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Abstract 
This paper discusses validity and decision issues that should be addressed in selecting a 

computerized adaptive testing (CAT) model.  The paper begins with a historical perspective 
on the expected benefits of computer-based testing. It summarizes six computer-based testing 
innovations by the authors and shows how these innovations extend traditional theory and 
practice of measurement science andCAT. These six innovations include performance work 
models, job analysis and synthesis, continuous learning progress pathways, validity-centered 
design and documentation, and logical measurement opportunities in performance tasks and 
simulations. The paper then discusses specific decision issues relevant to the selection of a 
CAT model and provides current research related to those decision issues. Three illustrated 
examples are provided for using item response theory and CAT elements leading toward a 
performance testing measurement model.  Conclusions and recommendations for future 
research are presented.   
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Validity and Decision Issues in Selecting 
a CAT Measurement Model 

 
This paper addresses validity and decision issues involved in selecting a computerized 

adaptive testing (CAT) model and has five primary objectives: 

1. Present a historical perspective and a validity centered design and documentation 
model 

2. Highlight the need to generalize the definition of test items in CAT to allow for use of 
integrated, functional simulation and performance tasks within a CAT system 
environment.  

3. Present a practical approach for the various decisions involved in selecting a CAT 
testing measurement model. 

4. Provide statistical results from three examples of performance testing measurement 
models. 

5. Provide recommendations and conclusions for future research investigation.  

Historical Perspectives 
In 1988, Samuel Messick, a psychometrician and test score validation theorist, stated that 

validity is the primary issue for tests delivered by all media (italics have been added by the 
authors for emphasis to the current paper): 

 “Over the next decade or two, computer and audiovisual technology will dramatically 
change the way individuals learn as well as the way they work. Technology will also 
have a profound impact on the ways in which knowledge, aptitudes, competencies, 
and personal qualities are assessed and even conceptualized.”  He specified that there 
would be: 

1. “New and more varied interactive delivery systems in education and the workplace, 

2. Heightened individuality in learning and thinking, 

3. Increased premium on adaptive learning, 

4. Heightened emphasis on individuality in assessment, 

5. Increased premium on adaptive measurement, perhaps even the dynamic 
measurement of knowledge structures, skill complexes, personal strategies and 
styles as they interact in performance and as they develop with instruction and 
experience” p.33.  

Sam Messick envisioned that future tests would become more interactive, more adaptive, 
more individualized, and more dynamic.  

Bert F. Green (1970) gave the following statement in his conference presentation,  
“Comments on Tailored Testing,” after a presentation by Fred Lord entitled “Some Test 
Theory for Tailored Testing” (italics again added for emphasis). 

The computer has barely started to establish itself in the testing business. As 
experience with computer-controlled tests accumulates, we can expect important 
changes in the technology of testing. Most of these changes lie in the future. Lord’s 
results, clear-cut and devastating as they are, will in the end seem a minor skirmish in 
the inevitable computer conquest of testing.” p. 194 
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During the early 1970s, David J. Weiss and his graduate students at the University of 
Minnesota initiated the definition and development of the professional field of computerized 
adaptive testing (CAT) to refer to a test that is dynamically adjusted or tailored to the 
examinee after each test item, and in which comparable scores can be computed even if 
different examinees were administered different sets of items. In a graduate student seminar 
David J. Weiss called for the relegation of the paper-and-pencil test to a museum (D. J. 
Weiss, July 3, 2007, personal communication).  

Robert L. Brennan, as editor of Educational Measurement, Fourth Edition stated in his 
2006 essay entitled, “Perspectives on the Evolution and Future of Educational Measurement” 

“In the 20th century perhaps the single most important technological development was 
E. F. Lindquist’s invention of the optical scanner…It is interesting to speculate how 
Lindquist, the editor of the first edition of Educational Measurement, would perceive 
the influence of his invention. My own guess is that he would strongly encourage 
innovative use of the computers, even if doing so resulted in less use of his invention. 
Whereas, the optical scanner primarily impacts only one aspect of testing, computers 
have the potential to impact virtually all aspects.” p.11.  
 
“… I think that eventually computers will have a major impact on measurement. My 
own belief is that the role of technology and computers in testing is partly 
evolutionary and partly revolutionary.” p. 11 (see Bunderson, Inouye, & Olsen, 1989; 
Cohen, 2006, and Drasgow, Luecht & Bennett, 2006).  

Bunderson, Inouye, and Olsen (1989), in the Third Edition of Educational Measurement, 
envisioned four generations of computerized educational measurement. These generations 
were:   

1. Computerized Testing (CT): computers are used to automate sequentially 
delivered tests with static items. “The first, or CT generation, is defined as the 
translation of existing tests to computerized format, or the development of 
new, non-adaptive tests that are similar to manually administered tests but 
utilize computer capabilities for all or most test administration processes.” p. 
374.   

2. Computerized Adaptive Testing (CAT): a computerized test with adaptive 
delivery of item and/or task sequence, immediate scoring, and adaptive 
decisions to stop the test. “The second, or CAT, generation of computerized 
educational measurement is defined as computer-administered tests in which 
the presentation of the next task, or the decision to stop, is adaptive. A task can 
be an item or a more complex standardized situation involving one or more 
responses. To be adaptive means that the presentation of the next task depends 
on calculations based on the test taker’s performance on previous tasks… Item 
response theory provides a psychometric foundation for one kind of CAT test, 
that which adapts primarily on the basis on the item difficulty and/or 
discrimination parameters. Three types of adaptive tests are possible: adapting 
item presentation, based on item response theory parameters, particularly the 
item difficulty parameter; adapting item presentation times, based on previous 
response times; and adapting the content or composition of the item based on 
previous choices. In any of these cases a separate adaptive decision can be 
made: adapting test length, based on the consistency of previous 
performance.” p. 381  
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3. Continuous Measurement (CM): The third, or CM generation “uses calibrated 
items and tasks to continuously and unobtrusively estimate and profile 
dynamic changes in examinee proficiency. Tasks measured may be items, item 
clusters, exercises, unit tests, or independent work assignments. [Note the 
generalization of what constitutes the measurement administration unit.] 
Changes may be observed in the amount learned, the proficiency on different 
tasks, changes in the trajectory through the domain, and the student’s profile 
as a learner. The differentiating characteristic of CM is the ability to specify 
dynamically a learner’s position on the simple and complex scales that define 
a growth space. Continuous measurement produces a trajectory over time for 
the individual who is working to master a domain of knowledge and task 
proficiency. Measurement is accomplished by assessing the performance of 
each individual on tasks calibrated to serve as milestones of accomplishment. 
The milestones that make CM possible are embedded into a curriculum, 
training or education program so that measurement is unobtrusive.” p. 387. 

“The definition of the CM generation assumes a two-part definition of a 
curriculum, training or educational program: (a) a course of experiences laid 
out to help the learner grow toward certain educational ends, that is a path 
through the domain; (b) a set of course markers, or standards, that serve as 
milestones of accomplishment along the way, that is, beginning, intermediate, 
and terminal markers.” p. 387. 

4. Intelligent Measurement (IM): The fourth or IM generation “is defined as the 
application of knowledge-based computing to any of the processes of 
educational measurement… The knowledge and expertise of measurement 
professionals can be captured in a computer memory in a symbolic form called 
a knowledge base. This knowledge can be used to replicate, at multiple sites 
through a computer or other technology, the expertise of humans, who are 
otherwise physically restricted to one site at a time. Thus, less expert humans, 
with the aid of intelligent computing systems, can perform measurement 
processes that require considerably more knowledge and experience than they 
presently have.” p. 398.                            

“Applications of intelligent measurement can be classified within the 
following areas. Test Development Processes: computer tools for job and task 
analysis with advisor, computer tools for developing test specifications with 
advisor, and item and test development programs with advisor. Test 
Administration Processes: programs for administration of individually 
administered tests with advisor to guide the paraprofessional, natural-
language-understanding expertise for scoring constructed responses, programs 
for helping to interpret profiles, and intelligent tutoring within a task when 
additional practice is needed. Analysis and Research Processes: statistical 
programs with intelligent advisor, intelligent scheduling and calibrating of 
experimental items, and intelligent data collection for research and validity 
studies.” p. 399  

“Intelligent measurement can use machine intelligence to (a) score complex 
constructed response involved in items and in reference tasks, (b) generate 
interpretations based on individual profiles of scores, and (c) provide 
prescriptive advice during continuous measurement to learners and instructors, 
to optimize learner and examinee progress through a curriculum.” p. 399. 
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“Intelligent advice during learning is the most promising contribution of IM 
for learners and teachers. Its goal is the optimization of learning. It requires a 
curriculum administered in association with a continuous measurement 
delivery system. It requires that human expertise be acquired in a 
computerized knowledge base, analogous to that of the expert counselors who 
interpret individual profiles of static scores…Intelligent advice during 
continuous measurement is the epitome of computerized educational 
measurement. The optimization of learning in a growth space of calibrated 
educational tasks represents a challenge for educational measurement 
scientists and practitioners that will require great effort over many years.” 
pp.400-401 “Intelligent  measurement will make possible adaptive and 
intelligent advice based on individual trajectories and learning profiles. Before 
this goal is achieved machine intelligence will be used to score complex 
constructed responses automatically and to provide complex interpretations of 
individual profiles made of static measurements.”  p. 403.  

A Seasoned Response to the Four Educational Measurement Generations 
The authors of this earlier chapter have noted that during the last eighteen years the need 

for improved test security with computerized and online testing and improved measurement 
models are natural drivers from Generation 1 CT to Generation 2 CAT involving the 
implementation of expanded and rotated item banks to ensure adequate security of items and 
tasks, and improved item selection and proficiency estimation approaches. Improved 
measurement of examinee competence is a natural driver from Generation 2 CAT to 
Generation 3 CM to help ensure competence by learning and training and not by screening 
out those who are unqualified. Measurement of generated items, tasks, and work models 
noted later in this paper is also a natural driver from Generation 2 CAT to Generation 3 CM. 
The administration of dynamic simulations and use of live application or performance 
environments can be viewed as a Generation 3 CM or Generation 4 IM form of adapting the 
delivery presentation and the score processing procedures in response to dynamic changes in 
the simulated or live application system and performance tasks. The movement from 
administering and scoring discrete academic items to more complex item clusters and sets, to 
testlets and to performance testing is another significant branch of Generation 4 IM 
educational measurement highlighted in this paper.  

Six Testing Innovations Provide the Foundation of Our Work 
Six testing innovations and their respective creation dates provide the foundation for our 

work presented in this paper. These six innovations are briefly introduced below: 

1. Performance Work Models (1981) 
2. Job Analysis & Synthesis (1981) 
3. Logical Measurement Opportunities (1999-2000)  
4. Continuous Learning Progress Pathways (2002) 
5. Validity Centered Design & Documentation (2003)  
6. Logical Measurement Opportunities within Performance Tasks and Simulations 

(2003) 
  

Performance Work Models (1981)  
A Performance Work Model is defined as an integrated exercise that allows replication of 

both information and interactions. It may correspond to one or a group of scaled performance 
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tasks. Performance work models provide for generalization of tasks and items into 
meaningful integrated measurement units. The examinee/evaluator can assess different levels 
of the quality of the performance. There is built-in feedback of results to examinee/evaluator. 
The performance work model is focused on providing realistic experience with emphasis on 
fidelity of the model to the actual work domain.  

Performance Work Models are reviewed in two papers by Bunderson, Gibbons, Olsen, 
and Kearsley (1981) and Gibbons, Bunderson, Olsen, and Robertson (1995). Gibbons and 
Fairweather (1998) provided a discussion of how performance work models help solve the 
problem of instructional and assessment fragmentation vs. integration.  In the abstract of the 
original paper defining performance work models the authors noted, “While instructional 
objectives have provided a cornerstone for the practice and science of instruction, they have 
also locked us into a lexically based conceptual system. In order to realize the interactive 
potential of computer-based instructional systems, we need a new way of representing 
performance. This paper presents the concept of a work model which is a unit of practice 
which allows replication of both information and interaction. In addition, the work model 
idea also addresses some of the fundamental problems with objectives such as their inability 
to capture the richness of terminal behaviors or how to relate objectives to content.” 
(Bunderson, Gibbons, Olsen & Kearsley, 1981, p. 205, paper abstract)   

The concept of a work model implies that the teaching or assessment system should 
provide “working models” in which the learner or examinee can perform. A work model can 
be defined as a single integrated unit of practice and performance. It may correspond to one 
or a group of performance tasks. Work models provide settings in which the learner can 
converse using the new vocabulary and concepts, perform the new procedures, and make 
predictions and solve new problems. These work models will have visible results so that the 
learner, and sometimes other learners and the teacher or supervisor who are observing, can 
obtain information about the success or failure of the performances. 

After a fourteen-year period Gibbons, Bunderson, Olsen and Robertson (1995) reviewed 
work models and noted that work models were still beyond objectives. “Not only does [the 
work model] construct encourage designers of computer-based instructional systems to create 
syllabi with uniquely integrative and performance-based qualities, but it encourages also the 
construction of families of increasingly complex microworlds that challenge traditional views 
of the syllabus and curriculum.” p. 221, paper abstract 

We refer to these job tasks represented in functional contexts as "work models or 
performance models of work." A performance work model is defined as a representation of 
the essential, integrated performance situations in a domain of expertise that well-qualified 
individuals are able to perform to a high standard. Essentially, we are trying to measure what 
individuals “can do” as well as what they “know” and to measure these critical performances 
with carefully structured task environments with realistic job situations and integrated and 
increasingly more complex job tasks. 

Job Analysis and Synthesis for Performance Task Development (1981) 
The standard job analysis or task analysis that is performed in a domain of expertise 

typically identifies a series of major tasks or practices that are performed in the given domain. 
Each task or performance is analyzed to determine the required subtasks, and the associated 
knowledge, skills, and behaviors that are required to perform that task. The job or practice 
analysis breaks the job down into elementary units in an analytic fashion. What is needed 
after the job and task analysis process is a synthesis process that collects and clusters the 
work elements into meaningful, integrated and critical worthwhile tasks. In most work 
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settings a given subtask is not performed separately but is often part of an integrated work 
flow process that produces an integrated work output. Without the synthesis process the job 
and task analysis often lacks meaningful context and tasks are often fragmented into minute, 
unrelated job elements and subtasks rather than meaningful integrated work flow units.      

The implementation of performance testing requires principled task design models for 
identifying key job performance elements and their relationships and structuring them into 
meaningful, integrated job like performance situations. These performance tasks and 
situations allow for assessing realistic and dynamic problem-solving, troubleshooting, and 
diagnostic-reasoning skills. 

Following are several identifiable characteristics of performance assessment tasks:    

1. Employs constructed actions or response series. 

2. Assesses actions and responses directly within context. 

3. Referenced to criterion or standards of quality. 

4. Focuses on the process of solution as much as the result. 

5. Involves judgments of qualified performers in determining test scoring. 

6. Performers understand criteria, process, and products on which they will be 
judged. 

7. Used for individual or group measurement. 

When performance tasks are created, the task of item writing is significantly altered from 
traditional processes of test item writing. Authoring performance tasks includes a set of 
entering arguments (variables) that are placed into a typical scenario, case study, or task 
environment. One performance task can typically cover the subject domain areas for which 
five or more traditional items would attempt to predict mastery. With performance tasks the 
technical review/edit process involves subject matter experts performing the tasks and 
creating a useful scoring model for alternative paths or end state actions within the modeled 
system or performance environment.  

Logical Measurement Opportunities (1999-2000) 
As we began using more complex test designs and innovative testing item formats, we 

found the need to introduce the concept of logical measurement opportunities. Logical 
measurement opportunities are logical combinations of answer selections or constructed 
actions that can be evaluated according to subject matter expertise in deciding whether or not 
the logical combination of selected and constructed results is true or false, or correctly 
answers the question or task at hand. Logical measurement opportunities allow for measuring 
results like the following examples: “A and C and B and D but not E, F, G, or I” or correct 
actions for “subtasks A, C, and G but not subtasks B, D, E, and F”. The introduction of 
logical measurement opportunities allowed for the assessment designer to determine how a 
general performance or work model task could be evaluated by using a series of logical 
actions that occur through interactions with the performance or work model task.   

Continuous Learning Progress Pathways (2002) 
In 2002 the authors were asked to propose a competency based system for statewide 

instruction and assessment. In this analysis we determined that the educational standards and 
objectives across the grades were not articulated or correlated well to allow for effective 
measurement within and across grades. At that time we proposed the development of 
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continuous learning progress pathways with designated competency demonstrations as 
markers across the continuous increasing skill levels from beginner to expert within a content 
domain. As an example, we found that the competency for learning to tell time was spread 
across a five grade curriculum span rather than taught as an integrated competency with 
extensions. Figure 1 provides an illustration of a sample learning progress pathway in 
reading. This pathway would allow students to progress along the pathway at optimum speed 
and direction. The competency demonstrations along the pathway indicate examinee skill 
levels at differing segments of the pathway. For example, a learner near the beginning of the 
pathway could read children’s story books, a learner in the middle could read newspaper 
articles, and a learner at the upper end could read articles from professional journals. 
Increasing skill levels along the learning progress pathway are evaluated with competency 
demonstration assessments.  

 
Figure 1. Learning Progress Pathways 

 
 

Many curriculum and training programs exhibit gaps in content and skill competencies 
where learners are apt to fall behind and do not have sufficient chance to practice and catch 
up. These curriculum and training programs are often not continuously measured. In contrast, 
a learning progress pathway would have competencies defined with smoothly increasingly 
levels of difficulty, progress feedback is provided on valid measures all along the pathway, 
practice with feedback is provided across the pathway, and learner progress is easy to 
interpret by reporting competencies completed and competencies in progress. With a learning 
progress pathway, measures can be created that sample skill competencies from the domain 
appropriate to each segment of the achievement pathway. At the present time, the authors are 
not aware of any state or provincial assessment system that is built on competency 
demonstrations within and across the educational grades. Nor are we aware of any 
professional certification and licensure testing system that is based on a learning progress 
pathway system.  
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In his paper on performance assessment, Samuel Messick (1994) identified three key 
questions that should be asked as we develop all types of tests and assessments.  

1. What complex of knowledge, skills and abilities should be assessed? 

2. What behaviors or performances will reveal the constructs and skills to be tested? 

3. What tasks or situations should elicit those behaviors?  

Messick’s advice is very useful in helping curriculum and training designers and assessment 
specialists to envision realistic competence-focused learning progress pathways with 
benchmark or reference tasks that illustrate the knowledge, skill, and ability complexes that 
should be assessed at differing locations across the learning progress pathway.       

Validity-Centered Design and Documentation (Bunderson, 2003, Olsen, 2006) 
Validity-Centered Design and Documentation (VCDD) is the beginning of a principled 

design process for designing and developing improved learning theories of progressive 
attainments or competence in specific domains of expertise. These domain-specific learning 
theories are often referred to as “domain theories” among those using validity-centered 
design. VCDD is also used to develop the construct-linked measurement scales associated 
with each domain theory and to document evidence for a validity argument for the domain. 
The validity argument is not accomplished all at once (and indeed, never ends), but is 
improved step-by-step as we complete work on each respective aspect of validity. VCDD 
also includes planning for future activities to improve other aspects of the validity argument 
in an ongoing process. In essence, the way we measure learning progress must be validated. 
Because validating scales in a social setting where concepts, ideas, etc., change continuously, 
the measurement process must be validated continuously.  

Validity-centered design is focused on designing and implementing the ideas of Samuel 
Messick on validity in educational and online educational and assessment environments. 
Messick (1988, 1989a, 1989b, 1998a, 1998b) has been perhaps the most influential validity 
theorist of the past 15 years. He developed the unified validity framework that showed that 
construct validity is the central, unifying concept among the variety of different views or 
perspectives on validity. Construct validity deals with the invisible traits or constructs that 
intelligent observers have formulated and “constructed” in words, diagrams, and so forth; 
how these invisible constructs are made visible through responses to items and performance 
situations; and how these responses are turned into meaningful scores. Construct validity is 
the link between the invisible theoretical ideas about important human qualities (sometimes 
called “latent traits”) and the scores on some instrument or measurement procedure designed 
to produce numbers reflecting differences in the unobservable human qualities. These 
numbers represent more or less of the latent trait or construct in question.  

Validity-centered design and documentation is a set of methods and tools used at each of 
several stages of a design process to develop a learning progress measurement system, to 
implement it in a computer or online environment, and to keep continuously improving it. 
The learning progress measurement system is used by instructors and learners, and the 
measurement system is improved based on both qualitative and quantitative results. Data are 
collected at each of several cycles of implementation and during the design process itself. 
Over time, data and documentation provide an increasingly strong “validity argument” for the 
quality of the learning progress measurement system. The idea is that validity cannot be 
proven once and for all, but that evidence and argument threads can be assembled to show 
how well a given learning progress measurement system, when used in certain ways, meets 
the multifaceted ideal of the unified validity model. Validity is much more complex and 
unified than usually understood. Validity-centered design identifies nine different but 
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interrelated aspects of validity. These incorporate the six aspects of construct validity 
identified by Messick (1998, 1989b): (1) content, (2) substantive processes, (3) structure,            
(4) generalizability, (5) external, and (6) consequential.   

Validity-centered design and documentation restructures these six aspects and then adds 
three new aspects: (7) overall appeal, (8) usability, and (9) value and positive consequences. 
A comprehensive validity argument can be organized around these nine integrated aspects of 
validity. Table 1 shows the nine validity aspects structured into three primary classifications, 
each with three interrelated elements. Each of the aspects and elements of Table 1 is further 
discussed below.  

 
Table 1. Validity-Centered Design Elements for Assessment Systems 

I. Design for Usability, Appeal and Positive Expectations (User-Centered 
Design) 

A. Overall Appeal 
B. Usability 
C. User values and Positive expectations 

II. Design for Inherent Construct Validity 
A. Content 
B. Substantive thinking processes 
C. Structural (number and meaning of dimensions) 

III. Design for Criterion-Related Validity 
A. Generalizability 
B. External Validity (convergent/discriminant) 
C. Consequential (positive and negative) 

 

Validity-centered design and documentation aspires to do more than guide the design of 
assessments, although it is well adapted to do this. A learning progress system includes a 
measurement system in context with an instructional system, evaluation system, and 
implementation system. This integrated system is used for ongoing, cyclical evaluation of not 
only the learners, but also the measurement system itself; the training and instructional 
materials delivered on the same computers as the measurement system; the adaptive research 
system that includes adaptation to individual differences; and the strategic implementation of 
learning and content management systems. The learning-progress measures are part of this 
comprehensive system that integrates measurement with instruction, but are not all of it.  

To accomplish this, validity-centered design leads to an interpretive framework with 
domain-spanning unidimensional scales for monitoring and measuring learning progress.  

I. Design for usability, appeal, and positive expectations.  This aspect of validity has 
the first and highest priority in view of those who will be using it and who will be influenced 
by it most. This category of design is not enough, as the instrument and its theory will fail 
unless the basic core of inherent construct validity is also considered from the first. This 
priority is generally required before organizations will invest in creating some new 
measurement instrument. Activities leading to this aspect of validity are often found in 
treatments of user-centered design. Common characteristics are the following: 

1. Overall appeal. 

2. Usability. The instrument must be easy to use, understandable, quick and efficient. 
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3. Perceived value to the target users, perceived positive consequences. 

Design for appeal and usability can establish superficial face validity, but in order for 
users to continue to perceive true value and positive consequences, there must be a strong 
foundation of inherent construct validity. Without a good blueprint, and continued 
improvement (as established in category II below), the instrument might be so off-target that 
the perceived value cannot be achieved, nor will positive consequences occur. Users quickly 
notice when real value is not forthcoming.  

II. Design for inherent construct validity.  Construct validity is the link between reality 
and the scores or measures produced by an instrument. This aspect of validity starts with the 
blueprint. Are we measuring important but invisible thinking processes related to the valued 
human practices that are hypothesized to exist in users? Do the scales we construct through 
scoring questions connect with important aspects of reality? Construct validity is the 
technical, statistical component of validity that, while it will be conducted by the 
psychometricians, its results will continue to improve upon the measurement and analysis 
methods. We use data results of our measurement and analysis methods to continually 
improve the instrument. There are three aspects to inherent construct validity. 

1. Content coverage and appropriateness 

2. Substantive thinking processes—the important but typically invisible mental 
processes used by those whom we would wish to score as more successful on an 
instrument, or affective attributes of persons such as their beliefs, attitudes, and 
values. It is only through theories of the cognitive, linguistic, affective, or perhaps 
psychomotor processes, that we can design appropriate questions or performance 
tasks to get at different degrees of these usually invisible thinking and style processes.  

3. Structure of the constructs. The starting number of questions or tasks is expected to 
collapse into a smaller number of separate unidimenstional measurement scales. The 
scales we design should correspond with a hypothesized, then increasingly validated 
domain structure. 

III. Design for reliability and for evidence of criterion-related validity. This aspect of 
validity is attained through analyzing the data from using the instrument—along with other 
measures. Except for reliability and generalizability to different groups of examinees, scores 
from the instrument must be correlated with other measures—other instruments and outcome 
criteria.  

1. Generalizability. Evidence that the scoring methods and scores are reliable, and 
generalize to different occasions, settings, genders, racial groups, national groups, 
etc., both within the same institution and from institution to institution. 

2. External. Evidence that the scores predict other valid criteria for what is being 
measured. External validity examines evidence that other instruments correlate and do 
not correlate as would be expected by the nature of their constructs.  

3. Consequential. Evidence that positive results (consequences) do occur over time, and 
that unexpected but negative consequences do not occur over time. This is an 
extension of the perceived positive consequences listed under category I, above. In 
this aspect of validity, we obtain evidence of the actual occurrence of such positive or 
negative consequences. 

Validity-centered design is a work in process. A familiar discipline with design in its title 
is experimental design. It is well established across many social science disciplines and is 
broadly interdisciplinary. Validity-centered design, although new, is interdisciplinary as well, 
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and reaches out not only to tough-minded experimental logic, but also encompasses ways to 
design and develop at least two sets of artifacts: learning and training and instructional 
materials in domains of interest, and measurement systems for measuring progress in the 
same domains.  

An indication that the disciplines of design are entering education more broadly is a fairly 
new approach to educational assessment that uses design in its title, “Evidence-Centered 
Design” (ECD). While VCDD looks at many aspects of a total system that integrates learning 
and assessment, ECD is more sharply focused on the assessment of individuals. It is more 
narrowly aimed at category II, and secondarily at category III above of the validity argument 
for educational assessments (Mislevy, Steinberg, & Almond, 1999, 2003, Almond, Steinberg, 
& Mislevy, 2003). VCDD benefits from the excellent work of ECD and builds upon it in 
developing better student assessments and learning experiences.  

Validity-centered design includes both a design and development process and a 
documentation process. The design and development process provides a focus on the 
instrument content and improvements, the tasks and questions created to measure the content, 
the scoring algorithms, test administration procedures, and preparation of user-centered score 
interpretive materials, and preparing evaluation plans for the next improvement cycle. The 
documentation process provides the validity evidence argument with documentation on the 
design for usability, appeal and positive consequences, design for internal construct validity, 
and design for external criterion-related validity.  

Figure 2 shows that validity-centered design is an ongoing, cyclical, and improving 
process. It begins with a planning process, moves to a design process, to a development 
process, to an implementation process, and then to an evaluation process, and then a revised 
planning process and the cycles continue. 

 
Figure 2. The Validity Centered Design Process 
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Logical Measurement Opportunities within  
Performance Tasks and Simulations (1997)  

Over the last decade the authors have been investigating the use of logical measurement 
opportunities within performance tasks and simulations.  Subject matter experts and 
psychometricians can jointly determine the appropriate scope and sequence of performance 
tasks, the defining of logical scoring elements within the performance tasks, and the 
appropriate weighting and aggregation of the logical scoring elements within and across 
tasks.  These activities require interdisciplinary collaboration and research between the 
disciplines.  In 1984 the first author visited a full flight simulation development organization 
and discussed the use of psychometric models for the development of computerized adaptive 
simulation and live performance tasks.   

Computer-Based and Adaptive Testing Reference Sources 
This section of the paper discusses design and implementation decisions involved in 

selecting an appropriate model for CAT. We recommend that the adaptive testing models 
need to be general enough to accommodate integrated performance and simulation tasks 
derived from performance work models. There are several quality reference sources for 
innovative computerized and computerized adaptive testing systems: Bunderson, Inouye and 
Olsen, 1989; Cohen & Wollack, 2006; Drasgow, Luecht & Bennett, 2006; van der Linden 
and Glas, 2000; Williamson, Mislevy, & Bejar, 2006; Wainer, Bradlow & Wang, 2007, van 
der Linden & Hambleton, 1997, and van der Linden, 2005.  

Evaluate and Select a CAT Item Calibration Model 
A key decision in implementing CAT is evaluating and selecting an appropriate CAT 

item calibration model. The CAT item calibration model selected forms the foundation for 
the measurement of examinee trait levels and the interpretation of scores from the test. We 
recommend use of an item response theory (IRT) measurement model. IRT employs a 
theoretical model for relating the examinees performance success on a test item across the 
continuum range of examinee traits.  

IRT is based on the following four assumptions (Hambleton & Swaminathan, 1985). 
(Italics have been added for emphasis).  

1. “It is assumed that a set of k latent traits or abilities underlie examinee performance 
on a set of items. The k latent traits define a k-dimensional latent space, with each 
examinee’s location in the latent space being determined by the examinee’s position 
on each latent trait.” p. 16. Research is currently underway on multidimensional item 
response theory models but most useful application work concerns applications of 
unidimensional models of ability or proficiency.  

2. “There is an assumption equivalent to the assumption of unidimensionality known as 
the assumption of local independence. This assumption states that an examinee’s 
responses to different items in a test are statistically independent. For this assumption 
to be true, an examinee’s performance on one item must not affect, either for better or 
worse, his or her performance to any other items in the test.” pp.22-23.  

3. “An item characteristic curve [item response function] is a mathematical function that 
relates the probability of success on an item to the ability measured by the item set or 
test that contains it. In simple terms, it is the nonlinear regression function of item 
score on the trait or ability measured by the test.” p. 25. 
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4. “An implicit assumption of all commonly used item response models is that the tests 
to which the models are fit are not administered under speeded conditions. That is, 
examinees who fail to answer test items do so because of limited ability and not 
because they failed to reach test items.” p. 30.  

IRT is a statistical approach to measuring test scores that attempts to model the statistical 
characteristics of items and then aggregate the results on individual items to form the test 
score. IRT develops a theoretical item characteristic curve or item response function that 
shows the probability of successful response to the item based on each of several different 
levels of a trait. Different item response models are defined based on the number of 
parameters that are used in estimating the shape of the theoretical item response functions. 
Examinee test scores computed under IRT explicitly involve weighting of items by the item 
difficulty or other associated item response parameters such as item discrimination or lack of 
model fit. 

IRT models are defined by the number of statistical parameters estimated for the 
measurement model. The one-parameter (Rasch) model is used for items that differ in 
difficulty (b parameter), a common numerical value is often assumed for the item 
discrimination, and no parameter is estimated to accommodate guessing.  

The two-parameter IRT model is a generalization of the one-parameter model in which 
items can differ in item difficulty (b), items can also differ in discrimination (a parameter), 
and the pseudo-guessing parameter (c) is set at a common value or assumed to be 0.  

The three-parameter IRT model is also a generalization of the two-parameter model in 
which items can differ in item difficulty (b), items can also differ in discrimination (a) and 
items can also differ in the pseudo-guessing parameter (c).   

Investigating Model Fit 
The investigation of the fit of the empirical data to the theoretical measurement model is a 

key decision in selecting and implementing a CAT model. If the empirical data show that the 
item or item group does not fit the measurement model then the item or item group should be 
examined and possibly eliminated from the test. To assist the psychometrician with 
evaluations of model fit, the various IRT calibration programs provide various indices of 
model data fit. For the Rasch model, “outfit” and “infit” item statistics are provided by the 
WINSTEPS program (Linacre & Wright, 1991-2000). The outfit item statistic is an outlier fit 
statistic. The statistic is sensitive to unexpected examinee score patterns on items that are 
very easy or very difficult. The infit statistic is an inlier pattern sensitive fit statistic. The infit 
statistic is sensitive to unexpected examinee score patterns for persons with items that are 
targeted near their trait level. Model fit with the one- parameter model can be examined with 
the item parameter standard errors for the Rasch measure (b) values, comparing empirical 
item information functions with expected information functions, examination of item 
residuals after fitting a principal components analysis and extracting the item difficulty 
values, and the magnitude of the person and item reliability computations.  

For the two- and three-parameter models, investigations of model fit can be evaluated by 
comparing the relative sizes of the item parameter standard errors for the a, b, and c 
parameters. The item calibration programs XCALIBRE (Assessment Systems 
Corporation,1996), BILOG-MG (Zimowski, Muraki, Mislevy & Bock, 1996, 2003), and 
MULTILOG (Thissen, 1991, 2003) provide item response functions and item information 
functions, test information and test standard error functions, comparison of the empirical and 
theoretical item response functions, plots of answer option response functions for multiple-
choice or polytomous score models, and examination of items that are flagged by chi-square 
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goodness-of-fit indices. A widely used test for comparing alternative measurement models is 
the log-likelihood test computed by comparing -2 times the log likelihood for the various 
measurement test models (one parameter, two parameter, three parameter). Various reliability 
indices are available to determine the consistency or predictability of examinee scores. These 
indices include the alpha item reliability, empirical score pattern reliability, and the estimated 
reliability from the test information curves.  

The CAT Process 
The CAT process includes five major process steps: 

1. Estimate initial trait level (θ) for an examinee. 

2. Select an item or item set from an item bank or information matrix at the 
estimated θ level. 

3. Use the selected IRT CAT model to update the θ estimate and its standard error. 

4. Select and administer a new item or item set at the updated θ estimate. 

5. Evaluate the selected test termination criterion.  

Estimating initial examinee θ.  To initiate a CAT, the initial θ for the examinee must be 
estimated. One widely used approach is to select the mean or average θ of the calibration 
population. With standard IRT, this mean value is typically at 0.0 or the middle of the 
calibration population distribution. A short “locator test” can be administered with 4-5 items 
selected from differing difficulty levels across the θ domain and the score from the locator 
test used to estimate the examinee’s initial θ. If information is available from previous exam 
levels or available collateral information provides information regarding group identity 
information, this information can be used to determine the examinee’s initial θ. To ensure 
that test items from the item bank near the center of the score distribution are not 
overexposed or underexposed, the initial θ can be selected by using a random θ location near 
the mean θ of the calibration population.  

Item(s) selection procedure.  With the initial θ estimate specified, an item is selected 
from an item bank to match the initial examinee θ estimate. The test items which provide 
maximum information at the examinee θ estimate are included in an item selection set. The 
test items are often selected from an item information matrix that provides an ordered set of 
the most informative items at 20 or more θ values. The information matrix is typically on the 
order of 20 or more items at each of 20 or more θ levels. The θ levels can range from -4.00 to 
+4.00, or less extreme boundary values, in increments of 0.125. This item selection procedure 
is often defined as maximum information item selection. The optimum item for selection is 
the item that has not been selected yet that provides the most information at the current θ 
estimate. The optimum item will be matched to the examinee’s estimated θ  level and 
provides the most information at that θ level.  

A generalization that we would like to introduce is to select an item set rather than a 
specific test item. The item set can include one or more items in a structured administration 
unit. In 1987, Wainer and Kiely proposed the definition of testlet as a packet or group of 
items that are administered together and thus carry their context with them. Testlets can be 
items associated with a given textual passage or visual diagram. Testlets can also be small 
networked clusters of structured items. In their seminal manuscript on testlet response theory 
Wainer, Badlow and Wang (2007) noted,  
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“The key idea is to use a multi-item testlet as the fundamental unit of test construction 
and test administration. We shall define a testlet as a group of items that may be 
developed as a single unit that is meant to be administered together. Although the path 
through a testlet could be branched, our focus at least for now, is on linear testlets that 
contain n items, where n could be as few as one, but more typically would have four or 
more items. All examinees are presented with a particular testlet would be confronted 
with the same items in the same order.” p. 52-53.  

A testlet cluster of items can be selected with testlet parameters that are closest to the current 
ability estimate. We recommend an additional elaboration of the testlet concept to refer to a 
series of logical scoring opportunities within performance tasks tied to synthesized work 
models.  These scoring opportunities can be defined by subject matter experts within the 
given performance domains. These logical scoring opportunities from performances might 
become the set or group of test items within a performance testlet. The testlet approach 
allows for accommodating the lack of local independence among a set of performance tasks 
where one step leads to other related or linked steps.  

The maximum information item selection procedure leads to predictable sets of items 
selected at each of the various ability values. Hence, strategies have been adopted to reduce 
item exposure by selecting a satisfactory item or item set randomly (i.e., select one of 5, then 
select 1 of 3 then 1 of 2) from a designated set of most informative items or item sets.   

Chang and Ying (1997, 1999, 2001) suggested stratifying the item bank by discrimination 
values and then selecting an item from designated strata of discrimination as the adaptive 
testing process continues. The item bank is partitioned by the item discrimination index and 
then by fixed size strata within the discrimination order. Several items are selected from each 
stratum for possible administration. The item selection algorithm proceeds first with lower 
discriminating items and moves to higher discriminating items as the test progresses. This 
process insures that the more discriminating items are used at a later stage of the adaptive 
testing process when they are more beneficial in increasing precision of the ability estimate 
rather than used early in the adaptive testing process when the ability level is fluctuating 
more and the most discriminating items are administered too soon.  

Wim van der Linden (2000, 2005) has proposed a shadow test approach as a general 
framework for adaptive testing. van der Linden uses linear programming variables (0 and 1) 
to address logical constraints on the adaptive testing process. Using the shadow test approach 
at each stage of the adaptive testing process, one or more complete optimal test designs are 
selected from the bank that meet all of the desired test and content specifications. From the 
shadow test(s), the item or item set is selected for administration that is most closely matched 
to the current ability estimate and provides the maximum information. Again, after the next 
item one or more completely optimal test designs are selected for the examinee and one item 
or item set is selected for administration and the process continues.  

Item selection and ability estimation. In an adaptive test, the first challenge is selecting 
the initial items in the test. A new examinee can be assumed to belong to a known 
distribution with an existing mean and standard deviation. The ability estimation can begin at 
the distribution mean or a random ability location near the distribution mean. Auxiliary 
information regarding the examinee can be used to make a better initial prediction. For 
example, if a spatial visualization test is being administered, a male examinee could be 
estimated to start with a relatively higher ability estimate than a female examinee. Likewise, 
in a vocabulary or English usage test a female examinee could be estimated to start with a 
relatively higher ability estimate than a male examinee. Research has shown that males tend 
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to have higher spatial visualization ability and females tend to have higher vocabulary and 
English usage ability(Harris, 1978; McGlone, 1978, 1980; Kimura, 1999; Halpern, 2000).  

Information from previous tests within a given test battery can be used to select the first 
initial item(s) on a new test within the battery (e.g., Brown & Weiss, 1977).  Given the 
information that is available, the best estimate of the ability on a new test is based on the 
information available from a previous test and the correlation structure among the tests within 
the battery.  

CAT Administration Models 

There are four widely used CAT administration models. These are the item-by-item CAT, 
classification CAT, computerized adaptive multistage testing, and testlet response theory. 
Each of these four models is briefly introduced below. For additional details on CAT models 
and technical details on computational formulas and procedures, the reader is referred to five 
primary books on CAT (Wainer, Dorans, Eignor, Flaugher, Green, Mislevy, Steinberg, & 
Thissen, 2000; Wainer, Bradlow & Wang, 2007; Sands, Waters, & McBride, 1997; van der 
Linden & Glas, 2000; van der Linden, 2005). 

Item-by-Item CAT. This approach to CAT adapts or tailors the difficulty of the test to 
each examinee, item-by item. Items are selected to maximize test information and minimize 
the standard error of the examinee’s ability/trait estimate.  

Classification CAT. This CAT model (Kingsbury & Weiss, 1979) is based on item or 
testlet selection.  However, the final score is a classification score determining whether the 
examinee score and confidence band are above or below the designed performance standard. 
The item bank should have a peaked test information function at the passing standard. 
Testing proceeds until the θ estimate and confidence band based on user-determined standard 
errors [±1 standard error (68% confidence limit), ±1.96 standard errors (95% confidence 
limit), ±2.58 standard errors (99% confidence limit)] is completely below (fail status) or 
completely above (pass status) the designated performance standard.   

Structured computer-adaptive multistage tests. Structured computer-adaptive 
multistage tests are self-administering adaptive tests based on testlet item structures that are 
selected into item panels. Each item panel may include four to seven testlets. The testlets are 
assigned to a particular stage of test administration and to a specific route within the panel, 
such as easier, moderate, or more difficult. Panels are the unit of administration and scoring. 
The design for the computer-adaptive multistage test is often referenced by the number of 
testlets available at each stage of the testing process. For example, a 1-3-3 multistage test 
design would have one testlet for stage 1, 3 testlets for stage 2 and 3 testlets for stage 3.   

Testlet response theory. The testlet is a structured sequence or cluster of items that can 
be used as the unit for CAT item selection and scoring. Test termination criteria are based on 
the same exit criteria as item-by-item CAT, but the score values are based on testlet scores 
rather than item scores. Testlets typically have non-overlapping item structures.  

Testlets can include items that are scored as dichotomous or polytomous. Polytomous 
score models for testlet response theory can use the nominal score model, generalized partial 
credit model, or graded response model. An additional statistical parameter is added to the 
model to account for any statistical dependencies among items in testlets. A Bayesian test 
scoring model is typically used to update a prior Bayesian distribution given information 
from the testlet performance score or pattern. Markov chain monte carlo methods may be 
used to simulate the calibration of parameters for item difficulty, item discrimination, item 
guessing, and common or specific testlet effects. 
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Within the CAT Exam 
Within the CAT exam the testing process proceeds by either selecting the item or item set 

that maximizes the test information function or selecting the item or item set that minimizes 
the standard error.  

Estimate θ ability and standard error. There are four major procedures used in practice 
for estimating examinee ability and standard error:  

1. Bayesian methods update a distribution by estimating a posterior mean and standard 
deviation. Bayesian estimation methods have been shown to have an inherent bias 
toward the population mean.  

2. Maximum likelihood. Compute the maximum likelihood of the pattern of item scores. 
Provide scoring procedures at test initiation so there is at least one correct item and at 
least one incorrect item. 

3. Maximum marginal maximum likelihood. Estimates the mode or mean and standard 
error of θ using a posterior likelihood distribution based on a set of quadrature points, 
associated quadrature weights, and a prior distribution with the item parameters for 
items administered. The maximum a posteriori estimate (MAP) is the most likely 
value of θ for persons with a given response pattern. The expected a posteriori 
estimate (EAP) is the average θ value of persons with a given response pattern. (Bock 
and Aitkin, 1981; Bock & Mislevy, 1982) 

4. Weighted maximum likelihood. The weighted maximum likelihood estimation 
method was introduced by Thomas Warm (1989). This ability estimate maximizes the 
product of the likelihood function and the square root of the information function. In 
essence, the likelihood of the ability estimate is weighted by the standard error for the 
item. The weighted maximum likelihood estimator has been shown to be a relatively  
unbiased estimator of θ up to a factor of 1/n where n is the number of items and to 
have advantages over the maximum likelihood and Bayesian ability estimation 
methods in some situations.  

Check test termination rule(s).  After each test item or item set, the CAT system should 
check the test termination rules to determine if the CAT should continue or terminate. There 
are typically four termination rules used in practice: 

1. Minimum posterior standard deviation or standard error (<.20 or <.25). The test 
terminates when a minimum posterior standard deviation or standard error has been 
met. Typical criteria for this value are standard errors less than or equal to 0.20 or 
standard errors less than or equal to 0.25.  

2. Minimum test information. This termination rule is met when the additional test 
information from the remaining items near the ability estimate is at a minimum. This 
means that if additional test items are administered from the expected ability estimate 
region there is little new information that can be added from each additional item.  

3. Fixed number of items. This termination criterion is established when there are policy 
concerns regarding the administration of differing number of items to different 
examinees.  

4. Combinations of rules. Combinations of the rules defined above or others are 
possible.  
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Various test termination criteria can be used depending on psychometric and practical 
application issues in administering the test. A test can be terminated when a minimum value 
is reached for the test standard error such as 0.25 or 0.20. The fixed test length termination is 
reached when a required number of test items is administered. The minimum supplemental 
test information rule terminates the test when administration of additional test items will not 
result in differing values for the test information. A minimum change in ability or standard 
error can also be computed by determining the differences between each successive ability 
estimate and between the successive standard error value. Various combinations of the test 
termination criteria can also be specified, such as a minimum standard error of 0.25 and at 
least 25 items in the test. 

Produce CAT Score Report 
After completion of the CAT test a report is produced which includes the computation of 

the final θ ability estimate using either the Bayesian, maximum likelihood, marginal 
maximum likelihood, or weighted maximum likelihood procedures. The CAT report should 
provide either normative or decision-referenced interpretations of the test score, provide 
relevant score interpretative materials, and provide the estimate the standard error of the final 
ability or proficiency measure.  

Example Performance Test IRT Analyses 
This section provides three empirical examples of the use of IRT analyses for calibrating 

performance tests, illustrating the potential for using performance tasks and item clusters with 
IRT within a CAT environment. The first performance test IRT example illustrates the use of 
IRT for scoring simulation tasks that are scored dichotomously. The second performance test 
example illustrates mixed scoring of simulation tasks employing both dichotomous and 
polytomous scoring. The second example also illustrates the application of the graded 
response model for scoring and IRT analysis of simulation tasks that are scored on a 
continuous or partial-credit score scale. The data shown in the second example illustrate the 
Samejima graded response model but additional calibrations were computed for the partial- 
credit model and the nominal model implemented in MULTILOG (Thissen, 1991, 2003). The 
third performance IRT example shows the use and comparison of item parameter values for 
one- and two-parameter IRT calibrations with four-alternative performance simulation tests, 
each consisting of multiple performance tasks and scores.  

The authors understand that these are only initial steps in the development of a rigorous 
psychometric measurement foundation for the measurement of integrated performance and 
simulation tasks that include a series of logical measurement opportunities that can be 
administered at benchmark points along a learning progress pathway. In the example 
performance tasks analyzed below, the authors were not participants in the performance task 
design but were asked to perform the statistical analysis of the results. As psychometricians 
initiate closer collaboration with developers of performance tasks, simulations and live 
application performance environments, there is more opportunity to define meaningful 
logical scoring opportunities and use these logical scoring opportunities for measurement of 
status and proficiency changes across the spectrum of performances.      

Example 1: Using Simulation Task Data for IRT Analyses 

Simulation task performance data was obtained from 116 persons who had been assessed 
with 57 information technology simulation performance tasks. A score of 1 was given if the 
simulation performance task was completed successfully. A score of 0 was given if the 
simulation task was not completed successfully. One- and two-parameter IRT analyses of the 

- 18 - 



 

simulation task data was computed using the BILOG-MG (Zimowski, Muraki, Mislevy and 
Bock, 1996, 2003) calibration program for dichotomous performance outcomes. The one-
parameter analysis computed a common performance task (a) slope parameter of 1.01. Table 
2 summarizes the one- and two-parameter IRT analyses including minimum, maximum, 
mean, and standard error statistics. Table 2 also shows the empirical pattern reliability of 0.91 
and 0.90 respectively for the one- and two-parameter calibration models and 0.96 and 0.97 
respectively for the information curve reliability from the one- and two-parameter calibration 
models.  
 

Table 2. IT Simulation Tasks: One- and Two-Parameter IRT Summary  
 1-Parameter a 1-Parameter b 2-Parameter a 2-Parameter b 
Min 1.01 -2.04 0.48 -2.40 
Max 1.01 0.79 3.39 0.51 
Mean 1.01 -0.49 1.19 -0.49 
Median 1.01 -0.49 1.02 -.34 
Std Error N/A 0.73 0.67 0.66 
Empirical 
Reliability 

 0.91  0.90 

Information 
Reliability 

 0.96  0.97 

-2 Log 
Likelihood 

 4104.045  3905.537 

Largest Change  0.009  0.009 
 

Table 3 shows the performance task ordering of the difficult simulation tasks in columns 
1 and 2, the average simulation tasks in columns 3 and 4, and the easier simulation tasks in 
columns 5 and 6. The Rasch one-parameter model difficulty (b) measure was used for 
ordering of the tasks. Table 3 also illustrates a fairly continuous distribution of simulation 
task difficulty that could be used as the basis for development and measurement of a 
continuous learning pathway as discussed above. The simulation task difficulty shown in 
Table 3 can also be used in a CAT environment to converge on a pass-fail performance 
standard at a given IRT-defined cut score.  

 
Table 3. Performance Task Ordering for Difficult, Average and Easy Tasks 

Difficult 
Tasks 

 
Measure 

Average 
Tasks 

 
Measure 

Easy   
Tasks 

 
Measure 

CHALL02_21 2.30 CISCO05_02 0.24 CHALL02_01 -2.11 
CHALL02_18 2.12 PASS2_02 0.15 IPADDR05_2 -2.36 
CHALL02_13 1.91 BACK1_04 0.13 CISCO02_04 -2.28 
CHALL02_12 1.91 SERTB02__1 0.16 CISCO02_08 -1.88 
CHALL02_11 1.91 IPADDR05_3 -0.11 IPADDR5_04 -1.75 
CHALL02_10 1.91 IPADDR05_5 -0.11 CISCO02_03 -1.31 
CHALL02_09 1.91 PASS2_04 -0.35 CISCO02_6 -1.31 
BAN2_03 1.22 BACK1_01 -0.34 CISCO02_7 -1.31 
BAN2_02 1.22 CHALL02_14 -0.27 BACK1_02 -0.98 
CISCO02_10 1.11 CHALL02_16 -0.27 RIPTRB01_1 -1.04 
CHALL02_07 1.00 ADDR2_1 -0.41 CHALL02_02 -0.50 
CHALL02_06 1.00 CISCO02_01 -0.51 PASS02_3 -0.75 

- 19 - 



 

Figure 3 shows the test information curves and standard error curves for the one-
parameter analyses of the IT simulation tasks.  Figure 4 shows the test information curve and 
standard error estimation for the two-parameter analyses. Comparisons of Figures 3 and 4 
show a more peaked information curve for the two-parameter IRT model as compared with 
the one-parameter model. This same result is shown with several performance test examples 
presented later in this report.  
 

Figure 3. IT Simulation Tasks: One-Parameter Test  
Information and Standard Error Curves 

 
 
 

Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.
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Figure 4. IT Simulation Tasks: Two-Parameter  
Test Information and Standard Error Curves 

Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.
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Example 2: Office Word-Processing Performance Tasks 

The second example includes 18 word-processing performance tasks administered to 
1,517 examinees. Five items were scored polytomous with scores ranging from 1 to 3, 13 
items were scored as dichotomous. The average weighted proportion correct (p) for the 
performance tasks was 0.70, the average point-biserial correlation of the performance tasks 
was 0.561, and the average high group – low group discrimination index was 0.205. The 
alpha reliability for the 18 performance tasks was 0.87. Table 4 presents summary statistics 
for the 18 Office Word Performance Tasks.  

 
Table 4. Summary Statistics for  
Office Word Performance Tasks  

Statistic Value 
N 1517 
Min 1 
Max 41 
Mean 28.78 
Median 30 
Mode 35 
Std Dev 7.55 
Std Error Measurement 2.72 
Skewness -.91 
Kurtosis 0.41 

A variety of calibration models were computed using MULTILOG (Thissen, 1991, 2003) 
for the analysis, including the one-parameter and two-parameter logistic models, the nominal 
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model, and the graded response model. Table 5 presents summary IRT statistics for 
Samejima’s graded response IRT calibration model for the 18 word-processing performance 
tasks.  
 

Table 5. Samejima Graded Response IRT Calibration 
 
 
 
 
 
 
Item 

 
 
 
 
Number of 
Category 
Options 

 
 
 
Common Item 
Discrimination
Parameter  
(Std Error) 

Item 
Difficulty 
Parameter 
Answer 
Option 1 or 
Greater 
(Std Error) 

Item 
Difficulty 
Parameter 
Answer 
Option 2 
or Greater 
(Std Error) 

Item 
Difficulty 
Answer 
Parameter 
Option 3 
or Greater 
(Std Error) 

I01 4 1.09 (0.08) -3.50 (0.25) -2.31 (0.16) 0.56 (0.08) 
I02 2 1.43 (0.09) -1.46 (0.09) 1.20 (0.08)  
I03 4 1.32 (0.08) -2.05 (0.12) -.05 (0.06) 1.04 (0.08)      
I04 2 1.49 (0.09) -1.64 (0.10) 0.20 (0.06)  
I05 4 1.36 (0.09) -2.67 (0.16) -0.83 (0.07) -0.54 (0.06) 
I06 2 1.18 (0.09) -1.44 (0.10) -0.27 (0.07)  
I08 2 1.09 (0.08) -2.57 (0.18) -0.34 (0.07)  
I09 2 1.27 (0.10) -2.86 (0.19) -0.96 (0.08)  
I10 4 1.19 (0.08) -2.19 (0.14) -0.47 ((0.07) 1.29 (0.10) 
I11 2 1.19 (0.10) -2.84 (0.20) -1.20 (0.10)  
I12 2 0.83 (0.08) -2.20 (0.20) 1.47 (0.15)  
I13 2 0.79 (0.08) -3.40 (0.31) 0.57 (0.11)  
I14 2 1.18 (0.08) -1.55 (0.12) -0.64 (0.08)  
I16 4 1.39 (0.10) -2.68 (0.16) -1.86 (0.11) -0.61 (0.06) 
I17 2 1.44 (0.09) -2.34 (0.14) -0.56 (0.06)  
I18 2 1.02 (0.08) -2.39 (0.18) 0.12 (0.08)  
I19 2 1.43 (0.11) -1.86 (0.11) -1.03 (0.08)  
I20 2 1.52 (0.10) -1.46 (0.09) -0.15 (0.05)  
Ave  1.23    

 

Table 6 presents an item information table for the 18 word-processing performance tasks. 
This information table provides the amount of test information for each of the performance 
tasks at each of nine ability or proficiency levels evenly spaced from -2.0 to +2.0 in 
increments of .5. For example, performance task I04 provides item information of 0.59 at an 
ability level of -1.5, item information of 0.58 at an ability level of -1.0, item information of 
0.58 at an ability level of -.50, and an information value of 0.59 at an ability value of 0.0.   
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Table 6. Information Table for Word Processing Performance Tasks: 
Item Information at Various Ability or Proficiency Levels 

Item -2.0 -1.5 -1.0 -.5 0.0 .50 1.0 1.5 2.0 
I01 0.33 0.30 0.28 0.29 0.30 0.31 0.28 0.23 0.17 
I02 0.44 0.52 0.49 0.42 0.40 0.46 0.52 0.49 0.38 
I03 0.48 0.50 0.51 0.51 0.50 0.50 0.48 0.41 0.30 
I04 0.53 0.59 0.58 0.58 0.59 0.54 0.40 0.25 0.13 
I05 0.50 0.51 0.53 0.51 0.42 0.29 0.18 0.10 0.06 
I06 0.32 0.38 0.41 0.40 0.36 0.29 0.21 0.14 0.08 
I08 0.33 0.32 0.33 0.32 0.30 0.25 0.18 0.12 0.08 
I09 0.44 0.44 0.43 0.38 0.29 0.19 0.11 0.06 0.04 
I10 0.40 0.41 0.41 0.42 0.41 0.41 0.40 0.37 0.30 
I11 0.41 0.40 0.37 0.30 0.22 0.15 0.09 0.05 0.03 
I12 0.18 0.18 0.17 0.17 0.17 0.17 0.18 0.18 0.17 
I13 0.15 0.15 0.15 0.16 0.16 0.16 0.15 0.14 0.12 
I14 0.34 0.40 0.41 0.38 0.31 0.23 0.15 0.10 0.06 
I16 0.59 0.59 0.57 0.52 0.41 0.28 0.17 0.09 0.05 
I17 0.56 0.55 0.56 0.54 0.45 0.31 0.18 0.10 0.05 
I18 0.28 0.28 0.28 0.28 0.28 0.26 0.22 0.17 0.12 
I19 0.55 0.60 0.57 0.46 0.31 0.19 0.10 0.05 0.03 
I20 0.50 0.63 0.67 0.66 0.61 0.47 0.29 0.16 0.08 
Total 
Test 
Info 

8.3 8.7 8.7 8.3 7.3 6.4 5.3 4.2 3.2 

Ave. 
Standard 
Error 

0.35 0.34 0.34 0.35 0.36 0.39 0.43 0.49 0.56 

 

Figure 5 presents a plot of the WINSTEPS (Linacre & Wright, 1991-2000)one-parameter 
measure and the MULTILOG one-parameter difficulty values. Figure 6 presents a plot of the 
WINSTEPS measure and the BILOG-MG one-parameter difficulty value. Figures 5 and 6 
show that the performance simulation tasks are generally measured consistently, since the 
majority of the estimation values lie on the diagonal and very few simulation task elements 
are off diagonal.    
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Figure 5. Plot of WINSTEPS Measure (Horizontal)  

and MULTILOG One-Parameter Difficulty (Vertical) 
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Figure 6. Plot of WINSTEPS Measure (Horizontal) and 
BILOG-MG One Parameter Difficulty (Vertical) 

 
 
 

Dimensionality analysis.  Dimensionality analysis was determined using both principal 
components analysis and nonlinear factor analysis. With the principal components analysis, 
the first principal component was six times larger than all remaining subsequent components. 
The first principal component accounted for 32% of the cumulative variance from the 
eighteen principal components that were extracted, one for each performance task. Figure 7 
presents the scree test of the ordered principal components for the data. The scree test shows 
the presence of one principal or salient factor.  
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Figure 7.  Plot of Eigenvalues from the Components Analysis 
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Table 8 provides additional information regarding the dimensionality of the word-
processing performance tasks by comparing the factor loadings for the first principal 
component from SPSS using principal components analysis, principal axis factoring, the full-
information factor analysis loadings from TESTFACT (Wood, Wilson, Gibbons, Shilling 
Muraki, & Bock, 2003) , and the confirmatory factor analysis loadings obtained using the 
nonlinear factor analysis program NOHARM (Fraser, 1988, Fraser & McDonald, 1988).  
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Table 8. Dimensionality Loadings for First  

Factors From Principal Components,  
Principal Factors, TESTFACT, and NOHARM  

 
 
Task 
ID 

 
 
First Principal 
Component 
SPSS 

 
 
First Principal 
Axis Factor 
SPSS 

 
 
Factor 
Loadings 
TESTFACT 

 
Confirmatory 
Factor 
Loadings 
NOHARM 

I01 .549 .511 0.553 0.722 
I02 .597 .562 0.486 1.000 
I03 .604 .569 0.545 0.748 
I04 .642 .611 0.607 0.876 
I05 .591 .555 0.663 0.751 
I06 .550 .512 0.608 0.767 
I08 .530 .492 0.539 0.683 
I09 .564 .526 0.519 0.693 
I10 .570 .533 0.566 0.727 
I11 .539 .500 0.572 0.683 
I12 .439 .401 0.406 1.000 
I13 .414 .376 0.363 0.595 
I14 .561 .513 0.574 0.701 
I16 .613 .579 0.696 0.799 
I17 .629 .596 0.663 0.800 
I18 .516 .477 0.513 0.702 
I19 .574 .537 0.684 0.824 
I20 .648 .618 0.678 0.852 
Ave.  .563 .526 0.569 0.774 

 

Table 9 provides the confirmatory factor loadings from NOHARM and the NOHARM 
computed discrimination (a) and item difficulty parameters. Note the number of 
discrimination parameters that are over 1.0 for the eighteen performance tasks.  
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Table 9. Confirmatory Factor Loadings,  

Discrimination, and Difficulty Parameters 
 
 
Task 
ID 

Confirmatory 
Factor 
Loadings 
NOHARM 

 
NOHARM IRT 
Discrimination 
a Parameter 

NOHARM 
IRT  
Difficulty 
b Parameter 

I01 0.722 1.044 -1.506 
I02 1.000 2.356 1.916 
I03 0.748 1.129 -0.124 
I04 0.876 1.813 0.557 
I05 0.751 1.138 -0.416 
I06 0.767 1.197 0.165 
I08 0.683 0.936 0.116 
I09 0.693 0.962 -0.555 
I10 0.727 1.057 -0.031 
I11 0.683 0.935 -0.741 
I12 1.000 2.020 1.454 
I13 0.595 0.740 1.107 
I14 0.701 0.984 -0.191 
I16 0.799 1.351 -1.262 
I17 0.800 1.333 -0.168 
I18 0.702 0.985 0.575 
I19 0.824 1.455 -0.543 
I20 0.852 1.630 0.208 
Ave.  0.774 1.282 .0312 

Example 3: Network Performance Practicum Calibration and Analyses 

The third example includes calibrations from four scenarios—one, three, six and nine—from 
a network performance practicum examination. The performance tasks were administered 
with virtual machine technology. The examinee must examine a remote network system and 
perform the tasks that are designated with each scenario. The performance tasks are scored by 
running a performance script that compares the examinee results on the performance exam to 
the subject matter expert decision paths. Scores for each task are dichotomously scored and a 
weighted average is computed across tasks using scoring weights specified by subject matter 
experts. The results in Table 10 show summary information for each of the scenarios with 
number of candidates, number of tasks, mean score, standard deviation, standard error of the 
mean, alpha reliability, skewness, kurtosis, and standard error of measurement. Tables 11-14 
provide classical and IRT analysis statistics for each of the four performance scenarios.  

- 28 - 



 

Table 10. Performance Practicum Classical Item Analysis 

Test Statistics 
Scenario 

One 
Scenario 

Three 
Scenario 

Six 
Scenario 

Nine 
Number of candidates 347 97 222 182 
Number of items 68 34 70 54 
Mean 49.68 20.124 58.685 45.731 
Standard deviation 12.169 8.592 9.402 11.585 
SE of mean 0.653 0.872 0.631 0.859 
95% confidence interval 
for mean 1.280 1.709 1.237 1.684 

Alpha Reliability 0.947 0.934 0.921 0.969 
Skewness -1.070 -0.687 -1.051 -2.047 
Kurtosis 1.566 -0.609 0.806 4.393 
SE of Measurement 2.801 2.207 2.643 2.040 
95% confidence interval 5.490 4.326 5.180 3.998 

 

Table 11.  Descriptive Statistics: Classical and IRT, Scenario One 
Statistic Items Min Max Mean Std. Deviation 
P-value 68 .262 1.000 .731 .227 
Point Biserial 68 -.023 .655 .462 .158 
High-Low Disc 68 -.006 .618 .273 .186 
Weighted 
Correlation 68 -.018 .631 .448 .154 

Rasch b 68 -7.300 3.510 -.106 2.266 
BILOG: 1-Par b 67* -3.574 .909 -1.193 1.254 
BILOG: 2-Par a 67* .269 2.396 1.081 .467 
BILOG: 2-Par b 67* -6.807 1.362 -1.388 1.756 

*One item was answered correctly by 100 percent of the candidates. 
 

Table 12.  Descriptive Statistics: Classical and IRT, Scenario Three 
Statistic Items Min Max Mean Std. Deviation 
P-value 34 .113 .948 .592 .200 
Point Biserial 34 -.328 .769 .549 .221 
High-Low Disc 34 -.342 .712 .417 .229 
Weight 
Correlation 34 -.441 .669 .482 .202 

Rasch b 34 -4.080 3.640 -.001 1.751 
BILOG: 1-Par b 34 -2.464 1.639 -.361 .929 
BILOG: 2-Par a 33* .623 5.328 1.746 1.582 
BILOG: 2-Par b 33* -2.410 2.101 -.260 .971 

* One item did not reach convergence criteria. 
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Table 13. Descriptive Statistics: Classical and IRT, Scenario Six 
Statistic Items Min Max Mean Std. Deviation 
P-value 70 .518 1.000 .838 .141 
Point Biserial 67 -.079 .610 .401 .126 
High-Low Disc 70 -.018 .587 .210 .137 
Weighted 
Correlation 67 -.064 .670 .282 .235 

Rasch b 70 -4.700 3.000 -.325 1.887 
BILOG: 1-Par b 70 -4.131 -0.095 -1.842 .961 
BILOG: 2-Par a 70 .001 4.000 1.488 1.451 
BILOG: 2-Par b 70 -4.042 0.000 -1.694 1.038 

 

Table 14. Descriptive Statistics: Classical and IRT, Scenario Nine 
Statistic Items Min Max Mean Std. Deviation 
P-value 54 .593 .973 .847 .087 
Point Biserial 54 -.007 .745 .622 .108 
Hi-Lo Disc 54 .035 .564 .284 .126 
Weighted 
Correlation 54 .041 .705 .606 .094 

Rasch b 54 -3.400 2.700 .000 1.207 
BILOG: 1-Par b 54 -2.358 -.302 -1.244 .420 
BILOG: 2-Par a 54 .501 4.326 1.836 1.016 
BILOG: 2-Par b 54 -4.617 -.295 -1.32 .628 

 

Test information and standard error curves for the one- and two-parameter IRT models 
were computed for each performance scenario. Comparable test information and standard 
error curves are provided by both XCALIBRE (Assessment Systems, 1996) and BILOG-MG 
(Zimowski, Muraki, Mislevy, & Bock, 1996, 2003).   The one-parameter curves are presented 
in Figure 8 and the two-parameter curves are presented in Figure 9 for Scenario One. In a 
similar manner the one-parameter curves and two-parameter summaries for Scenario Three 
are presented in Figures 10 and 11. For Scenario Six these results are presented in Figures 12 
and 13. For Scenario Nine the results are presented in Figures 14 and 15. The consistent 
result from these four performance testing IRT analyses shows that the two-parameter 
analysis provides higher and more peaked test information and lower standard error curves 
than the one-parameter analysis.  
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Figure 8. One-Parameter Information  
and Standard Error Curves for Scenario One  
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Figure 9. Two-Parameter Information  
and Standard Error Curves for Scenario One 
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Figure 10. One-Parameter Information  
and Standard Error Curves for Scenario Three 
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Figure 11. Two-Parameter Information  
and Standard Error Curves for Scenario Three  
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Figure 12.  One-Parameter Information  

and Standard Error Curves for Scenario Six  
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Figure 13.  Two-Parameter Information  
and Standard Error Curves for Scenario Six  
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Figure 14. One-Parameter Information  
and Standard Error Curves for Scenario Nine  
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Figure 15.  Two-Parameter Information  
and Standard Error Curves for Scenario Nine 
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Conclusions and Recommendations 
This paper highlighted a progressive series of psychometric innovations that have formed 

the foundation for our work on:  

1. Defining and applying psychometric theory to the analysis of integrated, performance 
work models,  

2. The use of logical measurement opportunities to define scores on activities that are 
not items in the traditional sense,  

3. The sequencing of the performance tasks as benchmarks across a learning and 
performance domain, and  

4. The development of continuous learning progress pathways as alternative routes 
through a learning and performance domain.   

     The paper illustrated several initial steps in using psychometric models for the analysis 
and measurement of performance tasks and simulation assessments. IRT calibrations of 
performance task difficulty, task discrimination, task step parameters, task information, and 
task standard errors can be used within CAT environments to select the next simulation or 
performance task given a current ability or proficiency estimate based on performance on 
previous simulation and performance tasks. The use of logical measurement opportunities 
within performance and simulation tasks provide a generalization of the testlet concept to 
refer to sequences of logical measurement opportunities to define the relevant set of test 
items. We recommend continued research investigation regarding validity-centered design, 
evidence-centered design and assessment engineering to design item score validity within 
each stage of CATs (Luecht, 2007; Williamson, Mislevy, and Bejar, 2006).  
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