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Abstract 
Computerized adaptive testing requires a well-designed item pool containing an appropriate 
number of items to build individualized tests that match the examinees’ ability levels.  An 
optimal item pool should also contain well-balanced items that will achieve optimal item usage 
and lower the cost of item creation.  One of the methods for designing the blueprint for an item 
pool is Reckase’s method (2003), which is a Monte Carlo method to determine the properties of 
an optimal item pool.  This study extended the method for designing item pools calibrated with 
the three-parameter logistic model and applied it to situations where the Sympson-Hetter 
procedure is used to control the item exposure rate.  The procedures for designing the item pool 
and two approaches for simulating test items are presented.  The performance of simulated item 
pools are evaluated along with an operational item pool. 
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Designing Optimal Item Pools for Computerized Adaptive Tests  
With Sympson-Hetter Exposure Control 

 

Item pools play an important role in computerized adaptive testing (CAT).  Items in the pool 
are indexed, structured, or otherwise assigned information that can be used to facilitate their 
selection for a test.  Item pools have been called “item banks,” “question banks,” “item 
collections,” “item reservoirs,” and “test item libraries.” Although distinctions among some of 
the terms can be made, they all refer to a relatively large collection of easily accessible test 
questions (Millman & Arter, 1984).  For conventional paper-and-pencil tests, a well-designed 
item pool provides test developers a convenient yet powerful tool to produce high quality tests. 
The concept of an item pool is expanded in CAT.  Two kinds of item pools are distinguished in a 
typical CAT program.  One is often called the master pool, which includes as many items as 
possibly for the testing application.  Another kind is the operational item pool, which is a smaller 
subset of the master pool, and by design it has to be small enough so that the computer can easily 
retrieve the items and, when necessary, minimize item exposure.  Yet, it has to be large enough 
to provide items with the required characteristics.  Due to the continuous nature with which 
many CATs are administered, the useful life of an operational item or the entire operational item 
pool can be limited.  After a certain number of uses, items might need to be retired and put back 
into the master pool.  Some items might be able to be reused after a reasonably long time.   

One question often asked during item pool design is, “how many items should be in a pool?” 
Ideally, the more items the better, because it allows more choices in test assembly, and seldom 
do the same items appear in tests repeatedly.  With larger pools, it is difficult for examinees to 
memorize answers.  This can be a problem in situations where learners have access to the item 
pool.  Larger pools also mean more that items that match content, item format, and statistical 
requirements are available (Millman & Arter, 1984).  The caveats, however, are: (1) the items 
added to the pool should be well written, content valid, and statistically fit; and (2) the total 
number of items should be manageable and easily retrievable.   

An often-overlooked issue in item pool design is how to design and develop item pools in a 
more systematic and empirical manner, constructing a blueprint that outlines the optimal 
composition of items with desirable assigned and psychometric characteristics.  The blueprint as 
the outcome of item pool design can tell item-writers to write items not only by format (multiple-
choice or constructed-response) and content coverage, but also by the desired psychometric 
characteristics of the items.  The blueprint is optimal in that it consists of appropriate items for 
each individual test that is capable of reaching the desired level of precision.  An optimal 
blueprint also contains well-balanced items to achieve optimal item usage and lower the cost of 
item creation.   

The item writing process is usually guided by appropriately designed test specifications that 
outline the content attributes and their distributions.  Requirements for statistical attributes, such 
as the range of difficulty, might be provided but are often difficult to satisfy simply because the 
values of statistical attributes for individual items are not easily predicted.  However, at the item 
pool level they often show persistent patterns of correlation with content attributes.  These 
patterns can be used to minimize the item-writing effort.  Through carefully modeling of the 
CAT procedure, test specifications for the item pool could be developed with computer 
simulations to forecast the number of items needed with specific attributes (van der Linden, 1999; 
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Reckase, 2003). The methods compared here are for the design of a single item pool and can 
serve as tools for monitoring the item writing process.   

Only a few empirical studies on optimal item pool design have been documented for CAT.  
Boekkooi-Timminga (1991) used integer programming to calculate the number of items needed 
for future test forms.  She used a sequential approach that maximized the test information 
function (TIF) under the one-parameter logistic (Rasch) model.  These results were then used to 
improve the composition of an existing item bank.  Subsequently, several methods for the 
construction of rotating item pools have been demonstrated in empirical studies, some of which 
achieved the design goal with integer programming methods (for a review of these methods, see 
Ariel, Veldkamp, & van der Linden, 2004). 

Veldkamp and van der Linden (1999) described five steps to design an optimal blueprint for 
a CAT item pool with a mathematical programming method:   

1. A set of specifications for the CAT is analyzed and all item attributes figuring in the 
specifications are identified.   

2. Using the specifications, an integer programming model for the assembly of the shadow tests 
in the CAT simulation is formulated.   

3. The population of examinees is identified and an estimate of its ability distribution is 
obtained; for example, from historical data.   

4. A CAT simulation is carried out using the integer programming model for the shadow tests 
and sampling simulees from the ability distribution.  Counts are collected of the number of 
times items from the cells in the classification table are used.   

5. The blueprint is calculated from these counts, adjusting them to obtain optimal projections of 
the item exposure rates. 

The advantage of this method is that it is able to model complicated test specifications.  Once the 
constraints are identified and transformed to numerical constraints, special software is available 
to simulate the optimal item pool.  However, item pool design with this mathematical 
programming method is closely tied with the shadow test procedure in item selection and 
requires the knowledge of special optimization software.  Depending on the way item attributes 
are partitioned, the design space can be very large and the simulation process becomes 
computationally arduous. 

Reckase (2003, 2004) took a slightly different approach and avoided using mathematical 
programming.  This approach does not assume pre-existing items.  Instead, items are simulated 
(in terms of IRT parameters) to match the current ability estimates to provide sufficiently optimal 
information.  Reckase’s method first partitions the target item pool into smaller pools based on 
different non-statistical attributes, such as content.  Then the CAT process is simulated to 
construct the small item pools simultaneously.  The simulation starts with an examinee randomly 
drawn from the expected examinee distribution to receive the CAT.  Each item is simulated to be 
the optimal item based on the current ability estimate.  The same procedure is repeated for 
subsequent examinees and the items needed to support a large sample of examinees is tallied and 
becomes the optimal item pool.  Exposure control rules can be built into the simulation to decide 
how many times an item can be reused.  This procedure has been demonstrated successfully with 
widely available programming software in the design of CAT item pools for TABE and NCLEX.   
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Research Questions 
The present study reports the development of optimal item pools for CATs using two 

different strategies.  A modified version of Reckase’s method is applied to designing optimal 
item pools calibrated with the three-parameter logistic model.  Sympson-Hetter exposure control 
methods are investigated (Sympson & Hetter, 1985).   

For the purpose of this research, it was desired to have an operational pool of items 
measuring an empirically significant dimension of ability.  An operational item pool for a 15-
item section of a large-scale aptitude test was chosen as the design target in this study.  The final 
item pools were designed to meet the criteria described by van der Linden (2000): (1) it would be 
sufficiently large to allow several thousand overlapping subtests to be drawn from its items; (2) 
the items would span the entire range of item difficulty relative to the population of interest; and 
(3) it would consist of an appropriate mix of high and low discriminating items to lower the item 
creation cost while meeting the needs of test precision. 

This study compared simulated optimal item pools to operational item pools on item 
distribution and performance for examinees randomly sampled from expected examinee 
distributions.  The simulation study took into consideration the distribution of the examinee 
population and the expected precision of ability estimates.   

The following research questions were investigated in this study: 

1. What does the optimal item pool designed for a CAT look like when the item selection 
procedure imposes no exposure control or when it incorporates the Sympson-Hetter 
method? 

2. Do optimal item pools designed by a Monte Carlo simulation perform better than the real 
operational item pool in terms of empirical criteria? 

Conceptual Framework 
Reckase (1989) listed four major components of a CAT: the item pool, the item selection 

procedure, the scoring (ability estimation) procedure, and the stopping rule.  Item exposure 
control and content balancing have recently been extensively studied to constrain the item 
selection so that items are selected not only by their statistical characteristics but also by content 
specifications and security concerns.  An optimal item pool should be determined by the other 
components of the CAT, namely test length, expected distribution of the examinee population, 
ability estimation and item selection procedures, and target item exposure and overlap rates 
(Bergstrom & Lunz, 1999).   

Item Pool 
The adaptive feature of CAT makes it unnecessary to use pre-designed test forms as are used 

in paper-and-pencil tests.  Rather, it requires an item pool from which all tests will be drawn.  An 
item pool is not only a reservoir of items, but also an organized collection of items with clearly 
defined attributes attached to them.  Van der Linden (2005) distinguished three types of item 
attributes: quantitative, categorical, and logical.  Quantitative attributes are item attributes that 
take on numerical values.  Examples of quantitative attributes are word counts, expected 
response times, statistics such as item p-values and IRT parameters, and frequency of previous 
item or stimulus usage.  Categorical attributes divide or partition the item pool into subsets of 
items with the same attribute.  Examples of categorical attributes include content category, 
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response format of items (e.g., constructed response or multiple-choice), and use of auxiliary 
material (e.g., graph or table).  Logical attributes differ from quantitative and categorical 
attributes in that they are not properties of single items or tests but of pairs, triples, and so forth.  
The logical attributes involve relations of exclusion and inclusion between items or tests.  For 
example, a relation of exclusion between items exists if they cannot be selected for the same test 
because one has a clue to the solution of the other (so-called “enemy items”).  A relation of 
inclusion exists if items belong to a set with a common stimulus and the selection of any item 
implies the selection of more than one.  

Owen’s Bayesian Ability Estimation Procedure 
Owen’s (1969) Bayesian sequential ability estimation technique was proposed as part of his 

adaptive testing strategy, which selects items that minimizes the expected value of the Bayesian 
posterior variance.  This ability estimation procedure, however, has proven useful in CAT 
strategies using other item selection criteria, as well.   

Owen’s Bayesian method begins with a prior distribution of ability – in effect, as an 
assumption that the examinee is a member of a population with a normal distribution of ability, 
with known mean and variance.  After each test item, the mean and variance are updated using a 
statistical procedure that combines the information in the prior distribution with the observed 
score (correct or incorrect) on the most recent test item, and the parameters of that item’s IRT 
model.  The updated values of the ability distribution parameters specify a normal “posterior” 
distribution, which is used as the prior distribution for the next item.  This process continues until 
the end of the test.  At that point, the posterior mean is used as the estimate of the examinee’s 
ability.  Owen’s equation for updating the prior mean is as follows: 
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( | ) ( )
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Owen (1975) showed that after each item is administered the estimates for îjθ and 2ˆijσ are: 
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where 

ui is the item response (answer is correct when ui = 1 and incorrect when ui = 0), 

( )iBφ is the standard normal probability density function of Bi,  

( )iBΦ  is the standard normal cumulative density function of Bi, 
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Adaptive test scoring using Owen’s procedure takes into account just one item response at a 
time.  All previous information is absorbed into the parameters of the prior distribution, which 
changes after each item.  Because of the added prior information, the Bayesian procedures have 
the advantage of smaller standard errors than with MLE for the same number of items 
administered.  However, use of an incorrect prior can result in the need to administer more items 
to recover, and a regression toward the mean in ability estimation tends to occur.   

Maximum Information Item Selection Procedure 
In CAT, new items are selected adaptively with respect to a provisional estimate of the 

examinee’s ability level based on responses to those items already administered (Davey & 
Parshall, 1995).  The two strategies currently most widely used for item selection in CAT are 
maximum information (MI) (Brown & Weiss, 1977) and maximum posterior precision (MPP) 
(Owen, 1975).   

The maximum information (MI) strategy selects the item that maximizes the Fisher 
information value at the examinee’s current ability estimate.  Let Pj(θ) denote the item response 
function for item j and Qj(θ) = 1−Pj(θ).  Then, for a dichotomously scored item, Fisher 
information is (Lord, 1980):  

[ ]22 ( )( )
( ) ( ) ( )
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where Pj(θ) is the probability of a correct response, given θ, and Qj(θ) is the probability of an 
incorrect response.  Substituting the model specification in Equation 4, it can be simplified for 
the dichotomous three-parameter logistic item response model (Hambleton, Swaminathan, & 
Rogers, 1991; Lord, 1980) as: 
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where )( jjj baL −= θ , D = 1.7, aj is the item discrimination parameter, bj is the item difficulty 
parameter, and cj is the pseudo-chance level parameter (i.e., the probability of a very low θ 
examinee correctly answering the item).  Equation 5 indicates that the item information increases 
as bj approaches θ, as aj increases, and as cj approaches 0 (Hambleton et al., 1991).   

Unconstrained MI selection chooses an item i that maximizes the Fisher information 
evaluated at îθ , the provisional θ  estimate for the examinee after n items.  When the items that 

constitute CAT are selected using MI, the precision of θ̂  increases as each item is administered 
(Hambleton et al., 1991).   

In practice, MI item selection is often based on a previously computed table in which items 
are sorted by the information they provide at each number of θ  values (an “information table”). 
Item selection is equivalent for all θs in an interval around a tabulated value. Rather than 
evaluating Fisher information for each item in the pool at the current value of θ̂  each time it is 
needed to select the next item, it need only be evaluated once for each item at each tabulated 
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point.  Item selection based on an information table is slightly less efficient but less 
computationally burdensome than MI item selection. These statistically motivated item selection 
procedures can be tempered by practical considerations such as item exposure rates.  

Sympson-Hetter Exposure Control Method 

The Sympson-Hetter (S-H) exposure control procedure (Sympson & Hetter, 1985) is one of 
the most commonly used conditional selection procedures.  This procedure assigns to each item 
an exposure control parameter value that is based on the frequency of item selection determined 
by an iterative CAT simulation.  Items with high administration frequencies are assigned smaller 
exposure control parameters, which range from 0 to 1.  During test administration, the exposure 
control parameter of the selected item is compared to a uniform random number, which also 
ranges from 0 to 1. If the exposure control parameter is larger than the random number, the item 
is administered.  If it is smaller, the item is put back into the item pool and the same process is 
applied to the next best item. The item exposure control parameter is like a threshold. By 
controlling the thresholds, the S-H method limits the administration of frequently used items in 
CAT and ensures a maximum item exposure rate for less often used items.   

 The exposure control parameters in the S-H method are usually set by a series of iterative 
simulations of real CAT administrations. Simply put, it is the ratio of the target exposure rate to 
the probability of the item being selected in testing. The procedure is as follows:  

Let Sj denote the selection of item j for a randomly sampled examinee, and let Aj denote the 
administration of that item.  The exposure rate for item j can be interpreted as P(Aj), the 
probability that item j is administered to a randomly sampled examinee.  The S-H method 
separates items administered from items selected by the probability relation P(Aj) = P(Aj|Sj)P(Sj) 
and controls P(Aj) by controlling P(Aj|Sj), the proportion of selections that lead to administration.  
For any given exposure rate rj > 0; P(Aj) ≤ rj can be achieved by setting P(Aj|Sj) ≤ rj /P(Sj).  If 
P(Sj) is known or can be approximated, this method can be easily implemented by generating a 
uniform (0,1) random variable. 

The S-H method effectively limits the exposure rates of all items.  However, because items 
that are not selected cannot be administered, items with small probabilities of being selected will 
still have small exposure rates; thus, the S-H method does not increase exposure rates for 
underexposed items.  In addition, while the exposure of an item across θ  levels can be controlled, 
the same control might not hold for examinees at a particular level of ability.  For instance, even 
though the exposure of an item might be controlled such that it is administered to no more than 
30% of the examinees overall, it might be administered to examinees of high ability 100% of the 
time. Furthermore, implementation of this method requires knowledge about P(Sj), which is 
associated with the θ distribution of the examinee population.  Hence, it is necessary to specify 
this distribution a priori and then approximate the value of P(Sj) using simulation.   

Many variations of the S-H technique have been proposed.  Parshall, Davey, and Nering 
(1998) developed a conditional S-H procedure in which the exposure control parameters are 
determined based on ability level.  Stocking and Lewis (1995) extended the technique to utilize a 
multinomial model and proposed another version of the technique (Stocking & Lewis, 1998) that 
conditions the exposure control parameter not only on the frequency with which the item is 
selected but also on θ  level.  This addition to the S-H technique (often referred to as the 
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conditional S-H technique when a multinomial model is not used) is desirable because it 
overcomes the major disadvantages of the SH method by establishing an exposure control 
parameter for each item at a number of different θ  levels.   

Item Pool Design and Components of CAT 
Parshall, Davey, and Nering (1998) discussed the three often-conflicting goals of item 

selection in CAT.  First, item selection must maximize measurement precision by selecting the 
item maximizing information or posterior precision for the examinee’s current ability level.  
Second, item selection must seek to protect the security of the item pool by limiting the degree to 
which items might be exposed.  Third, item selection must ensure that examinees will receive a 
content balanced test.  Stocking and Swanson (1998) add a fourth goal to this list, stating that 
item selection must also maximize item usage so that all items in a pool are used, thereby 
ensuring good economy of item development.  Stocking and Lewis (2000) portray the item 
selection problem as a balloon—pushing in on one side will cause a bulge to appear on another.     

An optimally designed item pool seeks the best compromise of the conflicting goals.  To 
allow several thousand overlapping subtests to be drawn from its items, the item pool must have 
a sufficient number of high quality items.  This is partly decided by the number of examinees the 
item pool serves and the distribution of the examinees.  When item security is a consideration, 
the more examinees taking the test, the more items that should be in the item pool.  The CAT 
item selection procedure selects items with a difficulty level approximately comparable to the 
ability estimates of the examinees, therefore it is expected that items in the pool have a difficulty 
distribution that is similar to the examinee ability distribution.  It is desirable to have items in the 
pool to span a wide range of item difficulty relative to the population of interest to allow the 
CAT to estimate ability levels for a broad range of examinees (Urry, 1977).   

Test length, which is closely tied to the stopping rules in CAT, also plays an important part in 
determining the number of items needed in an item pool.  For a fixed-length test, if the tests for 
individuals have no overlapped items, the number of items in a bank should be exactly the 
number of items in each form multiplied by the number of examinees.  In reality, items can be 
used repeatedly within certain security constraints.  Even with item overlap, it is expected that 
the more items a test requires, the more items needed in an item pool.  Stocking (1994) 
recommended that the item pool should have a number of items that is at least 12 times the 
length of a test.  Variable test length CAT usually reduces the items needed for individual 
examinees. In this case, the number of item needed for an item pool is correlated with the 
distribution of the examinees, i.e., the number of examinees at each ability level.   

With respect to the same item response patterns, different estimation methods might lead to 
slightly different ability estimates and, in turn, influence the choice of the best suitable item.  
Different item selection rules, such as selecting the item that maximizes the information or 
minimizes posterior variance at the current ability estimate, might choose different items to be 
the most appropriate item for the examinee.  Both situations cause different item usage and 
require different items in an optimal item pool.  

Requirements on content balancing also require different compositions of the items in an 
item pool.  For example, if the test blueprint for a 40-item math test requires 20 arithmetic 
reasoning items and 20 problem-solving items, the optimal item pool would contain a similar 
number of items for both content areas.  The goal is to have a sufficient number of items in each 
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desired content area to assemble an individual test with the balanced content coverage required 
by the test design.   

In addition, care must be taken to ensure that the item pool consists of the appropriate items 
to reduce the over- and under-exposure rate while meeting the test precision requirement.  Item 
overuse causes security concerns because the more examinees that take the same item, the more 
likely that item would be disclosed to the public.  Item under-use potentially increases item 
development costs.  It has been commonly realized that a tradeoff exists between test efficiency 
and item exposure control.  A choice needs to be made that maximizes efficiency within the 
limits of security constraints, and that is essentially a matter of optimization.  An optimally 
designed item pool should be able to compensate for exposure control and cause very little 
decrease in the efficiency of ability estimation.   

Reckase’s Simulation Method and Extensions to the 
Three-Parameter Logistic Model (3PLM) 

Basic Concepts  
An item pool could be described by a list of item parameters for the items in the pool.  The 

basic idea of Reckase’s method is to determine the item parameters with randomly sampled 
examinees from the expected examinee distribution.  The simulated CATs are administered to 
the examinees, assuming that each item administered to the examinee has the item parameters 
best suitable for the provisional ability estimate.  After a certain number of examinees have taken 
the test, the union of the “virtual” items is the optimal item pool for the CAT program.   

Theoretically, every θ estimate is unique and the items optimally suitable for the estimate 
have unique item parameters.  The simulation process described above would lead to as many 
items in the item pool as the total number of items administered to examinees, i.e., the test length 
multiplied by the number of examinees.  In practice, however, items function very similarly to 
those items with parameters that differ by a small amount.  These items are redundant in the item 
pool in that any one of them could be used to estimate the ability level for a person with very 
small loss in precision.   

The concept of “bin” is introduced to account for the redundancy of items with similar 
parameters.  A bin is an item reservoir whose boundary is defined by numerical attributes of the 
items so that a number of items within a bin have similar attributes and are exchangeable in use.  
If items are calibrated with the one-parameter logistic model (1PLM), the item difficulty 
parameter (b parameter) controls the selection of test items.  The bins are defined as ranges on 
the IRT θ scale.  For example, two consecutive bins with width of 0.2 on the θ scale are denoted 
as (0.0:0.2) and (0.2:0.4). Items with b parameters 0.11 and 0.13 are exchangeable in CAT item 
selection because they all belong to the bin (0.0:0.2).  The item pool blueprint is simplified as a 
list of “bins” containing items with similar properties.   

The bins that define an item pool should have a width that is sufficiently small so that all 
items are considered equally good for estimating the ability level of an examinee.  If the bin 
width is too large, items in the same bin might vary in their usefulness for estimating the ability 
level.  The approach taken to determine bin width used here is to identify the range of the θ scale 
for an item that includes the maximum of the item information function and the range around the 
maximum that is not much lower. “Not much lower” is arbitrarily defined as 98% of the 
maximum.  Certainly, an argument could be made for using 96% or 97% as well.   



  

- 9 - 

The end product of the optimal item pool design is an array of integers (x1, x2,…, xB),  which 
tells how many items are needed in each bin to assemble all tests in a program.  If no exposure 
control is used, the integers are bounded between zero and the test length L, because items in 
each bin can be reused and no single test requires more than L items from each bin.  When item 
exposure control is assumed, some bins might contain more items so that the shared exposure 
rates for items from the highly exposed bins are below the target exposure rate.   

Reckase’s Method for an Optimal Item Pool Calibrated With the 1PLM 
When items are calibrated with 1PLM, item difficulty is the only psychometric factor that 

determines if an item provides the most information at the θ estimate.  Therefore, when 
designing optimal item pools that are calibrated with the 1PLM, Reckase’s (2003) method 
focuses on matching the item b parameters and the provisional θ estimates. Reckase’s method 
consists of four steps:  

1. Understand clearly the characteristics of the CAT program, because item pool design 
must model the test procedure as closely as possible.   

2. Identify the categorical attributes required for the items, such as content area, and 
divide the item pool into smaller pools according to these attributes.  If a test has 
more than one categorical attribute requirement, each separate attribute introduces a 
partition of the item pool.  This step is to simplify the simulation procedure by 
focusing on determining the optimal item by the quantitative attributes such as its 
psychometric characteristics.   

3. Administer a simulated CAT to examinees randomly sampled from the expected 
ability distribution.  If the ability follows a standard normal distribution, the initial 
ability level for the examinee is zero in the θ  metric.  The first item is the same for all 
examinees.  It is an item with maximum information at a θ  of zero.  The next optimal 
item will be based on the examinee’s response that item and the θ estimate.  
Subsequent items are selected to have maximum information at the most recent θ 
estimate.  If items are calibrated with the 1PLM, the optimal item is the one with a b 
value the same as the current θ  estimate.  As the test items are selected and 
administered, they are tallied in bins based on their b values.   

4. The tallied items into bins form the distribution of items for one examinee.  To form 
the item pool for the full test, the union of the distributions for the sample of 
examinees is produced.  The results of the union operation is the item pool for this 
CAT design and the specified sample of examinees.  

This strategy works well for item pools calibrated with the 1PLM, when item difficulty is the 
only factor in determining the amount of information an item provides.  In this case, items with b 
parameters the same as a θ  estimate will always provide maximum information at the θ estimate. 
Therefore, they are always the optimal items at the θ estimate compared to items with b 
parameters different from the θ estimate.  When items are calibrated with the 2PLM or 3PLM, 
they might differ in the amount of information they provide even with the same b parameters, 
simply because they have different a or c parameters.  
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Reckase’s Method Applied to the 3PLM 

In the 3PLM, the information an item could provide at a θ  level is determined by the 
combination of three parameters: the discriminating parameter, a; the difficulty parameter, b; and 
the pseudo-guessing parameter, c.  An item could provide an infinite amount of information at 
any θ level, given that the b parameter is close to the θ  level and the a parameter is infinitely 
large.  Although it is impossible to have items with infinitely large a parameters, it is common to 
have items vary widely in their a parameters.  This implies that at a certain θ level, an item 
reaching the maximum information it could provide is not necessarily the item providing 
maximum information at the θ level.  On the other hand, an item providing its highest 
information at one θ level might provide more information than any other items in the item pool 
over a range of θ levels.  As demonstrated in Figure 1, an item with parameters a = 1.2, b = 0.0, 
and c = 0.2 provides more information at θ  level −0.28 than an item with parameters a = 0.8, b = 
−0.5, c = 0.2, even though the latter reaches its peak in the amount of information it can provide 
at this θ  level.  

Figure 1.  Item Information Provided By Two Different Items 

 
Therefore, the optimal item for a θ  level should not be defined as the item providing its most 

information at the θ level.  In addition, it is unrealistic to define the optimal item pool as the one 
that contains items with the highest possible a parameters.  Instead, the optimal item pool should 
contain items with a range of discrimination parameters so that tests assembled from it would 
provide the sufficient precision the testing program requires.  This study explores two strategies 
proposed to simulate the realistically optimal item pool. One focuses on simulating items that 
meet the minimum precision needed for an examinee taking the test.  The other takes into 
consideration the relationship between the a parameters and b parameters in real operational 
items so that the simulated item parameters are within realistic boundaries.  Before introducing 
both strategies, it is important to extend the “bin” concept to fit the 3PLM.  
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Extending the “Bin” Concept 

Under the framework of the 3PLM, the maximum amount of information an item could 
provide is determined by all three parameters.  An item with high discrimination (i.e., high a 
value) generally provides more information than one with low discrimination.  However, Chang 
and Ying (1999) demonstrated that it might provide less information at a θ level where θ̂ is far 
from the examinee’s true θ .  An item with smaller c parameters provides more information at its 
maximum level, but for a well developed item pool, the c parameters usually vary slightly across 
items so for the case considered here they have little influence on the amount of information 
items provide.  Therefore a and b parameters are the two primary factors that determine how 
much information an item is capable of providing at a θ  level.  Items that have similar 
information functions have similar a  and b parameters.  This leads to the extension of the “bin” 
concept introduced in item pool simulation with the 1PLM, where it is defined to be the interval 
of b parameter values within which items provide similar amounts of information over a range of  
θ  levels.  

With the 3PLM, the boundary of a “bin” is defined by both the a and b parameters.  This 
forms a grid partitioning the plane formed by values of a and b.  As illustrated graphically in 
Figure 2, each cell defined by a range of a and b parameters is denoted as ab-bin, whereas the 
marginal total across each row is denoted as an a-bin and the marginal total across each column 
is denoted as a b-bin.  Items with parameters within the boundary of any grid defined by both a 
and b parameters provide similar information over the entire range of θ , and provide maximum 
information at the θ level around the boundary of the bin in which they are located.   

Figure 2. Bins Defined by Both a and b Parameters 

 
While the boundaries of the b-bins are determined by dividing the θ metric (or equivalently, 

the metric of the b parameters) into equal intervals, the width of the boundaries for the a-bins are 
set to be different, because the maximum amount of information an item can provide is 
proportional to the quadratic function of the a parameters, assuming the c parameter is constant 
(Lord, 1980).  Equation 6 shows the relationship between the a parameter and the maximum 
information, Mi, an item provides.   
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It can be further shown that the differences between the maximum information function ( MΔ ) 
for items with different a parameters is 
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     (7) 

Using the average c parameter of the existing items, which is around 0.2, the resulted constant is 
0.5, therefore 

ΔM  = 0.5 Δa2     (8) 

Therefore, the boundary of the a-bin within which the changes of the a parameters cause 
little information change can be calculated.  The grid defined by a-parameter intervals and b-
parameter intervals becomes the boundary of ab-bins.  If 0.4 is considered a small information 
change and 0.28 is a small b parameter change, the bins defined by both a and b parameters are 
shown in Figure 3.  For simplicity, an ab-bin is denoted by its b-parameter boundaries and a-
parameter boundaries: (blower bound:bupper bound, alower bound:aupper bound).  For example, items with a 
parameters between 0.89 and 1.26 and b parameters between 0.00 and 0.28 are in an ab-bin 
(0.00:0.28, 0.89:1.26). They are considered interchangeable in item selection.  

Figure 3. Item Distribution By b-Bins and ab-Bins 

a.  b-Bins                                                              b.  ab-Bins 
           

 

Distinctions are made, however, with respect to the functions of b-bins and a-bins.  As 
mentioned above, the closeness of the b parameters to θ  level determines how an item would 
perform the best and provides the most information.  On the other hand, the value of the a 
parameter determines how much information an item can provide around the θ level where it 
functions the best.  With the MI item selection approach, if an item with high information at a θ  
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level is available, it will be selected over the low information items.  An optimally designed item 
pool, thus, should provide sufficient items within each b-bin, and make sure the items with 
adequately high a parameters are available when needed.  In other words, b-bins tally the number 
of items needed that perform best over the θ levels around the b-bin.  Within each b-bin, the a-
bins record at most how many high discriminating items are needed.  The item pool simulation 
would produce an array of integers x  = (x1, x2, … , xB),  which tells how many items are needed 
in each b-bin, and a matrix X = (X1, X2, …, XB), where each element XB is a integer vector (yB1, 
yB2, …, yBA) indicating at most how many items are needed in each ab-bin within a b-bin.  In 
both cases, B is the number of b-bins and A is the number of ab-bins within each b-bin.  The 
reason why they are recorded in two different matrices is that xB is usually not the same as the 
sum of XB in the early stage of the item pool design.  After the CAT simulation, yBs from ab-bins 
with the lowest item discrimination are set to zero so that Σ yB· =  XB and only the highest 
discriminating items required by the simulation are in the optimal item pool blueprint.  Visual 
displays of the two matrices are shown in Figure 3, where Figure 3a shows how many items in 
each b-bin are needed for the optimal pool and Figure 3b distinguishes different ab-bins with 
gray-scales and shows the number of items needed for each ab-bin within a b-bin. 

Strategies to Generate Items for Item Pool Simulation with the 3PLM 

During the item pool simulation, each item generated for the current θ estimate is assumed to 
provide its most information at the θ estimate.  Then the ab-bin the simulated item belongs to is 
identified by its a and b parameters.  This is similar to item generation in a 1PLM situation 
where it is assumed that the optimal item is the one with b parameters close to the current θ  
estimate and which provides the most item information. Note that with the 3PLM this item is not 
necessarily the item that provides more information at the current θ estimate than all other items.  
This item simulation procedure simplifies the simulation process by not taking into account the 
fact that items belonging to one bin could give more information than items belonging to the 
other bin at the θ level close to the other bin.  However, by assuming that optimal items are those 
that provide their most information at the θ estimates, recording the ab-bin items belong to is 
equivalent to recording approximately how much information is needed at the θ  estimate.  The 
fact that items in one bin provide more information than items in another bin will be addressed 
after the item pool simulation is done with the adjustment described in the next section. 

Generating Item Parameters During the Item Pool Simulation Process  

Prediction model (PM) strategy.  The PM strategy is based on the fact that a parameters and 
b parameters are significantly correlated (Chang & van der Linden, 2003; van der Linden, 
Scrams, & Schnipke, 1999).  In addition, the variance of the a parameter increases as the b 
parameter increases, indicating that logarithm transformations of the a parameters are linearly 
related to b parameters.  

To model this relationship, the a parameter for a simulated item is set equal to the regression 
function of the logarithm transformation of the a parameter ( )a′  on the b parameter (Reckase, 
2004).   

0 1' log( )i i ia a bβ β ε= = + +                (9) 

a = exp(a’)               (10) 
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where iε ∼ Ν(0, σ
2
).  The variation in the a parameters is included in the item pool estimation 

procedure by adding an error term in the regression function.  Because the c parameter is not 
significantly correlated with the b parameter, it is assumed to follow a beta distribution varying 
around the average value.  

The regression function and the variation in the c parameters are estimated with the item 
parameters obtained from the operational items, which give realistic estimates of the item 
parameters for a specific testing program.  During item pool simulation, items are generated in 
three steps:  

1. After each response, obtain the estimate of θ (θ̂ ) and use it as the approximation of 
the b parameter for the next optimal item.  

2. Predict a′ from the b parameter with a regression function estimated from the 
operational items. To account for the variation in the a parameter, a random number 
simulated from N(0, σ

2
) is added to the predicted value and then the natural 

exponential function of a′ is the simulated a parameter.  

3. Generate the c parameter from the beta distribution. Re-compute the b parameter so 
that the item provides maximum information at θ̂ :  

1 1 81ˆ ln
2

i
i ij

i

c
b

Da
θ

+ +
= −      (11) 

With the PM strategy, the  -parameters usually fall in a range similar to the operational items.  
The resulted blueprint for the optimal item pool would most likely contain items developers 
could easily produce. It, however, focus primarily on matching the b parameters with the 
examinee’s θ estimates.  The a parameters are generated randomly, albeit within a practical 
range.  It does not take into account the amount of information an item could provide, nor does it 
consider the information a simulated test can possibly provide for the examinee.  

Minimum test information (MTI) strategy. The MTI strategy posits that the item pool is 
optimal when CATs assembled from it can provide just sufficient information to measure 
examinees.  The more information a test can provide, the more precise the test can estimate an 
examinee’s ability level.  However, more test information needs more highly discriminating 
items, which are usually expensive or hard to create, especially for easy items.  The MTI strategy 
makes sure that tests provide sufficient precision, but do not contain overly abundant high 
discriminating items.  

The MTI strategy sets a target information value over a range of the θ scale. The target test 
information value is broken down for each item administered to the examinee. With c parameters 
(which can be generated from a beta distribution) and  b parameters (which are estimated by 
current θ estimate) both known, a parameters can be calculated.  

The MTI strategy generates items in three steps:   

1. Determine how much information a test needs to achieve acceptable θ  estimate 
precision for individual examinees. Break down the target information I for each item 
i according to the following:  
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To mimic the way CAT selects items, i.e., selecting the items providing the largest 
information at the current θ  estimate, the target information could be manipulated so 
that target information starts with a reasonably large number, decreases with the test 
going forward, and stays at the value of the expected target information for the last 
few items.  While simulating the a-stratified exposure control method (Chang & Ying, 
1999), the target information is set at a lower level and then increased to the expected 
value because the a-stratified method uses low a parameter items first.  

2. Generate the c parameter from the beta distribution. According to Lord (1980), 
the relationship between θ̂  and the parameters of the item providing its maximum 
information at θ̂  is  
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where D is a scaling factor and is equal to 1.7.  The most information a logistic item 
with specific parameters ai and ci can provide at θ̂  is 
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By rearranging the equation and replacing Mi with Ii, it can be shown that  
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Given that Ii and ci are known, an optimal a parameter can be found with Equation 16 
so that the item provides a minimum amount of information at the current θ estimate.  

3. Calculate the b parameter with a and c parameters from Equation 12 so that the 
generated item provides its most information at θ̂ .  

Post-Simulation Adjustment 

The results from the item pool simulation, the vector x  and the matrix X showing the number 
of items needed from each bin defined by both a and b parameters, essentially show how many 
items providing a certain amount of information are needed within the interval of b parameters.  
This is because bins defined by both a and b parameters cluster items by the point where they 
provide the most information.  As mentioned above, item simulation does not take into account 
the fact that items belonging to one bin could give more information than items belonging to the 
other bin, even at the θ level within the other bin.  For example, Figure 4 shows that items from 
ab-bin A (−0.84:−0.56, 1.26:1.55) might provide more information at θ’s between −1.12 and 
−0.84 than items from bin B (−1.12:−0.84, 0.00:0.89), although these items in bin B might 
provide their most information over the same θ  range.  In other words, the item selection 
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procedure would choose the item in bin A over the item in bin B for θ estimates around −1.12 to 
−0.84.  

Figure 4.  Demonstration of Items in One Bin Offering 
 More Information Than Items in Another Bin 

 
Therefore, the optimal item pool actually requires a sufficient number of items providing 

large enough information at each b-bin, regardless of the bin to which the items belong.  An item 
pool constructed strictly following the number of items required by the blueprint that resulted 
from item pool simulation will have redundant items.   

These items are trimmed by using an information table that is created to select the highest 
information items from the bins identified by the simulation procedure.  This will assist in 
forming the final blueprint for the item pool.  To get the highest information item for each b-bin, 
the midpoints of the b-bins are treated as the anchor θ level, and the midpoints of both the a-bin 
and b-bin as a parameters and b parameters, respectively, representing the bin that the item 
comes from.  For example, the θ  levels needed to form the information table are (−3.90, −3.70… 
3.70, 3.90); an item with parameters a = 1.08, b = 0.10, c = 0.187 represents an item from bin 
(0.00:0.20, 0.89: 1.26).  If three items are needed from this bin, three items with the same item 
parameters are entered into the information table. Sufficient items are drawn in this way to 
represent the number of items needed in each bin.  

As shown in Figure 5, each column represents a b-bin and the number of items needed in that 
bin is shown in the second row.  The rows below are the item IDs with each number representing 
an item.  Items are rank-ordered by the information they provide within the boundary of the b-
bin.  Items closer to the top are the items providing the most information. In practice, items 
ranked higher will be selected first, regardless of the bins they are from.  Therefore, even though 
each b-bin still requires a certain number of items, they can be from the other bins.  The 
graphical way to select needed items is to highlight the exact number of items needed for each b-
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bin from the item providing the most information.  The unique items for all highlighted items are 
the items needed for the optimal item pool. 

Figure 5. Items in the Order of Highest Information in Each b-Bin 

 
 

One caveat of this procedure is that because items provide more information over a range of 
θ levels, they might be administered more times than the test developers desire. Within a b-bin, 
the expected number of times an item is administered depends on the rank order of the 
information it provides. During the item pool simulation it can be estimated by recording the 
number of times an item from each bin is simulated and administered.  If an item is to be selected 
more than the target exposure rate, a new item from the same ab-bin is added to the final item 
pool.  For example, Figure 6 shows the expected item usage within each b-bin for 8,000 
examinees ordered by the information each item provides.  Item 109 in Figure 5 is expected to be 
selected 11,800 times (8,000 + 2,471 + 1,329), which is 0.48 times more than an item can be 
selected.  The optimal item pool will need one more item in the same ab-bin as item 38.  If the 
target exposure rate is 0.33, then it is 3.43 times more than the target exposure rate.  Four more 
items from the same ab-bin, therefore, need to be added.  

Figures 7 and 8 demonstrate an item pool blueprint before and after post-simulation 
adjustment.  
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Figure 6. Item Usage in the Order of Highest Information in Each b-Bin 

 
 

 

Figure 7.  Item Distribution for Optimal Item Pool Before Adjustment   
 

 
 

 
 

 

 

 

Figure 8. Item Distribution for the Optimal Item Pool After Post-Simulation Adjustment 
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Design Adjustments to Exposure Control Method 

The exposure rate for an item is the number of times an item is administered divided by the 
number of examinees.  During the optimal item pool design process, the real items are not 
available, but the simulated items representing items from the bins they belong to are.  The 
number of times items from each bin are administered is the estimate of the marginal exposure 
count of the items in a bin, which is shared by the number of items needed in the bin.  If the CAT 
has no item-exposure control, the design blueprint for the item pool after post-simulation 
adjustment follows directly from these exposure rates.   

The Sympson-Hetter (1985) method controls item exposure with a probabilistic index k to 
adjust the number of times an individual item is administered.  An item that potentially has a 
high exposure rate is assigned a small k value so that the probability of administering the item is 
brought down below the maximum exposure rate. When a selected item is not administered 
because of the exposure control, the next most informative item will be selected.  The goal of the 
optimal item pool design with Sympson-Hetter exposure control is that in addition to being 
optimal to accommodate test length, content balancing, and other aspects of the test, it makes 
sure that the exposure control only slightly reduces the test precision.  The goal is achieved by 
making sure that there are sufficient items in the bins where items are selected more often.   

The same method used in the post-simulation adjustment introduced previously is used to 
retain sufficient items in each bin.  Because the number of times an item is used can be recorded 
during item pool design process, if it reaches rN  another item from the same bin is retained so 
that the share of the total exposure for each of the items within the bin is not larger than r.   

Method 

This study was composed of two closely related parts.  In the first part, Monte Carlo 
simulations were used to design optimal item pools for a large-scale aptitude test.  The second 
part evaluated the optimal item pools with empirical criteria and compared them to the 
operational item pool on performances.     

Operational Item Pool 
The operational item pool for a section of a large aptitude test was used as the target and 

benchmark of this study.  The section was a 15-item test measuring the ability to solve basic 
arithmetic word problems. Items were selected using MI. To save computation time, an 
information “look-up” table was used.  The Sympson-Hetter method is incorporated to reduce 
overexposure of certain highly informative items.  Owen’s approximation to the posterior mean 
(Owen, 1975) was used to update the θ  estimate during test administration.  For each test, the 
prior θ  distribution had a mean of 0.0 and a standard deviation of 1.0.  The θ estimate after the 
last item was used as the score for the test. Each test was terminated after a fixed number of 
items.  

Simulation Procedure 

Programs were developed with MATLAB® Student Version R14 (2004) to simulate item 
pool design and evaluate both simulated and operational item pools.  Item pool design simulation 
was conducted in the following steps: 
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Step 1:  Modeling CAT procedures. Because the purpose of this study was to investigate the 
optimal item pool design for a specific testing program, the simulation procedure followed 
closely the psychometric procedure used in the operations.   

Test length was the same as the operational test, which was a 15-item fixed length section.  
Content balancing was not considered. MI and the information table were used to select items.  
Owen’s approximation to the posterior mean (Owen, 1975) was used to update the θ estimate 
during test administration.  For each test, the prior distribution of θ  had a mean of 0.0 and a 
standard deviation of 1.0. 

Step 2: Generating the examinee population.  The operational item pool was designed to 
serve examinees whose θ distribution was assumed to be normal with a mean of 0.0 and variance 
of 1.0.  The item pool simulation followed the same assumption, and examinees were randomly 
sampled from N(0,1).  

Step 3: Generating Item Parameters.  For each test, the first item was generated to be optimal 
for an a θ  level of 0.  After each response, optimal items were generated for the current θ 
estimate.  It was assumed that items were calibrated by the 3PLM.  Therefore, a, b, and c 
parameters were generated by one of the two methods (PM and MTI) described above.  With 
either method, the c parameter was generated from a beta distribution with mean and variance 
equal to the mean and variance of the operational items. The a parameters were generated 
depending on the current θ estimate and method used (PM or MTI). The b parameters were 
generated so that the item provided its most information at θ .  

Step 4: Generating response data.  Examinee responses were generated following each item 
generation according to the 3PLM, where the probability of examinee i correctly answering item 
j is expressed as: 

( ) ( )
1( ) 1

1 exp 1.7
i j i i

i j i

P c c
a b

θ
θ

≡ + −
⎡ ⎤+ − −⎣ ⎦

     (16) 

( )i jP θ  is the probability that a person  j = 1, …, J with an ability parameter jθ  gives a correct 
response to item i = 1, …, I; ai is the value for the discrimination parameter, bi for the difficulty 
parameter, and ci for the guessing parameter of item I.   

Because the examinee’s true θ  was known in the simulation, Pij was computed after each 
item administered to the examinee was simulated.  Then a random number mij was drawn from a 
uniform distribution U(0,1) and compared to Pij.  If mij was equal to or less than Pij then it was 
assigned a 1 as the response, otherwise 0 was assigned.  
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Step 5: Post-simulation adjustment.  Five replications were conducted for each combination 
of methods and control variables so that a relatively stable approximation of the optimal item 
pool could be obtained. The blueprints and the item exposure counts from the five replications 
were averaged before a post-simulation adjustment was done.   

Control Variables 
Two independent variables were controlled for in all item pool designs: design method and 

exposure control method.   The target exposure control rate was 1/3 for the Sympson-Hetter 
method, which was the the same as the operational procedure.  The simulation design is 
illustrated in Table 1.  

Table 1. Simulation Design 

15 Test length 

Examinee distribution N(0,1) 

No exposure control 
Exposure control Sympson-Hetter (target  

exposure rate was 1/3) 

Prediction Model 
Design Method Minimum Test Information 

b-bin: 0.20  
a-bin: Δa2=2ΔIMaximum = 0.8 

Bin width 

Content Balancing Single content  

 

Evaluating Simulated and Operational Item Pools 

Two types of distributions were considered in the item pool evaluation: (1) 6,000 θ’s were 
simulated from N(0,1), and these values were treated as the true abilities for the examinees, and 
(2) 65 fixed values of θ  ranging from −4 to 4 with an interval of 0.125 were selected (i.e., θ =    
–4.0, –3.875, . . . , 3.875, 4.0).  Five hundred examinees were set to have an identical latent 
ability at each θ  level. The former was to evaluate general performance, and the latter was to 
compute statistics conditional on θ.   

The item pool evaluation criteria used by Chang and Ying (1999) and Reckase (2005) were 
adopted for this study. Precision of θ  estimation included average test information at each θ  
level, bias, mean square error (MSE), and correlation coefficients between estimated and true θ s. 
Test security indicators included skewness of item exposure rate distribution, percentage of 
overexposed items, item overlap rate, and percentage of underexposed items.  

Conditional test information.  Test information is the sum of all the Fisher item information 
in the test.  In a fixed-length CAT, it can be taken as an index of test efficiency.  The larger the 
amount of information a test provides, the more efficient the test is.   
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Conditional standard error of measurement (CSEM). At each fixed θ point, the standard 
error of measurement (SEM) was calculated by  

( )
1

1 ˆ( )  
iN

i ij i
i j

SEM
N

θ θ θ
=

= −∑      (17) 

where Ni = 500 was the number of replications (i.e., the number of CATs administered) at each 

fixed θ point, and 
1

1 iN

i i
i nN

θ θ
=

= ∑  is the mean of the θ estimates over the Ni replications at θi.  

Bias and mean square error (MSE).  These quantities were defined as follows:  
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where N is the number of simulees, and ˆ jθ  is the estimator of the jth simulee with ability level 

jθ . 

Conditional bias and conditional mean square error (CMSE).  These quantities were defined 
as 
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and 

CMSE = ( )2
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where θi = −4.0, −3.875, …, 3.875, 4.0, for i = 1, 2, …, 65, respectively, and ˆ
ijθ (j = 1, 2, …, 

500) is the corresponding estimator of θi. These values were estimated as the conditional 
averages of errors and squared errors in the final estimates of θi in the simulations. As additional 
overall measures of the quality of the final estimates of θ,  the estimates of the bias and MSE 
functions in Equations 19 and 20 were averaged over all simulated values of θ in the study.  
They give a picture of item pool performance for individual θ levels.   

Skewness of item exposure rate distribution.  A χ2 statistic proposed by Chang and Ying 
(1999) was used to measure skewness of item exposure rate distribution.  It is defined as follows:   
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where 

ri is the observed exposure rate for the ith item, 

L is the test length, and  

n is the number of items in the item pool. 

Equation 22 captures the discrepancy between the observed and the ideal item exposure rates, 
and it quantifies the efficiency of item pool usage.  A low χ2 value implies that most of the items 
were fully used.  

The ratio of χ2 measures follows an F distribution and can be used to compare the exposure 
rates of two methods:  

Fmethod1, method2 = 2 2
method 1 method 2χ χ      (23) 

If F < 1, then method 1 is regarded as superior to method 2 in terms of the overall balance of 
item exposure rates.  

Percentage of overexposed items.  The exposure rate of an item can be defined as the ratio of 
the observed number of item administrations to the total number of examinees.  A moderate level 
of item exposure rate is generally desired.  A high exposure rate of an item means an increased 
risk of the items being known by the prospective examinees.  If so, both test security and validity 
are threatened by the high item exposure rate.  Therefore, the percentage of overexposed items is 
taken as an important criterion to evaluate the success of some CAT programs.     

Percentage of underexposed items.  A low item exposure rate means that an item is rarely 
used.  An item pool with too many items with too low an exposure rate is a sign of the 
underutilization of the pool.  Both the cost-effectiveness of developing the items and the 
appropriateness of the item selection method are challenged by the low item exposure rate.  In 
this study, an item with an exposure rate lower than .02 was considered as underexposed.   

Test overlap rate.  Test overlap rate is the expected number of common items encountered by 
two randomly selected examinees divided by the expected test length. Ideally, the number of 
common items between any two randomly sampled examinees should be minimized. 

Test overlap rate can be calculated by (1) counting the number of common items for each of 
the N(N − 1)/2 pairs of examinees, (2) summing all the N(N − 1)/2 counts, and (3) dividing the 
total counts by LN(N − 1)/2 (Chang & Ying, 1999).  The following equation summarizes the 
calculation (Chen, Ankenmann, & Spray, 1999): 
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where N denotes the number of fixed-length CATs administered, L is the number of items in 
each of the CATs, n is the number of items in the pool, and mi is the number of times item i was 
administered across all N CATs. 

Results 

 Performance of the Item Pools without Exposure Control 
Figure 9 compares the distributions of the operational item pool and two optimal item pools 

designed by MTI and PM, assuming no exposure control.  Table 2 presents the pool sizes and the 
summary statistics of the item parameters for the three pools.  The optimal item pools consisted 
of the fewest items.  This is not surprising, partly because both assumed no exposure control, 
while the operational pool was designed for tests with Sympson-Hetter exposure control.   

Table 2 indicates that all item pools had items that spanned a wide range of difficulty levels, 
roughly from −2.5 to 2.5.  However, the items in the optimal item pools had slightly smaller 
ranges.  The operational pool had a large number of items with b parameters between 0.0 and 1.5, 
while the optimal pools displayed a more even distribution across b-bins.  The MTI pool 
consisted of the fewest items and their a parameters were more concentrated, ranging from 1.275 
to 1.781.  The PM pool had item parameters similar to the operational pool, in which difficult 
items tended to have high a parameters and easy items tended to have moderate to low a 
parameters.   

The overview of the evaluation results for these item pools are presented in Table 3.  The θ 
estimates from all pools exhibited a certain level of positive bias; however, the magnitudes of the 
bias were negligible.  MSEs from optimal item pools were smaller than that from the operational 
pool.  The MTI pool and PM pool resulted in a higher correlation coefficient than the operational 
pool. Table 3 also shows that optimal item pools had a smaller test-retest overlap rate despite 
having fewer items.  It also indicates that the magnitude of the item overlap rate might not be 
related to the pool size with the optimal combinations of the items in the pool.   

Both optimal item pools had significantly smaller percentages of under-exposed items.  
Although the MTI pool had a higher percentage of over-exposed items, it is reasonable given that 
it was the smallest pool and no exposure control was imposed.  Increasing the pool size reduced 
the item overlap rate.   

Figure 10 plots the item exposure rate for individual items in the order of their difficulty 
levels.  Extremely easy and extremely difficult items tend to have smaller exposure rates, but 
under-exposed items are across all difficulty levels, especially those in the operational item pool.  
Table 3 indicates that the MTI pool has the fewest under-exposed items and Figure 10a shows 
that items with extreme difficulty levels are utilized more often in MTI pools. 

As shown in Figure 11, the three item pools resulted in quite different average test 
information plots at various fixed θ  levels.  The plot for the PM item pool looks similar to the 
one for the operational pool, but provides more information over most θ  levels.  The MTI item 
pool provides significantly less information over the θ  range between approximately −1.5 and 
2.0, but the amount of information it provides over a wide range of θ  levels exceeds the target 
information, which is 10.0 between θ  levels ±2.0, and 8.0 beyond θ levels ±2.0.   
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Figure 9. Item Distribution for Item Pools Without Exposure Control 

a. Operational Item Pool    b. Item Pool Designed by MTI           c. Item Pool Designed by PM 

 

 

Table 2. Item Pool Size and Item Parameter Statistics for Arithmetic Reasoning Without Exposure Control 

 Pool a b c 
Pool Size Mean SD Max. Min. Mean SD Max. Min. Mean SD Max. Min. 
OP 137 1.556 0.487 3.141 0.746 0.115 1.170 2.343 -2.625 0.186 0.063 0.328 0.038 

MTI 82 1.601 0.105 1.781 1.275 -0.159 1.194 1.942 -2.186 0.218 0.075 0.423 0.069 
PM 101 2.000 0.427 2.638 0.932 -0.031 1.143 1.943 -2.143 0.177 0.059 0.398 0.063 
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Table 3. Summary Statistics of the Performance of the Item Pools 

Statistic OP MTI PM 
Bias 0.0025 0.0022 0.0114 
MSE 0.0857 0.0739 0.0576 
Correlation 0.9563 0.9636 0.9703 
Skewness of item exposure rate 31.3822 12.0199 15.0003 
Item overlap rate 0.3385 0.3294 0.2969 
Pct of items with item exposure Rate > 1/3 8.76% 14.63% 8.91% 

Pct of items with item exposure rate < .02 44.53% 7.32% 13.86% 

Pool size 137 82 101 

  

Figure 10. Item Exposure Rate by Difficulty Level 

a. Operational Item Pool 

 
b. Item Pool Designed by MTI 

 
c. Item Pool Designed by PM 
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Figure 11. Average Test Information Conditional on True θ 

 
Figure 12 present the CSEM, conditional bias, and CMSE for the three item pools.  Figure 5b 

shows a significant increase in the bias of θ estimation, which is positive for θ  levels below 
around −2.0 and negative for θ  levels above around 2.0.  It is not surprising because of the short 
test length and the Bayesian estimation method.  MTI performed better for θ  levels below −2.0 
and PM performed better for θ  levels over 2.5. 

Summary. The results suggest that regardless of the constraints of content balancing, the 
optimal item pools performed better than the operational item pool based on pool size, test 
security, and measurement accuracy, although each design method had its preferable features.  
The operational item pool performed better over a given range of θ levels because a large 
number of items, including very discriminating items, were clustered around these levels.  
Optimal item pools, especially those designed with MTI, provided information more evenly over 
most θ  levels and provided sufficient measurement precision with a minimum number of items.  
All optimal pools, compared to operational pools, saved about 20 or more items and yielded 
better correlations.  In addition, optimal pools had a significantly lower percentage of items with 
exposure rates below 0.02.  With or without content balancing, PM item pools resulted in the 
highest correlation and the lowest item overlap rate.   

Overall, an item pool designed with the MTI method performed the best, which indicates that 
the optimal item pool needs the fewest items to achieve desirable precision if all the items have 
moderate item discrimination and distribute roughly uniformly over a wide range of difficulty 
levels. 
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Figure 12. Comparison of Item Pool Performance Conditional on θ  Estimates 

a. CSEM 

 
b. Conditional Bias 

 
c. CMSE 
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 Performance of the Item Pool With Sympson-Hetter Exposure Control 

The blueprints of the optimal item pools with Sympson-Hetter exposure control were built 
upon the blueprint of those without exposure control.  Specifically, more items were added in the 
bins where items tended to be selected more often than the desired exposure rates.  This 
relationship is reflected in the item distribution illustrated in Figure 13, where compared to the 
optimal pools without exposure control, there were noticeably more items with b parameters in 
the range −1.0 to 1.0 in the optimal pools designed by both MTI and PM.      

 Table 4 shows the item pool size and the summary statistics of the item parameters within 
each pool.  The MTI pool consisted of the fewest items and their a parameters varied within 
1.307 and 1.777, a smaller range than the other two pools.  The optimal item pool designed by 
PM had more high a-parameter items.  However, items in the operational pool had the maximum 
a parameter value of 3.141, compared to 1.777 for items in the MTI pool and 2.633 for items in 
the PM pool.  

The MTI pool had 13 more items and the PM pool had 19 more items than the item pools 
without exposure control, but the size of either pool was still smaller than that of the operational 
pool.  The added items were mostly highly discriminating items because they tended to have 
higher exposure rates.  This led to a slightly higher average a parameter for the optimal item 
pools.  

Table 5 lists the performance overview of the item pools.  On average, all three pools yielded 
slightly positive bias for θ  estimates. The operational pool displayed the smallest bias, but the 
difference from the optimal pools was negligible.  Both optimal pools exhibited better 
performance on all other criteria.  The PM pool resulted in the highest correlation coefficient and 
the lowest mean square error.  The MTI pool, however, consisted of the fewest items, which was 
42 items less than the operational pool and 25 less than the PM pool.  In addition, the optimal 
item pools had slightly smaller test-retest overlap rate despite having fewer items.    

Figure 14 shows the item exposure rate for individual items in each pool in the order of item 
difficulty.  It can be seen that the exposure control method worked very well, with the exposure 
rates for all individual items around or below the target exposure rate.  The MTI pool seemed to 
utilize items more evenly and have the fewest under-exposed items.  The operational item pool 
seemed to have large numbers of difficult items underexposed.   

 A closer look at the measurement precision at the individual θ  levels is displayed with the 
conditional test information plots in Figure 15.  The plots for item pools with exposure control 
look very similar to those without exposure control.  Because of the added items, optimal pools 
with SH exposure control yielded more information at some θ  levels and closely matched the 
information provided at other levels with the optimal pool without exposure control. The 
operational pool, on the other hand, produced less information at θ  levels between −0.5 to 0.75 
when SH exposure control was used.   
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Figure 13. Item Distributions for Item Pools With Sympson-Hetter Exposure Control 

             a. Operational Item Pool    b. Item Pool Designed by MTI               c. Item Pool Designed by PM 

 

 

 

Table 4. Item Pool Size and Item Parameter Statistics for Arithmetic Reasoning with Sympson-Hetter Exposure Control 

 Pool a b c 
Pool Size Mean SD Max. Min. Mean SD Max. Min. Mean SD Max. Min. 
OP 137 1.556 0.487 3.141 0.746 0.115 1.170 2.343 -2.625 0.186 0.063 0.328 0.038 

MTI 95 1.616 0.092 1.777 1.307 -0.141 1.130 1.935 -2.172 0.228 0.076 0.498 0.082 
PM 120 2.027 0.410 2.633 0.922 -0.055 1.083 1.922 -2.182 0.180 0.059 0.337 0.054 
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Table 5.  Summary Statistics of the Performance of the Item Pools 

Statistic OP MTI PM 

Bias 0.0073 0.0104 0.0105 

MSE 0.0929 0.0823 0.0564 

Correlation 0.9525 0.9593 0.9728 

Skewness of item exposure rate 18.9078 8.5813 10.7972 

Item overlap rate 0.2474 0.2481 0.2149 
Pct of items with item exposure rate  > 1/3 5.11% 11.58% 4.17% 

Pct of items with item exposure rate < .02 39.42% 11.58% 17.50% 

Pool Size 137 95 120 

 

Figure 14. Item Exposure Rate by Difficulty Level 

a. Operational Item Pool 

 
b. Item Pool Designed by MTI 

 
c. Item Pool Designed by PM 
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Figure 15. Average Test Information Conditional on True θ 

 
  

 The plots for conditional SEM, conditional bias, and conditional MSE are presented in 
Figure 16.  Smaller values indicate better accuracy in θ  estimates.  The plots indicate that all 
item pools yielded similar performance at θ  levels between −2.0 and 2.5.  The MTI pool 
performed better for θ levels below −2.0 and the PM pool performed better for θ levels over 2.5. 

 

 

Figure 16. Comparison of Item Pool Performance Conditional on θ  Estimates 

a. CSEM 
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b. Conditional Bias 

 
c. CMSE 

 
 

Summary 

The results suggest that all optimal pools, compared to the operational pools, saved about 10 
or more items while performing better based on pool size, test security, and measurement 
accuracy.  Tests assembled from optimal pools had smaller test-retest overlap rates.  In addition, 
optimal pools had significantly lower percentages of items with exposure rates below 0.02.   

 

 Discussion and Conclusions 

Implications for the Practice of Item Pool Development 
This study investigated two approaches to designing optimal blueprints for CAT item pools.  

Both approaches designed item pools performing better than the operational pools whether 
exposure control was considered or not. The results showed that the MTI design generally led to 
smaller pools that contained items with lower a parameters.  PM pools maintained the correlation 
between item parameters but did not perform as well as the MTI pool.  The operational pool, on 
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the other hand, provided more measurement precision over some range of the latent ability levels.  
A closer look at the operational pool found more highly discriminating items at the range of b 
parameters between 0 and 1.5.  In practice, when operational item pools retire frequently, such 
highly discriminating items might be difficult to replace.  It introduces doubts as to whether or 
not the same item pool performance over similar ability levels can be easily duplicated.  Item 
pools designed with Reckase’s method had more items evenly distributed over a wider range of 
ability levels.  As a result, optimal pools performed better than the operational item pools at most 
latent ability levels. 

Optimal item pool design looks for the most desirable or favorable combination of items to 
form an item pool that would support the assembly of a large number of individualized CATs.  
There is, however, no single pool that is absolutely optimal, as it is constrained by a number of 
factors and different compositions of the items that might yield similar measurement precision.  
That is why the two “optimal” pools looked quite different and each was still optimal in some 
sense.   

This study was based on the assumption that examinees are normally distributed with a 
population mean ability of 0 and variance of 1.  However, in reality, examinee distributions are 
not always normal, and the expected distribution might not match the exact examinee 
distribution, which can only be decided when the tests are administered.  The question raised is 
how robust the design is to the violation of the distributions.  There are two situations and, thus, 
two treatments are required.  In the case where the expected distribution is not normal, it is 
possible to sample the examinees from a predefined examinee distribution, which can be 
constructed from previous test administrations.  On the other hand, since it is a simulation study, 
violation of the assumptions might threaten the validity of the study and impact the results.  The 
extent of the potential impacts could be a study of interest for future research.  

The end product of the item pool design is a blueprint listing the number of needed items in 
each bin, that is, items with the a and b parameters in a certain range.  Similar to the function of a 
test blueprint for a paper-and-pencil test, the item pool blueprint serves as a guide for item 
selection or item creation for the item pool.  It portrays the optimal item composition an item 
pool should have and, therefore, is a target item developers should try to match.  Items with 
desired content coverage and statistics can be either selected from previously written items or 
created by item writers.   

This method has not been tested in practice.  In this study, all items required by the design 
method were assumed available when comparing the optimally designed item pools to the 
operational pools.  It seems difficult to produce items with exactly the same item parameters 
required by the item pool design blueprint.  However, with advances in item modeling research, 
it will be more and more feasible to create large numbers of similar items with the desired 
psychometric properties.  Because the PM pool takes into account the correlations between a and 
b parameters, the blueprint designed by the PM method might be easier to fulfill.  The MTI pools 
achieved acceptable measurement precision with a minimum number of items, but it is uncertain 
how difficult it would be to find or to create the proper items.  On the other hand, improvement 
on the design method, such as combining the two methods to take advantages of the good 
features of each method, will make the design more practical.  In addition, it should be pointed 
out that by defining the width of “bins,” the blueprint requires similar items within a certain 
range instead of with exact item parameters.  Future studies are needed to investigate how 
difficult it is to fulfill the required items of the blueprint. 
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Implications for Item Pool Management 

In practice, operational item pools are not static.  In most testing programs, tests are 
administered from the bank and new items are pretested on a continuous basis.  Obsolete items 
are removed from time to time.  Thus, monitoring item usage and replenishing new items are two 
important tasks of item pool management (van der Linden & Veldkamp, 2000).  The item pool 
design methods presented here can easily be adapted for use in item pool management, both at 
the master pool level and at the operational pool level.   

The master item pool is a union of operational item pools.  The distribution of the optimal 
master pool could be simply a number of replications of the operational pool distribution.  In 
other words, if the master pool will support ten smaller operational pools, the optimal item 
distribution of the master pool in each bin is simply ten times the item distribution in the optimal 
pool designed by the simulation method.  Alternatively, the union method can take into 
consideration the expected exposure rates for the items in each bin, where the number of items 
needed in each bin for the master pool can be expressed as 

X’AB=Max(RXABrAB, XAB)         (25) 

where R is the number of operational item pools a master item pool can support, and rAB is the 
expected exposure rate for the numbers in each bin.  In this way, the master item pool has more 
items in the most exposed bins and fewer items in the least exposed bins.   

Reckase’s Method Versus the Mathematical Programming Method 
The results showed that the extensions to Reckase’s method worked well in designing 

optimal item pools in situations where items are calibrated with the 3PLM.  Compared to the 
mathematical programming method, Reckase’s method simulated the CAT procedure 
straightforwardly and, therefore, is more flexible in adapting different item selection and ability 
estimation processes and is easier to implement.  Constraints on non-statistical attributes (e.g., 
content balancing) are absorbed into the first stage of the design by partitioning the target pool 
into smaller pools.  There is no special software needed.  The mathematical programming 
method is more mathematically structured by quantifying all the constraints and searching for the 
optimal solutions with linear programming, but it also requires the use of a “shadow test” item 
selection approach in CAT simulation.  Reckase’s method emphasizes the randomness of the 
item parameters in simulation, while the mathematical programming method focuses on 
optimizing predefined “pseudo” items.  In the end, when they are all modeling the same CAT 
process, the simulation results should be similar.   

While taking different approaches, Reckase’s method and the mathematical programming 
method are similar in many ways.  One of the important similarities between the PM item 
simulation approach and the mathematical programming method is in the way item costs are 
minimized in the item pool design process.  The mathematical programming method defines a 
cost function, which is an inverse of the number of real items with certain combinations of the 
attributes, including IRT parameters.  It assumes that the more real items with the combination of 
item parameters, the less cost it is to create items with this item parameter combination.  The 
idea is essentially the same as the PM method, in which the simulation would more likely 
generate items along the regression line of b parameters on a parameters where more real items 
are clustered.  
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Either method might be able to borrow some ideas from the other to improve item pool 
design.  No literature has described the design of item pools with a-stratified exposure control by 
the mathematical programming method.  Chang and van der Linden described the 0-1 linear 
programming method to optimize the stratification of a parameters for an existing item pool but 
not for the “pseudo items.”  As explored in this study, it might be possible to simulate the item 
pool design by varying the target information at different stages of the test.   

Limitations and Future Studies 
Due to the limited resources, the prediction models in this study were based on one 

operational item pool.  In practice, it is possible to use multiple recent item pools to obtain a 
more accurate estimation of the attributes of the items written for a testing program.   

Previous research showed that the bin width might influence the number of items required in 
the optimal pool.  With the post-simulation adjustment utilized in this study, item pools would 
trim unnecessary items in the bins, so the bin width might not influence the size of the final pool.  
However, future studies are needed to investigate its impact. 

While this study investigated optimal item pool design with the PM and MTI methods 
separately, both methods have their shortcomings.  The MTI method tends to result in items with 
low correlations between their a and b parameters.  The PM method, while maintaining similar 
correlation as the items in operational pools do, tends to perform better over some ability levels 
than others.  It is important for future research to explore ways to combine the two design 
methods so the item generation would take into account the item parameter correlations while 
meeting the minimum information requirement.   
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Appendix 

Table A.1 Item Distribution for the Operational Item Pool  

0.00 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97          a 

     b 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97 ∞ Total 
-∞ -3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 

-3.00 -2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.80 -2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.60 -2.40 0 1 0 0 0 0 0 0 0 0 0 0 1 
-2.40 -2.20 1 1 0 0 0 0 0 0 0 0 0 0 2 
-2.20 -2.00 2 1 0 0 0 0 0 0 0 0 0 0 3 
-2.00 -1.80 3 1 0 0 0 0 0 0 0 0 0 0 4 
-1.80 -1.60 1 0 0 0 0 0 0 0 0 0 0 0 1 
-1.60 -1.40 2 2 0 0 0 0 0 0 0 0 0 0 4 
-1.40 -1.20 1 1 1 0 0 0 0 0 0 0 0 0 3 
-1.20 -1.00 1 3 0 0 0 0 0 0 0 0 0 0 4 
-1.00 -0.80 0 5 1 0 0 0 0 0 0 0 0 0 6 
-0.80 -0.60 0 4 1 0 0 0 0 0 0 0 0 0 5 
-0.60 -0.40 0 3 4 1 0 0 0 0 0 0 0 0 8 
-0.40 -0.20 0 1 4 1 0 0 0 0 0 0 0 0 6 
-0.20 0.00 0 1 7 1 0 0 0 0 0 0 0 0 9 
0.00 0.20 0 0 2 2 0 1 0 0 0 0 0 0 5 
0.20 0.40 0 0 5 4 2 0 0 0 0 0 0 0 11 
0.40 0.60 0 0 3 0 2 0 1 0 0 0 0 0 6 
0.60 0.80 0 0 1 6 1 3 0 0 0 0 0 0 11 
0.80 1.00 0 0 0 2 1 0 1 1 0 0 0 0 5 
1.00 1.20 0 0 0 1 2 0 0 3 1 1 0 1 9 
1.20 1.40 0 0 0 3 4 2 0 1 0 0 0 1 11 
1.40 1.60 0 0 5 1 1 2 0 2 0 1 0 0 12 
1.60 1.80 0 0 3 0 2 0 0 0 0 0 0 0 5 
1.80 2.00 0 1 0 0 1 0 0 0 0 0 0 0 2 
2.00 2.20 0 0 2 0 0 0 0 0 0 0 0 0 2 
2.20 2.40 0 1 1 0 0 0 0 0 0 0 0 0 2 
2.40 2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.60 2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.80 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
3.00 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 11 26 40 22 16 8 2 7 1 2 0 2 137 
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Table A.2 Item Distribution for Item Pool Designed by  
the MTI Method Without Exposure Control 

0.00 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97         a 

   b 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97 ∞ 
Total 

-∞ -3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
-3.00 -2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.80 -2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.60 -2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.40 -2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.20 -2.00 0 0 4 0 0 0 0 0 0 0 0 0 4 
-2.00 -1.80 0 0 3 0 0 0 0 0 0 0 0 0 3 
-1.80 -1.60 0 0 0 4 0 0 0 0 0 0 0 0 4 
-1.60 -1.40 0 0 0 4 0 0 0 0 0 0 0 0 4 
-1.40 -1.20 0 0 0 5 0 0 0 0 0 0 0 0 5 
-1.20 -1.00 0 0 0 4 0 0 0 0 0 0 0 0 4 
-1.00 -0.80 0 0 0 5 0 0 0 0 0 0 0 0 5 
-0.80 -0.60 0 0 0 4 0 0 0 0 0 0 0 0 4 
-0.60 -0.40 0 0 0 4 0 0 0 0 0 0 0 0 4 
-0.40 -0.20 0 0 0 4 0 0 0 0 0 0 0 0 4 
-0.20 0.00 0 0 0 5 0 0 0 0 0 0 0 0 5 
0.00 0.20 0 0 0 3 0 0 0 0 0 0 0 0 3 
0.20 0.40 0 0 0 4 0 0 0 0 0 0 0 0 4 
0.40 0.60 0 0 0 4 0 0 0 0 0 0 0 0 4 
0.60 0.80 0 0 0 3 0 0 0 0 0 0 0 0 3 
0.80 1.00 0 0 0 4 0 0 0 0 0 0 0 0 4 
1.00 1.20 0 0 0 4 0 0 0 0 0 0 0 0 4 
1.20 1.40 0 0 0 3 0 0 0 0 0 0 0 0 3 
1.40 1.60 0 0 0 3 0 0 0 0 0 0 0 0 3 
1.60 1.80 0 0 0 4 0 0 0 0 0 0 0 0 4 
1.80 2.00 0 0 4 0 0 0 0 0 0 0 0 0 4 
2.00 2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.20 2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.40 2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.60 2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.80 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
3.00 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 0 11 71 0 0 0 0 0 0 0 0 82 
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Table A.3 Item Distribution for Item Pool Designed by  
the PM Method Without Exposure Control 

0.00 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97          a 
   b 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97 ∞ Total 

-∞ -3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
-3.00 -2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.80 -2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.60 -2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.40 -2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.20 -2.00 0 6 0 0 0 0 0 0 0 0 0 0 6 
-2.00 -1.80 0 2 0 0 0 0 0 0 0 0 0 0 2 
-1.80 -1.60 0 0 4 0 0 0 0 0 0 0 0 0 4 
-1.60 -1.40 0 0 3 2 0 0 0 0 0 0 0 0 5 
-1.40 -1.20 0 0 0 3 0 0 0 0 0 0 0 0 3 
-1.20 -1.00 0 0 0 3 0 0 0 0 0 0 0 0 3 
-1.00 -0.80 0 0 0 3 3 0 0 0 0 0 0 0 6 
-0.80 -0.60 0 0 0 0 3 2 0 0 0 0 0 0 5 
-0.60 -0.40 0 0 0 0 2 2 0 0 0 0 0 0 4 
-0.40 -0.20 0 0 0 0 3 2 0 0 0 0 0 0 5 
-0.20 0.00 0 0 0 0 0 3 3 0 0 0 0 0 6 
0.00 0.20 0 0 0 0 0 3 2 1 0 0 0 0 6 
0.20 0.40 0 0 0 0 0 3 2 2 0 0 0 0 7 
0.40 0.60 0 0 0 0 0 1 2 2 0 0 0 0 5 
0.60 0.80 0 0 0 0 0 0 3 2 1 0 0 0 6 
0.80 1.00 0 0 0 0 0 0 2 3 1 0 0 0 6 
1.00 1.20 0 0 0 0 0 0 3 2 0 0 0 0 5 
1.20 1.40 0 0 0 0 0 0 2 3 0 0 0 0 5 
1.40 1.60 0 0 0 0 0 0 3 0 0 0 0 0 3 
1.60 1.80 0 0 0 0 0 3 3 0 1 0 0 0 7 
1.80 2.00 0 0 0 0 2 0 0 0 0 0 0 0 2 
2.00 2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.20 2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.40 2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.60 2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.80 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
3.00 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 8 7 11 13 19 25 15 3 0 0 0 101 
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Table A.4 Item Distribution for Item Pool Simulated With  
MTI Method and With Sympson-Hetter Exposure Control  

0.00 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97          a 
     b 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97 ∞ Total 

-∞ -3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
-3.00 -2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.80 -2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.60 -2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.40 -2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.20 -2.00 0 0 4 0 0 0 0 0 0 0 0 0 4 
-2.00 -1.80 0 0 3 0 0 0 0 0 0 0 0 0 3 
-1.80 -1.60 0 0 0 4 0 0 0 0 0 0 0 0 4 
-1.60 -1.40 0 0 0 4 0 0 0 0 0 0 0 0 4 
-1.40 -1.20 0 0 0 5 0 0 0 0 0 0 0 0 5 
-1.20 -1.00 0 0 0 4 0 0 0 0 0 0 0 0 4 
-1.00 -0.80 0 0 0 6 0 0 0 0 0 0 0 0 6 
-0.80 -0.60 0 0 0 5 0 0 0 0 0 0 0 0 5 
-0.60 -0.40 0 0 0 5 0 0 0 0 0 0 0 0 5 
-0.40 -0.20 0 0 0 6 0 0 0 0 0 0 0 0 6 
-0.20 0.00 0 0 0 8 0 0 0 0 0 0 0 0 8 
0.00 0.20 0 0 0 4 0 0 0 0 0 0 0 0 4 
0.20 0.40 0 0 0 6 0 0 0 0 0 0 0 0 6 
0.40 0.60 0 0 0 5 0 0 0 0 0 0 0 0 5 
0.60 0.80 0 0 0 4 0 0 0 0 0 0 0 0 4 
0.80 1.00 0 0 0 4 0 0 0 0 0 0 0 0 4 
1.00 1.20 0 0 0 4 0 0 0 0 0 0 0 0 4 
1.20 1.40 0 0 0 3 0 0 0 0 0 0 0 0 3 
1.40 1.60 0 0 0 3 0 0 0 0 0 0 0 0 3 
1.60 1.80 0 0 0 4 0 0 0 0 0 0 0 0 4 
1.80 2.00 0 0 4 0 0 0 0 0 0 0 0 0 4 
2.00 2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.20 2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.40 2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.60 2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.80 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
3.00 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 0 11 84 0 0 0 0 0 0 0 0 95 

 



  

- 43 - 

Table A.5 Item Distribution for Item Pool Simulated by  
the PM Method and With Sympson-Hetter Exposure Control 

0.00 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97          a 

     b 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97 ∞ 
Total 

-∞ -3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
-3.00 -2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.80 -2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.60 -2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.40 -2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.20 -2.00 0 6 0 0 0 0 0 0 0 0 0 0 6 
-2.00 -1.80 0 2 0 0 0 0 0 0 0 0 0 0 2 
-1.80 -1.60 0 0 4 0 0 0 0 0 0 0 0 0 4 
-1.60 -1.40 0 0 3 2 0 0 0 0 0 0 0 0 5 
-1.40 -1.20 0 0 0 3 0 0 0 0 0 0 0 0 3 
-1.20 -1.00 0 0 0 3 0 0 0 0 0 0 0 0 3 
-1.00 -0.80 0 0 0 3 6 0 0 0 0 0 0 0 9 
-0.80 -0.60 0 0 0 0 3 5 0 0 0 0 0 0 8 
-0.60 -0.40 0 0 0 0 2 4 0 0 0 0 0 0 6 
-0.40 -0.20 0 0 0 0 3 3 0 0 0 0 0 0 6 
-0.20 0.00 0 0 0 0 0 3 6 0 0 0 0 0 9 
0.00 0.20 0 0 0 0 0 3 2 2 0 0 0 0 7 
0.20 0.40 0 0 0 0 0 3 2 5 0 0 0 0 10 
0.40 0.60 0 0 0 0 0 1 2 3 0 0 0 0 6 
0.60 0.80 0 0 0 0 0 0 3 2 2 0 0 0 7 
0.80 1.00 0 0 0 0 0 0 2 3 2 0 0 0 7 
1.00 1.20 0 0 0 0 0 0 3 2 0 0 0 0 5 
1.20 1.40 0 0 0 0 0 0 2 3 0 0 0 0 5 
1.40 1.60 0 0 0 0 0 0 3 0 0 0 0 0 3 
1.60 1.80 0 0 0 0 0 3 3 0 1 0 0 0 7 
1.80 2.00 0 0 0 0 2 0 0 0 0 0 0 0 2 
2.00 2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.20 2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.40 2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.60 2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.80 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
3.00 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 8 7 11 16 25 28 20 5 0 0 0 120 
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Table A.6 Item Distribution for the Item Pool Simulated by 
 the MTI Method and With a-Stratified Exposure Control 

0.00 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97          a 
        b 0.89 1.26 1.55 1.79 2.00 2.19 2.37 2.53 2.68 2.83 2.97 ∞ Total 

-∞ -3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
-3.00 -2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.80 -2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.60 -2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 
-2.40 -2.20 0 0 3 3 0 0 0 0 0 0 0 0 6 
-2.20 -2.00 0 0 1 3 2 0 0 0 0 0 0 0 6 
-2.00 -1.80 0 0 0 1 3 2 0 0 0 0 0 0 6 
-1.80 -1.60 0 0 1 2 2 2 0 0 0 0 0 0 7 
-1.60 -1.40 0 0 0 1 3 1 2 0 0 0 0 0 7 
-1.40 -1.20 0 0 0 0 2 2 2 0 0 0 0 1 7 
-1.20 -1.00 0 0 0 0 0 2 2 2 0 0 0 2 8 
-1.00 -0.80 0 0 0 0 0 2 2 2 0 0 0 2 8 
-0.80 -0.60 0 0 0 0 2 2 2 1 0 0 0 1 8 
-0.60 -0.40 0 0 0 0 1 2 2 1 0 0 0 2 8 
-0.40 -0.20 0 0 0 0 1 2 2 1 1 0 0 2 9 
-0.20 0.00 0 0 0 1 2 2 1 1 1 0 0 1 9 
0.00 0.20 0 0 0 0 1 2 2 1 1 0 0 1 8 
0.20 0.40 0 0 0 0 2 2 1 1 0 0 0 2 8 
0.40 0.60 0 0 0 0 0 2 2 2 0 0 0 1 7 
0.60 0.80 0 0 0 0 2 2 1 1 0 0 0 1 7 
0.80 1.00 0 0 0 0 1 2 2 1 0 0 0 1 7 
1.00 1.20 0 0 0 1 2 2 1 0 0 0 0 0 6 
1.20 1.40 0 0 0 0 2 2 2 0 0 0 0 0 6 
1.40 1.60 0 0 0 1 2 2 0 0 0 0 0 0 5 
1.60 1.80 0 0 0 1 2 2 0 0 0 0 0 0 5 
1.80 2.00 0 0 0 0 2 2 0 0 0 0 0 0 4 
2.00 2.20 0 0 1 1 2 0 0 0 0 0 0 0 4 
2.20 2.40 0 0 2 0 0 0 0 0 0 0 0 0 2 
2.40 2.60 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.60 2.80 0 0 0 0 0 0 0 0 0 0 0 0 0 
2.80 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 
3.00 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 0 0 8 15 36 39 26 14 3 0 0 17 158 
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