the Multiple-Choice Item.
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