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Abstract 
CAT procedures do not function as expected unless they have an item pool that provides appropriate 
items for the item selection criteria.  This paper describes a methodology for describing the 
characteristics of an item pool that is needed to support a CAT procedure.  The methodology is called p-
optimal because it does not require the specific item that matches a current ability estimate, but only one 
that provides at least p-proportion of the maximum information from the item.  Optimal item pools are 
very large in size.  The use of p-optimality allows the item pools to be reasonable in size while still 
providing an item pool that allows the CAT to function as planned.  An example of the item pool design 
process is given using a simple example based on the Rasch model. 
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The Design of p-Optimal Item Banks  
for Computerized Adaptive Tests 

 

Computerized adaptive tests (CATs) are methods for assessing the level of a target 
hypothetical construct for a person.  The methods select test items during the process of test 
administration to match the characteristics of the person and optimize some measurement 
criterion, usually the amount of information provided about the location of the person on the 
construct.  There is a substantial literature on the advantages and disadvantages of CATs, and 
there are number of textbooks on the subject including the classic work by Wainer et al. (2000) 
that is now in its second edition. 

One of the components of a CAT that is often underappreciated is the set of items that are 
available to the selection algorithm.  This set of items is usually called an “item bank” or “item 
pool.”  Although selection algorithms are designed to maximize some measure of information or 
minimize a measure of error, these algorithms cannot yield good estimates of location on the 
construct in an efficient way unless appropriate items are available for selection.  Although the 
item bank for a CAT is a major component of the procedure, there is little in the research 
literature that provides guidance about the desired qualities of an item bank.  Instead, the 
literature gives methods for selecting items for an item bank once specifications have been 
developed (e.g., Veldkamp & van der Linden, 2000) or methods for dividing a set of items into 
parallel banks to improve test security (e.g., Chang & Ying, 1999).  The purpose of this 
presentation is to provide some guidance about item bank design for CATs.  In particular, 
procedures will be described for determining the size of an item bank that is needed for a CAT to 
function properly and the distribution of item characteristics that is optimal for a particular 
implementation of a CAT.  This work builds on earlier work by Patience and Reckase (1980) and 
Reckase (2001). 

Along with providing a general model for approaching the item bank design problem, a 
number of specific examples will be provided.  These examples deal with a variety of simple 
cases that highlight the characteristics of the item bank design methodology.  Gu & Reckase 
(2007) extend this methodology to a more complex CAT model. 

 
Definition of an Optimal Item Bank 

The typical report of CAT research describes the characteristics of the item bank used in that 
research.  Often that item bank consists of a set of readily available items, or the parameters of a 
set of items that are from existing forms of tests in a testing program.  The item bank is typically 
summarized by distributions of the item parameters for the bank.  However, there is seldom any 
evaluation of the quality of that item bank or an evaluation of whether the item bank is well 
matched to the requirements for the CAT.  In this paper, an optimal item bank is defined as one 
that always has an item available for selection that matches the desired characteristics specified 
by the item selection routine for the CAT.  For a simple example, suppose that a CAT is based 
on the Rasch model and the selection rule is to pick items that maximize the information 
provided by the items at the current estimate of trait level (θ).  For the Rasch model, information 
is maximized when the difficulty parameter for the item is equal to the current estimate of θ.  
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Therefore an optimal item bank is one that always has an item available that has a b parameter 
that is equal to the current estimate of θ. 

P-Optimality 
This definition of optimal is somewhat unrealistic because θs are on a continuous scale.  To 

implement this definition of optimality as stated, if estimates of θ were 1.225 and 1.227, two 
different items with b-parameters equal to 1.225 and 1.227 would be needed, even though the 
difference in those values probably is less than the error in estimation of the item parameters or 
the θ estimates.  Requiring items to exactly match the θ estimates would also require 
unrealistically large item banks.  To address these issues, the definition of optimal is relaxed 
somewhat.  A purist will say that anything less than optimal is not optimal, which is true, but it is 
more realistic to consider the definition of optimal to be within the level of accuracy of item 
parameter estimation and meaningful differences in the functioning of test items.  For actual test 
items, the difference in information provided by items with b parameters that are close to each 
other is small.  Therefore, optimal is defined here as always having an item that is within a 
specified range of the characteristics of the item requested by the item selection algorithm.  To 
make clear the deviation from true optimality, the design criterion is labeled “p-optimal,” with 
the proportion reduction from optimality indicated by the value of p. 

For the case of selecting items to maximize the information provided by the item, the 
definition of p-optimal that is used here is that the amount of information is p proportion or more 
of the maximum information for the items.  That is, each item has an information function and 
the goal for selecting items is to use an item that has p-proportion or more of that maximum.  For 
example, when seeking to have .9-optimal item pools, the goal is to use items that provide at 
least .9 of the maximum information for the item.  For the Rasch model, this is fairly easy to 
determine because all items have the same form for the item information function.  Figure 1 
provides the item information function for an item with b = 0, along with intervals that show 
when the item provides at least .9 of the maximum or .8 of the maximum.  The range that is 
within .9 of the maximum is roughly from −.4 to .4.  Therefore, an item would be considered 
acceptable for .9-optimal item selection by the CAT maximum information algorithm if it were 
within .4 of the current θ estimate.  The .8-optimal range is within .6 of the current estimate of θ.  
If .95 of the maximum is used as the criterion, the selected item should be within .3 of the 
estimated θ. 

 This definition of p-optimal results in a smaller number of required items for a bank than 
requiring an item that has a b parameter that exactly matches the current θ estimate; any item 
within a specified range can be selected for administration by the algorithm.  To help determine 
the number of items required to meet the requirements of a CAT, the range of θs that are likely to 
be observed can be divided into regions called “bins”.  An item that has a b parameter within a 
bin is considered to be a p-optimal selection for a θ  that falls within the limits of the bin.  There 
is a small amount of inconsistency with this operational definition of p-optimality.  If θ is located 
at one end of a bin, an item might be selected from the other end of the bin, resulting in a 
selection that is more than the desired distance away from the θ value.  This argues for using bin 
sizes that are slightly smaller than that determined from the specified proportion of maximum 
information. 
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Figure 1. Information for a Rasch Item With b = 0 

 
An Example 

An example may help clarify some of these definitions.  Suppose that the true θ for an 
individual is −1 and they are administered a CAT that uses items calibrated using the Rasch 
model.  Item selection is maximum information and θ estimation is maximum likelihood.  Until a 
correct and incorrect response is available, the θ estimate is increased by .7 after a correct 
response and decreased by .7 after an incorrect response.  An initial estimate of 0 is used to start 
the CAT procedure.  After each θ estimate, it is assumed that an item with a b parameter exactly 
equal to the current θ estimate is available for administration because that is the item that will 
have maximum information for that point on the score scale.  The CAT is fixed length at 20 
items. 

This CAT is simulated by assigning a score of 0 or 1 for an item depending on whether a 
uniform random number is greater than or less than the probability of correct response for the 
administered item for the true θ.  The procedure begins by selecting an item with a b parameter 
equal to 0, the item with maximum information at the initial θ estimate.  That item has a 
probability of correct response of .1545 for a person with θ equal to −1.  If a uniform random 
number of .3764 is generated, a response of 0 is assigned to the item, because the random 
number is greater than the probability of correct response. Because scores of both 0 and 1 are not 
available, the maximum likelihood estimate is not defined and the estimate of θ is reduced by .7 
to −.7.  The next item is selected to have a b parameter of −.7 and the process continues as above.  
When the response string contains both a 0 and a 1, maximum likelihood is used to estimate θ.  
The CAT terminates when 20 items have been administered. 

Table 1 contains the b parameters for the items selected for administration and the item 
response for each item.  Because the requested item with b parameter equal to the θ estimate is 
assumed to be available, the b parameter for the next item is the same as the θ estimate after the 
previous item.  The final θ estimate for this adaptive test is −1.1263.  This is the estimate after 
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the 20th item on the test.  It is slightly higher than the last b parameter because the last item score 
was a 1 for a correct response. 

 
Table 1.  b Parameters (and θ Estimates) and Item Scores 

 for a Simulated CAT Based on the Rasch Model with True θ = −1 

Item Number b Parameter Item Score 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
−0.7000 
−1.4000 
−1.1986 
−1.5924 
−1.2914 
−1.0607 
−1.2537 
−1.0878 
−1.2332 
−1.1037 
−1.2204 
−1.1142 
−1.2116 
−1.1217 
−1.2052 
−1.1272 
−1.0538 
−1.1229 
−1.1880 

0 
0 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 

 

A quick scan of the item parameters shows that some of them are very similar.  From a 
practical perspective, the differences in difficulty of those items are of no practical significance.  
Using the concept of bins, the number of items for each range of the θ scale can be counted to 
give the number of items needed in each range for the p-optimal measurement of this examinee.  
For this example, a bin width of .6 is used, based on a .8-optimal criterion.  The results are 
presented in a bar graph in Figure 2. 

The results of the counts of the items in each of the bins shows that 1 item was needed from 
the range −.3 to .3, one item was needed from −.9 to −.3, 17 items were needed from −1.5 to −.9 
(the range that included the true θ) one item was needed from −2.1 to −1.5.  For this 
administration of the CAT, this would be the 20 items that would be needed for there to be an 
item available near every item that was requested.  For one person, the CAT needs 20 items 
because items can not be reused for the same person. 
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Figure 2.  Number of Items in Each Bin  
for a Test with True θ = −1 

 
It will be possible to reuse some of the items if a second examinee is located relatively close 

to the first examinee.  Suppose the CAT is administered to a second examinee with θ = −.5.  The 
bar chart with counts of items in bins for that examinee is given in Figure 3.  For this examinee, 
two items are needed from .3 to .6, five items are needed from −.3 to .3, eight items are needed 
from −.9 to −.3, and five items are needed from −1.5 to −.9. 

 
Figure 3.  Number of Items in Each Bin  

for a Test With True θ = −.5 
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If test security is not a concern, there is no need to have 20 unique items for the second 
examinee if the items for the first examinee are already in the item bank.  The first examinee 
already needed 17 items between −1.5 and −.9, more than enough for the five items required by 
the second examinee.  In general, the items needed for both examinees is the larger of the two 
counts for each bin—one item in the range −2.1 to −1.5, 17 in the range −1.5 to −.9, eight from 
−.9 to −.3, five from −.3 to .3, and two from .3 to .6.  The total of items needed for both 
examinees is 33 rather than the 40 that would be needed if items could not be reused.  This 
number is the union of the sets of items for the two examinees.  The distribution of items in bins 
for the item bank for two examinees is shown in Figure 4. 

 
Figure 4. Number of Items in each Bin Needed  

for Two Examinees With θ = −1 and −.5 

 
To determine the total number of items needed for a CAT, this process of selecting items can 

be continued for the number of examinees expected to be administered a test from the same item 
bank.  The general process is to randomly select an examinee from the expected examinee 
population, determine the optimal set of items for that examinee, find the union of the items 
needed for that examinee with any previously selected items for examinees sampled earlier, and 
continue this process until the specified sample number of examinees is reached.  The resulting 
distribution of items in bins gives the p-optimal item bank distribution for the specified 
population of examinees. 

Suppose the hypothetical Rasch model based CAT is designed for a population of examinees 
that is distributed normally with mean 0 and standard deviation 1.  Further, suppose that this low 
stakes CAT is expected to be administered to 10,000 examinees over a period of time.  What is 
the .95-optimal distribution of item difficulty parameters for this application? 
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Figure 5.  Increase in Number of Items Needed in  
the Item Pool With Increase in Number of Persons Tested 

 
The number of items in the union of the item sets for the randomly selected examinees is 

graphed as a function of the number of examinees.  That graph is presented in Figure 5.  The 
graph shows that the number of items needed in the bank increases very quickly as the number of 
examinees increases, and then reaches an asymptote after about 5,000 examinees.  The 
asymptote is at 218 items.  Figure 6 shows the distribution of b parameters over the bins for the 
218 items after the asymptote in item pool size was reached.  Note that this distribution is not 
normal, but is flatter and does not drop to zero in the tails.  This is because items are needed for 
good measurement of extreme abilities even if there is only one individual at the extremes. This 
suggests that selecting 218 items from tests designed for paper-and-pencil administration will not 
be optimal for computerized adaptive tests. 

Summary and Conclusions 
This paper describes a methodology for determining the desired characteristics of an item 

pool for a CAT.  An example is provided based on a simple adaptive testing model using the 
Rasch model. The results show that the item pool size is dependent on the distribution of the 
examinee population and the number of persons who will take the CAT.  The results also show 
that the form of the desired item pool is not a normal distribution of Rasch difficulty values, but 
rather one that is flattened with quite high frequencies at the tails of the distribution. 

 The item pool needed for a CAT is quite specific and is related to the design of the 
procedure and the characteristics of the examinee population.  Other work in this area has also 
shown the effects of exposure control procedures on the desired characteristics of the item pool.  
The investigation of the desired characteristics of the item pools for CATs is clearly an area that 
is in need of further research.  CATs work well only when they have item pools that support the 
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methodology.  The best CAT procedure may not work well when the item pool does not provide 
the kind of item that is requested by the procedure. 

 
Figure 6.  Distribution of Items Over Bins  
for the p-Optimal Item Pool of 218 Items 
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