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Abstract

Bayesian and graph models of student knowledge assessment have made significant 
progress in the last decadeand are challenging the more traditional IRT approach for CAT 
applications.  We review some of the most prominent frameworks in Bayesian knowledge 
assessment and how they compare to IRT and introduce one such framework in the family of 
Bayesian models, the POKS (Partial Order Knowlege Structure).  A comparison of the POKS 
approach to IRT and a Bayesian Network approach showed that it can perform detailed 
knowledge assessment at a computational cost of orders of magnitude less than a Bayesian 
Network and IRT.  The assessment accuracy results of experiments show that it is at least as 
good as a one-dimensional IRT model and generally outperforms a Bayesian Network with small 
data sets. However, a number of challenges remain for the POKS approach as well as for other 
Bayesian frameworks in CAT applications.  One of the most important issue is how scalable the 
approaches are over a large number of items. Another issue is the estimation of reliability and 
error margins, which are currently almost ignored by these approaches.  We review these 
challenges and the work ahead.
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Partial Order Knowledge Structures for CAT Applications

Adaptive testing can be considered one of the first applications of what is currently a very 
active research topic, that of adaptive and personalized interfaces. The principle of adaptive 
interfaces is based on constructing a user model of an application and then adapting the 
performance of the application to the model. This is exactly what adaptive testing does. It 
constructs a model of the respondent’s knowledge and adapts the administered items as a 
function of the model, generally with the specific goal of making a knowledge assessment with a 
minimum number of items. Although the area of adaptive interfaces includes a wide range of 
adaptation, from user preferences to user intentions (McTear 1993), it remains that computerized 
adaptive testing (CAT) might be the very first large-scale application of the basic principle of 
these applications: to construct a user model and adapt the performance of the application as a 
function of the model.

The domains of CAT and adaptive interfaces evolved separately from each other, largely 
unaware of each other’s developments. The area of adaptive interfaces and, in particular, that of 
adaptive learning environments gave rise to several models of learner knowledge and several 
techniques for its evaluation (Self, 1988). While item response theory (IRT) was rapidly 
developing in the area of adaptive testing, the area of intelligent tutorials was developing its own 
approaches for representing and assessing competences for adaptive learning environments (Carr 
& Goldstein, 1977). Most of these efforts were based on rule-based systems and aimed at 
providing a very detailed assessment of learner knowledge. The main feature of these models 
was to arrive at an accurate assessment that referred, not only to the precise concepts mastered, 
but also to incorrect concepts, or mal-rules (Payne & Squibb, 1990). These models had the 
advantage of providing a high level of  granularity in that they could provide a very precise 
assessment of acquired or missing  knowledge/competences; however, they did not integrate any 
notion of uncertainty, which is inherent to the modeling of knowledge.

Inversely, work in the area of psychometrics and IRT models incorporated, from the outset, 
the notion of uncertainty and were devoted mainly to estimating the reliability of the models and 
the confidence intervals used to make an assessment with a known degree of certainty. However, 
the granularity of IRT-based models still remains low and generally limited to one dimension, or, 
in the case of more recent work on multidimensional IRT, to a few dimensions simultaneously, 
well below the level of granularity that can be attained with the rule-based models of intelligent 
tutorial environments.

These divergences are easily explained considering that, in the case of psychometrics, the 
most frequent requirements originate from the context of summative evaluation and consist in 
determining whether the respondent will pass or fail a test. The requirements of intelligent 
tutorial environments are aimed, instead, at determining the learning problems of the learner in 
order to select very specific capsules of pedagogical content aimed at remedying incorrect 
concepts or guiding the learner toward a more advanced content. The respective requirements of 
the two domains are, therefore, very different, which explains in large part the little influence 
they have had on each other.

The link between the two domains emerged from work on graphical models of knowledge 
and we mention, among others, that of Almond and Mislevy (1999), Mislevy and Gitomer 
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(1995), and the overview of Jameson (1995). In addition to demonstrating that the IRT model 
could be considered as a graphical model, this work emphasized the importance, for any learner 
assessment, to incorporate measures of uncertainty on one hand, and, on the other, to arrive at an 
accurate assessment as required by advanced computerized learning environments.

The present paper provides a comparison of various approaches specific to each domain. The 
approaches are described in the first sections; we then report on a series of experiments used for 
a quantitative comparison. Finally, a discussion about the observed results and the qualitative 
criteria that will clarify the advantages and inconveniences of each approach is presented.

Graphical Models and Knowledge Assessment

Graphical models have long been used for representing a domain of knowledge (see, for 
example, Findler, 1979). They offer a visualization that is intuitive and, also, a formalism as a 
starting point for constructing rigorous and even mathematical models. They are now commonly 
used in the domain of representation and assessment of acquired knowledge and competences.

Concepts, Items, and Hidden Nodes

The nodes of a graphical model typically belong to two categories: concepts and items. The 
item nodes represent questions, exercises, or any other observable manifestation of the 
individual’s competence. The concept nodes represent  latent competences. These are not 
directly observable. Thus, the nodes of a graphical structure are classified according to whether 
they are observable or unobservable (or “hidden”) nodes.  

The distinction between an observable node and a hidden node is fundamental, not only from 
an epistemological point of view, but also with regard to the techniques used to automatically 
construct these structures from data and make the knowledge assessment.

Figure 1 illustrates a graphical model containing hidden nodes, concepts, and observable 
nodes, items. The concepts are in fact divided into two groups: 

• Competences, called concepts in the figure; 

• False competences, called  incorrect concepts. 

While the competences determine success of the items, the false competences, or incorrect 
concepts, are rather the source of failures. These are typically errors frequently found in a 
domain of knowledge.

For example, in the learning of operations on fractions, the addition of two fractions will 
often contain the error which consists in adding the numerators and the denominators, and shown 
here by rule : 

a
c

c
d


e1 ac
bd

.       (1)
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Figure 1.  Example of a Graphical Model

Obviously, the correct way to proceed consists of transforming the fractions in order to 
obtain a common denominator. This competence could be broken down, corresponding to 
rule : 

a
c

c
d


c1 adcb
bd

,       (2)

into two sub-competences, corresponding to rules  and : 

a
c

c
d


c2 ad
cd


cb
cd



c3 adcb
bd

.       (3)

The notion “to add with a common denominator” will thus be considered a concept, or a precise 
competence that the student will have to master for the addition of fractions, and it will be linked 
to two other more precise concepts.

Figure 2 shows a graphical model that illustrates these interactions among the items, the 
concepts and the incorrect concepts in the domain of the arithmetic of fractions. It contains four 
items with number [4] being a wrong answer. It is, therefore, linked to the incorrect concept 
E1:ADN, that represents the error of rule E1. The concepts, or competences C2:ADC (addition 
with common denominator) and C2:ME (multiplication by an integer) respectively represent 
notions of algebraic transformations that are involved in the mastery of the items to which they 
are linked in the figure. The highest-level concept, C1:AF (addition of  fractions) is, for its part, 
linked to the two lower-level concepts  C2:ADC and C3:ME
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Figure 2.  Example of a Graphical Model With Concepts 
and Items From the Domain of the Arithmetic of Fractions

As can be seen, graphical models have a high level of expressiveness due to their 
representation of complex links, precise competences and higher-level competences, and 
incorrect concepts that explain particular errors that the student can make faced with very precise 
items.

We note, however, that the cognitive value of a graphical model depends essentially on the 
choice of nodes, relations, and the semantics that are given to a relation among the nodes. Thus, 
the model in Figure 2 is based only on an intuition of the latent competences involved in the 
resolution of the four items and not on a demonstrated cognitive model. The meaning of the 
relations is not clearly defined and it too remains intuitive. It could in fact mean “is related to.” 

We will see, however, that the semantics of links are completely different from one graphical 
model to another, especially when a probabilistic graphical model is used with a view to predict 
or to assess. This is notably the case with Bayesian networks to be seen later and whose 
semantics are very specific. It is important to remember that all graphical models are not 
necessarily founded on a solid cognitive base and that the semantics of their links vary from one 
model to another.

The IRT Approach in the Graphical Perspective

IRT models can actually be represented by a graphical model whose semantics are those of 
Bayesian networks. Figure 3 illustrates the principle. 

- 4 -



Figure 3.  The IRT Model Represented Graphically

In the basic IRT model, a single competence is represented by concept C in the graph and it 
is referred as θ   in the IRT framework. The θ   competence essentially represents the fact that a 
test measures one dimension and that success on all the items depends on this dimension. In 
addition, by stipulating that Figure 3 conforms to a representation of a Bayesian network, we 
then conclude that, given a determined level of competence, θ  , success on an item is 
independent of success on another item. In Bayesian terms, we can therefore conclude that 

P Ii ,I j∣θ =PIi∣θP Ij∣θ  .       (4)

 This is to say that  iP I   and  jP I   are independent of each other. This conclusion in fact 

corresponds to one of the fundamental IRT hypotheses: success on an item given a level of 
competence, θ , does not influence success on another item.  

This definition corresponds to what is called a “naïve” Bayesian network. Given the above-
mentioned independence hypothesis, it follows that  

P I1 ,I2, . .. , In∣θ=P I1∣θP I2∣θ. . .P In .       (5)

This equation corresponds to the simplifying hypothesis of a naive Bayesian network. A 
direct link between IRT and graphical representation of naive Bayesian networks therefore exists 
(Almond & Mislevy 1999). The fundamental difference between a naive Bayesian network and 
the three-parameter logistic IRT model, for example, resides in the fact that the link between the 
probability of success on an item  and a level of competence,   , is determined by a sigmoid 
function with three parameters, ai, bi, and ci, that corresponds to 

P Ii∣θ=ci
1

1e
−aiθ−bi 

,                   (6)

Where ai is the discrimination capacity of an item i; bi the level of difficulty of the item i and 
ci the chance factor (also called pseudo-chance) that determines a minimum probability of 
success.

Formalism of Bayesian Networks  

Bayesian networks (BN) are accurate representations of dependence and independence 
relationships among the nodes of the network.  Without entering into the details of the semantics 
of formalism, we will state the fundamental principles and readers can refer to Neapolitan (2004) 
for a more complete description.
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BN formalism is based on the notion of a Markov blanket that stipulates independence 
relationships. In the following figure, for example:

the B node represents a Markov blanket, since, if it is observed, then nodes A and C will be 
independent of each other, while, if it is not, A and C are dependent through B.

Bayesian networks have the quality of possessing both this formal definition of their 
semantics and also of being an intuitive representation of relationships among events. For 
example, if: 

(A) John is a smoker; 

(B) John has cancer; 

(C) John’s lung X-ray shows a “spot”, 

we understand from the outset that the above graph represents relationships of causality. In 
addition, if we know that A is a true statement, we will then tend to believe that events B and C 
are more probable. Conversely, if we observe that C is true, then we will also tend to believe that 
A is more probable. However, if we know that B is true, then the observation of A as true does 
not increase the probability of C since we know that it is cancer, B, that is the cause of C. Finally, 
it is also the case in the opposite direction of the arrows: knowing that B is true, the observation 
of C does not provide additional information concerning A and no longer influences its 
probability. (It must be presumed, however, that cigarettes cannot cause a spot on the lung other 
than through cancer. Otherwise, there would then be an A C  link, indicating that cancer is not 
the only mechanism through which cigarettes can bring about such an X-ray.) This simple 
example shows one of the types of independence that is defined with a Markov Blanket and that 
serves as the basis of BN construction.  

The POKS Approach and the Knowledge Spaces Theory

One graphical approach that has recently emerged in the area of adaptive testing is Partial 
Order Knowledge Structures, or POKS. It is inspired by both the work of Doignon et Falmagne 
(1999) on knowledge spaces for the representation of knowledge, and on naive Bayesian 
networks for the inference of knowledge. We first describe the knowledge spaces theory and 
then the POKS approach.

Knowledge spaces theory

Knowledge spaces theory represents a domain by a set of  knowledge items. The items are 
manifestations of competences such as success on a particular exercise or to a knowledge 
question. We do not refer to notions of concepts or latent competences in this theory, but 
exclusively to observable manifestations of these competences or concepts.

The knowledge state of a student is represented by a subset of this domain, the items that a 
student masters. It is, therefore, a very simple way of representing the state of an individual’s 
knowledge. At first, only those items whose mastery by the respondent is observable are 
involved in order to model the competences.
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Next, the mastery of a latent competence can be indicated by defining which items are 
manifestations of which competences. We can base ourselves on a summation, potentially 
weighted, of the expected successes/failures on these items as a measure of the latent 
competence. Actually, this is what teachers do when they divide an exam into sections 
corresponding to various topics of the subject matter. This approach contrasts with that of IRT 
that explicitly represents the respondent’s competence in the model by a latent dimension, θ  .

The knowledge spaces theory also stipulates that the items of a knowledge domain are 
mastered in a constrained order. Taking the example in Figure 4 and presuming that the student 
must find the value of the term on the right side of each equation, we see at the outset that item a 
is more difficult than the other three items. In this sense, success on a involves success on the 
other three items. Inversely, item d is, itself, more elementary than the others, and a failure on 
this item implies a failure on the other items. It is more difficult, however, to draw any 
conclusions regarding a given order with items b and c. 

Figure 4. Partial Order of Success 
on Four Knowledge Items {a,b,c,d}

Figure 4 thus shows a partial order that reflects implication relationships among the other 
items. It constrains the order in which the items can be mastered and, consequently, the various 
knowledge states to a specific set of subsets:

{∅,{d},{c,d},{b,d},{b,c,d},{a,b,c,d}}

This representation of ordering constraints by a partial order, in fact corresponds to the 
representation used in the POKS approach. However, the knowledge spaces theory involves an 
important nuance that is not integrated in the directed graph of Figure 4 and that concerns 
alternative orders for acquiring certain competences.

Taking an example of alternative order, we refer to the three concepts of Figure 2, C1:AF, 
C2:ADC, C3:ME. Even if we presume that transformations C2:ADC and C3:ME are involved in 
the calculation for C1:AF, as the following equation expresses it, it is just as plausible that a 
student in fact learn the more specific rule : 

a
c

c
d


c1 adcb
bd

      (7)
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and that he actually has never acquired the more elementary notions corresponding to C2:ADC 
and C3:ME (rules  and ). This situation corresponds to learning based on memorization of rules 
to solve always increasingly specific problems, rather than learning based on problem solving 
based on more general rules that are combined to solve more complex problems.

The knowledge spaces theory is based, therefore, not on partial order, as in Figure 4, but on a 
graph that represents alternatives. We will not go any further into the details of the knowledge 
spaces theory, but instead refer to Falmagne et al. (1990) and Doignon and Falmagne (1999) for 
a complete description of the theory. In addition, it is interesting to note that this theory has 
given rise to an application of a commercial study guide called ALEKS (www.aleks.com) and 
which is also described in  Falmagne et al. (2006).

Induction of the structure

Graphical structures are used to represent and infer the individual’s competences as shown in 
the example of Figure 4. Such a structure can be constructed by a domain specialist who can 
make a judgement regarding ordering. This can be done when the number of items remains low. 
When the number increases, however, the task quickly becomes overwhelming given the number 
of links to consider. It is, therefore, vital to develop an approach for automatically constructing 
this structure using data.

Construction of the structure is done using responses from a sample of examinees for a test 
including knowledge items that represent the nodes of the structure. The process involves 
comparing each pair of items in order to determine whether an interaction exists between the 
two.

Let us take, for example, the distribution of respondents to a test on two items, aX  and bX  , 
as could be deduced from Table 1. If we have a relationship  Xa X b ,  as seen in Figure 4, we 

can then expect to find respondents in each of the first three conditions  {xab,x¬a¬b, xa¬b }  

but not the fourth X¬a X b .  Given the relationship  Xa X b ,  we do not expect to find a 
respondent who succeeds on aX , but fails on the normally easier item, bX .
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Table 1.  Contingency Table of Combination 
Possibilities of Items Xa and Xb

Condition xa xb Respondents

(1) xab Success Success Yes

(2) xa¬b Success Failure No

(3) x¬ab Failure Success Yes

(4) x¬a¬b Failure Failure Yes

There is, however, a probabilistic element that must be taken into account. The relationship 
Xa X b   can exist, but it can be a weak link; or again, there might be noise in the data, such as 

success items through chance or failed items through inattention. Thus, to determine whether a 
link Xa X b     exists between the two items aX  and bX , the following three conditions must be 
true: 

P  [PXb∣Xa≥pc ]∣D 1−αc        (8)

P [P ¬X a |¬Xb≥pc]1−c                   (9)

P Xb | X a≠P X b p i                              (10)

where cp  is the minimal conditional probability for  b aP X X  and P ¬Xa∨¬X b  ; only one 

value is retained for the test of all the relationships of the network (0.5 in general), 

c  is the alpha error of conditional probability tests; this error determines the tolerated 

proportion of relationships whose conditional probability of the population is below the cp  
threshold; the usual values are between 0.2 and 0.5,  

ip a  corresponds to the alpha tolerance error for the interaction test, and 

D is the joint frequency distribution of aX  and bX  in a sample of test data. This distribution is a 

2  2 contingency table, as can be seen in Table 1.

The first condition (inequality 1) stipulates that the conditional probability of a success on 
item bX  given a success on aX  must be greater than a threshold cp , and that we can come to 

this conclusion using a response sample on items D, with a rate of error less than ca .

The second condition (inequality 2) is analogous to the first and stipulates that the probability 
of a failure on item aX  given a failure on bX  must be greater than  cp , with a maximum rate of 

error of ca  given the distribution D of responses.
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These two conditions are calculated using a cumulative binomial distribution. In inequality 8, 
the value of P [P Xb | X a ]| D    is obtained by the summation of the binomial function for all 
the distributions in which xa¬b  is less than the frequency observed in D, that is: 

 

(11)

where: xa=xabx a¬b  .    

The conditional probability of the second condition is based on the same function, but uses 
Bp i , x¬b ,pc   rather than Bp i , xa ,pc  . 

The third condition (inequality 10) represents an independence test and is verified by a 2  
test with distribution D, for the  2×2  contingency table: 

P 2c

For small samples, this test can also be replaced by the Fisher exact test.

The choice of the value for cp determines the strength of the implication relationship 
between two items. For example, if we have Xa X b   and the order in which these two items is 
mastered is highly constrained, then the value of P(B|A), as determined by the distribution of 
frequencies D, will be very close to 1. The value of cp thus represents the lower limit at which 
we accept to retain a relationship. The choice is relatively arbitrary, but it must not logically be 
less than cp = 0.5.

The two values c and i  represent the alpha errors that we are prepared to tolerate to 
conclude that the condition is satisfied. For very small samples, these values can be as high as 
0.5 in order to keep the greatest possible number of relationships. In the experiments described 
below, these values varied between 0.2 and 0.1.

The inference of knowledge.  

Once the structure is constructed, it is used to choose the items to be administered to the 
respondent of a test, and then update the probability of success on the other items following 
success or failure. As was seen in the preceding sections, POKS uses a model of a subset of 
mastered or non-mastered items to model the status of the respondent’s knowledge, following the 
example of knowledge spaces theory. It is, therefore, on the basis of the subset of items deemed 
successful, therefore having a probability of 0.5 or more of being successful, that the acquired 
competences can be evaluated. The calculation of the updated probabilities, following the 
observation of a success or a failure, is explained in this section.

Updating of probabilities, or knowledge inference, can be done according to two versions. In 
the first, information about the observation of a success or failure is propagated in a transitive 
fashion throughout the network. For example, if we have  Xa X b Xc   and success is 
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observed at aX , then the probabilities of bX and cX  will be affected. In the second version of 

this algorithm, we propagate only for bX and the value of cX  is not affected, unless, at the time 
of the construction of the network, the transitive link Xa X c    was also derived. We describe, 
here, only this last version; however, details of the first version are described in Desmarais, 
Maluf and Lui (1996) and Desmarais and Pu (2005).

Probability updating in the POKS framework is based on the calculation of posterior 
probabilities with the local independence assumption:  i.e. for two items, 1X and 2X , their joint 

and conditional probability, given a third, 3X , is independent and, by definition, 

     1 2 3 1 3 2 3, .P X X X P X X P X X      (12)

This hypothesis is necessary to simplify calculations not only for the construction of the structure 
and inference, but especially because, otherwise, a much larger quantity of data would be 
needed. This hypothesis is used to presume that only binary relationships can be evaluated, while 
in other cases, relationships with three or more variables must be validated. We then have to 
gather data in a table with 2n  entries, in which n corresponds to the number of variables that can 
be interacting.

According to the local independence hypothesis, the calculation of the probability of an item 
following observation of a series of items corresponds to a chain of posterior probability 
calculations as described in the following.

Let us first suppose a relationship Xa X b ,  the posterior probability of bX , given 

observation of a success or failure on aX  , is calculated on the basis of Bayes’ theorem in its 
odds ratio version: 

     (13)

     (14)

in which OXb   is the initial odds and   OXb | X A represents the odds of bX  given the 

observation of aX . Conditional odds is here defined in its usual form: 

OXb∣Xa=
PXb∣Xa

1−PXb∣Xa
.  (15)

In order to combine observations from several items, the inference process is based on the 
local independence hypothesis to simplify the calculation. Thus, the updating following 
observation of several items Xi, Xj, … , Xn of item bX , is the simple product of the likelihood 
ratios. For example, supposing that we have n relationships of the form X i X b  ,  then 

PX1, X2, . .. , Xn∣Xb=∏
i

n

PX i∣Xb .      (16)
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a b
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a b

P( X | X )
O(X | X )= O(X )

P( X | X )



From this equation, the new probability of bX , given X1, … , Xn , can be rewritten in the odds 
ratio form as 

OXb∣X1 ,X2 , .. . ,Xn =O Xb ∏
i

n P Xi∣Xb

PXi∣Xb
.      (17)

If an observation corresponds to a fail on , then the ratio

PX i∣Xb

PX i∣Xb 
     (18)

is used.

The local independence assumption on which these calculations are based is very strong and 
characterizes the Bayesian approache called “naive.” It greatly simplifies the calculations and the 
necessary quantity of calibration data, as mentioned. Although this hypothesis is often incorrect 
in many situations, it has been shown that, despite this, results obtained are relatively robust (see 
Domingos & Pazzani 1997; Rish 2001; Friedman, Geiger & Goldszmidt 1997).

From partial order to a set of one-level networks

As mentioned in the preceeding section, the propagation of an observation is not carried over 
transitive relations, contrary to the studies of Desmarais and Pu (2005), and Desmarais et al. 
(1996). For example, if we have A B    and  BC ,  the probability of C remains intact 
following observation of A, unless the A C   link is explicitely derived from the data. 
However, if a strong ordering of the type  A BC   exists, then we expect to also find A C
.

This principle is shown in Figure 5. A POKS network is here transformed into three simpler 
networks with only one level. The dotted line of the partial order is normally derived from the 
data if the network nodes are strongly ordered, i.e. if the three conditions in inequalities 8, 9, and 
10 tend toward maximum values.

Figure 5.  Correspondence Between a Directed Graph 
and a Set of One-Level Networks Used 

for the Inference of a Positive Observation (P = 1)

Compared to the algorithm in Desmarais et al. (1996), this version has the advantage of not 
requiring any framework for the so-called “partial” propagation, throughout transitive 
relationships, from A to C in a structure such as A BC ,  for example. Considering that we 
can expect transitive relationships to be derived by the structure construction algorithm, i.e. that 
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the algorithm will also infer the A C    relationship using the same data, the results should 
therefore be similar. This result was confirmed in our exploratory experiments for comparing the 
two versions.

Symmetrical Relationships

If no two items were equivalent in the node structure, then the structure obtained using a data 
sample would, in fact, be a partial order, or a directed acyclical graph. However, if two items 
were equivalent in terms of preconditions and difficulty, then these items would be linked to 
each other by symmetric relationships and the network would contain cycles. We could, 
therefore, simply group together the symmetric items in a single node to reproduce a partial 
ordering with no cycle. Success or failure on a single item of the group would then be sufficient 
to conclude for success or failure on all the other items.

Unfortunately, the reality is not so simple. In practice, several nodes have symmetrical 
relationships derived from the algorithm above, but they differ in terms of precondition and level 
of difficulty. The more tolerant the values retained for cp and ia are for conditions in inequalities 
8, 9, and 10,  the greater will be the number of symmetric relationships whose items are not 
equivalent. This will be reflected by symmetric relationships but with very different respective 
values of OXa | X b and OXb | X a  .  For example, in the symmetric relationship A≠B ,  if the 
two items are equivalent then O(A|B) is approximately equal to O(B|A).  However, if they are not 
equivalent, a symmetric relationship could still be derived even though O(A|B) and O(B|A)are 
very different, it all depends on the error tolerance and the minimum strength of the links, both 
determined respectively by parameters cp and ia .

The consequence of having symmetric relationships of this kind is that the structure derived 
by the induction algorithm is not a partial order. However, with the knowledge inference 
algorithm used, the cycles introduced by the symmetric relationships have no impact on the 
propagation of inference insofar as the algorithm does not propagate the observations in a 
transitive fashion. With the algorithm of Desmarais and Pu (2005) and Desmarais et al. (1996), 
which is recursive and follows transitive relationships, measures must be taken to avoid entering 
infinite loops. The simplest principle consists of stopping as soon as a node has already been 
visited for a same observation and to propagate breadth first, rather than depth first.

It must be noted that symmetry is the only possible source of cycles in a POKS structure, 
considering that a cycle A B ,  BC and  C A  cannot be produced otherwise than by 
having symmetric relationships (see Desmarais et al. 2006, for a formal proof).

Performance Comparison of the Various Models

We have seen that IRT models can be considered graphical models akin to naive Bayesian 
networks. The model is based on a local independence hypothesis and on a relationship among 
the items and a competence based on a sigmoid function. The POKS model is also akin to naive 
Bayesian networks and is based on a posterior probability calculation and a structure induced on 
the basis of statistical tests for inferring the learning order among the items. In addition to these 
two models, there is also the model of the general Bayesian networks that is also used to model 
and infer competences. How do these models compare with regard to their capacity to predict the 
results on a test of competences?
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We report, in the following, on a series of experiments aimed at determining how these 
approaches compare in terms of predictive performance. The first of these experiments is 
described in the next section and deals with the comparison between the two-parameter logistic 
(2PL) IRT model and POKS. It is followed by a comparison between the POKS approach and 
Bayesian networks.

Comparison of POKS with IRT

Desmarais, Fu, and Pu (2005) implemented simulations for evaluating the predictions of the 
POKS and IRT models. Essentially, these simulations dealt with the respective capacity of each 
model to predict the classification of a respondent regarding his/her overall success on the test, as 
well as their capacity to predict success on each item individually. 

The experiments were based on post-hoc simulation of a question-response process. For each 
respondent, the process was simulated with previously gathered complete test data. Thus, the 
predictions of the IRT and POKS approaches were compared to real data.

Different variables were used to explore the behavior of the models. Thus, two methods for 
the choice of the next item were used: Fisher information and the reduction of entropy. Fisher 
information is widely used in IRT applications (see Eggen, 1998, for a comparison of the various 
item selection strategies with IRT), while entropy reduction is a widely used approach in the area 
of probabilistic models and has been used with the POKS approach (Desmarais et al. 1996a). 
Comparisons used two data sets: a 160-item test on the knowledge of French used in the 
Canadian civil service and a 34-item test on the knowledge of Unix commands.

Prediction of success on the test

The results of Desmarais et al. (2005) showed that the two approaches were very effective for 
categorizing respondents, with a rate of well-categorized respondents over 90% after only 10% 
of administered items in approximately half of the simulation cases. However, results differ 
according to various parameters, in particular the cut score and the item selection procedure. 
Overall, we note that when choosing items based on Fisher information, both approaches had 
similar scores (with an overall average score of  0.73 for both and when the POKS’   
parameter was optimal—which is to be expected once calibration is done). When choosing items 
based on information gain, POKS then performed better than the 2PL IRT model, with an 
average overall score of  0.79 compared to an average score of  0.73 for the IRT1 .   

Prediction of success on the items

Other simulations were carried out to determine their capacity to predict success on items 
individually. This objective is obviously more difficult, but it offers the possibility of providing a 
very accurate assessment insofar as certain items concern more specific competences and that an 
assessment can be made with heightened accuracy.

Results varied greatly between the two data sets, those of the Unix test showing a clearly 
better performance than those of the French test, and for both models. However, the POKS 
model had better performance in both cases. This result does not seem surprising considering 
that the IRT model is not designed for this task and cannot deal with several dimensions 
simultaneously, i.e. distinguishing the various competences involved in a test. On the contrary, 

1Although the information gain approach could be implemented in the simulation environment with POKS, it could 
not be implemented for the IRT model.
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the POKS model possesses this quality and it comes from the fact that the formalism used is a 
partial order rather than a linear order (for example, A BC )  that could adequately model 
only one skill. It would, therefore, be worthwhile to investigate whether a multidimensional IRT 
model could perform at the same level as POKS.

Comparison of POKS With a Bayesian Network

The simple IRT model cannot manage several dimensions at once; however, this is certainly 
not the case with Bayesian networks, as we have seenabove.  Desmarais et al. (2006) have, 
therefore, compared the capacity of a Bayesian network to predict success on items individually. 
A Bayesian network is constructed using the data following two current methods: the PC 
algorithm (Spirtes, Glymour & Scheines 2000) and the K2 algorithm (Cooper & Herskovits 
1992). Inferences with the networks are also based on current algorithms in the domain. 
Question-response simulations were done following the example of the methodology used for 
comparison with the 2PL IRT model. The same data were also used and data of a third test of 
some twenty items in arithmetic were added.

Results show that the POKS model performed better than the Bayesian networks. Not only 
were the predictions more accurate, with a reduction in the relative error of approximately 5% to 
20% in general, but the standard deviation of the predictions on several simulations was much 
smaller, pointing to a greater stability than the model based on a Bayesian network. Just as it is 
with the comparison with the 2PL model, the size of the differences varied from one test to 
another, but the tendency was systematic.

Combining the Approaches

We, therefore, conclude that in the matter of prediction for individual items, the POKS model 
appears to have an advantage in relation to models based on IRT and Bayesian networks. This 
makes it the better choice for the task of making an accurate assessment when using just one test.

However, we can ask whether Bayesian networks are not better suited for exploiting 
relationships between higher-level competences and concepts, considering that POKS does not 
represent these competences in its model that is solely made up of items, i.e. observable 
manifestations of competences. This question has also been investigated in the study by 
Desmarais et al. (2006).

The authors attempted to improve the assessment of higher-level competences using a 
technique that involves increasing the initial observations with POKS. For example, if items aX  

and bX are posed to the respondent and POKS estimates that item cX has a chance of success 
beyond a certain threshold, then the three items will be considered as observed and provided as 
an entry in the Bayesian network for it to perform its assessment of competences.

An experiment with the arithmetic test data was conducted using this technique. The higher-
level competences in arithmetic of each respondent had been estimated previously independently 
by experts2, thus serving to validate the predictions made by the model.

 The results of the experiment remain mitigated. It was shown that POKS can improve 
predictions on individual items and even surpass predictions made with POKS only, though the 
difference was not statistically significant at α = 0.05. However, the prediction of success for 

2The data came from Vomlel (2004).
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higher-level competences was not improved. We can conclude that the POKS inferences are 
already contained in the relationships of the Bayesian network that express links among 
competences. Increasing the set of observed items would, therefore, add nothing to the 
assessment. Nevertheless, the fact that the prediction for the items was improved somewhat 
contradicts this hypothesis. It is also possible that independent evaluations of competences 
contain too much noise, or again, that improvement of predictions for the items is only the result 
of chance. Other studies are needed to elucidate these questions.

Conclusions

This paper presented a graphical and Bayesian approach for the modeling of knowledge, the 
POKS approach. The approach is inspired both by a widely recognized theory of learning in the 
field of cognitive psychology, the theory of knowledge spaces (Doignon & Falmagne 1999),  and 
graphical Bayesian networks for managing probability concerns. First, we showed that the 
approach can classify respondents as a “master” with a rate generally as good or better than 
IRT’s two-parameter logistic model. Moreover, considering that one of the main advantages of 
the POKS approach is to provide a prediction for the mastery of each item individually, we also 
compared the predictions at the level of the items themselves. The comparison was made with a 
model based on Bayesian networks, because these also predict mastery at the level of individual 
items. The comparison revealed that the POKS approach predicted mastery on items in a more 
accurate fashion than the model based on Bayesian networks.

The POKS approach, therefore, seems to offer an efficient and effective model for the 
prediction of results of a competence test, both on the overall level of the test, as the comparison 
with the 2PL IRT model showed, and at the precise level of items individually, as shown by the 
comparison with a model based on Bayesian networks. However, in spite of these apparent 
advantages, several uncertainties and major questions remain.

The POKS approach is shown to perform generally better than the two-parameter logistic 
IRT model, but questions remain with regard to its comparison with the more recent 
developments in the area of the IRT, in particular, multidimensional models. If a test was 
constructed with items that conformed perfectly to a specific number of dimensions, would the 
POKS approach still show the advantage that we observed?  The results reported in this paper 
deal with tests that cover several dimensions, as do most tests, and are therefore probably not 
optimal for a multidimensional model. It is, therefore, possible that results would be different for 
a multidimensional IRT approach.

A second question concerns evaluation of the margin of error and the reliability of POKS 
predictions. We do not know the distribution of the accuracy rate of POKS predictions, other 
than by deriving it from simulations such as those carried out for the experiments described here. 
In certain contexts, however, it is crucial to be able to estimate the margin of error of predictions. 
The most obvious case is that of a test aimed at accreditation in which a decision must be made 
to stop or continue presenting items to the respondent. It is, therefore, important to better know 
the conditions that influence the reliability of the POKS model predictions and, ultimately, to be 
able to derive a margin of error relative to these predictions.

In addition, it should be noted that the experiments carried until thus far concern tests with 
from approximately 20 to 160 items. Several contexts for the use of adaptive testing require 
several hundreds, even thousands, of items. These contexts present an additional difficulty, that 
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of having to construct a POKS model using partial data. Considering that it is not realistic to 
administer a test with several hundred of items to a respondent, the model must therefore be 
constructed using incomplete data for each individual. The knowledge construction and inference 
model must be adapted, as a consequence. In addition, these contexts also bring up the question 
of whether the model remains robust with tests of that size. This has yet to be demonstrated.
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