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Abstract 
 

This paper proposes a new item selection method, namely the modified maximum global discrimination 
index (MMGDI) method for cognitive diagnostic computerized adaptive testing (CD-CAT). The modified 
index captures two aspects of the appeal of an item: (1) how much contribution it can make toward 
adequate coverage of every attribute and (2) how much contribution it can make toward recovering the 
latent cognitive profile. The simulation study demonstrated that the method is capable of ensuring 
adequate coverage of every attribute measured by the test.  Furthermore, compared to the original 
global discrimination index (GDI) method, it improved the recovery rate of each attribute and of the 
entire cognitive profile, especially the latter.  
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The Modified Maximum Global Discrimination Index Method for 
Cognitive Diagnostic Computerized Adaptive Testing 

 

Cognitive diagnosis has received much attention recently, especially since the No Child 
Left Behind Act (2001) mandated that diagnostic feedback should be provided to students, 
teachers and parents. Instead of a summative score or several summative subscale scores, a 
cognitive diagnostic test offers a profile for each examinee, specifying which concepts and 
skills (often called “attributes” in the cognitive diagnosis literature) the students have 
mastered and on which areas remedial instruction is needed. A cognitive diagnostic test, 
therefore, not only serves evaluative purposes, but also offers valuable information regarding 
each individual examinee's educational needs.  

Another flourishing research area in psychological and educational measurement is 
computerized adaptive testing (CAT). The major feature of CAT is that items are selected 
sequentially based on examinees' performance on the previous items, and thus each test is 
tailored to their latent trait levels (the latent trait can be, for example, variables such as 
general intelligence, math ability, or English proficiency). To be more specific, in CAT after 
an examinee responds to an item, his or her ability estimate is updated and the next item will 
be selected to closely match his or her latest ability estimate. Therefore, CAT can provide 
more efficient estimate of the latent trait of interest (Weiss, 1982).  

Researchers have also tried to combine the two above-mentioned research problems and 
developed cognitive diagnostic computerized adaptive test (CD-CAT) item selection 
algorithms (e.g., Xu, Chang, & Douglas, 2003; McGlohen, 2004). However, the current 
literature does not address how to balance the attribute coverage in CD-CAT. To be more 
specific, it is critical to ensure that each cognitive attribute is measured by an adequate 
number of items such that accurate diagnostic information can be gathered from the test. This 
paper proposes an item selection method for CD-CAT, namely the modified maximum global 
discrimination index (MMGDI) method, which can ensure balanced coverage of every 
attribute.  

The DINA Model 

Many cognitive diagnostic models have been proposed over the last three decades, 
including the rule space model (Tatsuoka, 1983), the binary skills model (Haertel, 1984; 
Haertel & Wiley, 1993), the Bayesian inference network (Mislevy, Almond, Yan, & Steinberg, 
1999), and conjunctive latent class models such as the NIDA model (Maris, 1999), the 
Fusion model (Hartz, 2002; Hartz, Roussos & Stout, 2002) and the model used in this study, 
the “Deterministic Input; Noisy ‘And' Gate" (DINA) model (Doignon & Falmagne, 1999; 
Haertel, 1989; Junker & Sijstma, 2001; Macready & Dayton, 1977). 

The main purpose of these models is to relate item responses to a set of latent attributes. 
An attribute is a task, subtask, cognitive process, or skill involved in answering an item. The 
purpose of cognitive diagnosis is to identify which attributes are mastered by an examinee 
and which ones are not. For each examinee, the mastery profile translates into a vector: 

( )1 2, ,...,i i i ikα α α α ′=  
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where 1ikα =  indicates that the ith examinee masters attribute k and 0ikα = otherwise.  

K is the total number of attributes measured by the test.  

Items, on the other hand, are related to attributes by a Q-matrix (Tatsuoka, 1995). Q is a 
matrix, with the entry , meaning that a correct response to item j requires 

mastery of attribute k and  otherwise. The Q matrix is usually constructed by 
content experts and psychometricians. 

J ×K 1jkq =
0jkq =

Let iY denote a vector of dichotomous item responses for the ith examinee. It is reasonable 
to believe that iα  should be able to account for the pattern of i to a large extent. However, 
it is also necessary to consider “slipping” and “guessing” behaviors.  Let 

Y
1ijη =

0
 denotes 

that the ith examinee masters all the attributes required by item j and ijη = , otherwise: 
 

  
1

jkq
ij ik

k

K

η α
=

=∏
1ij

                                   (1) 
η =When , the ith examinee should be able to answer item j correctly, unless he or 

she “slips.” Similarly, when 0ijη = , the ith examinee should not be able to answer item j 
correctly, unless he or she is a lucky guesser. 

The DINA model treats slipping and guessing at the item level. The parameter js  
indicates the probability of slipping on the jth item when an examinee has mastered all the 
attributes, and the parameter jg denotes the probability of correctly answering the jth item 
when an examinee does not master all the required attributes. 

The item response function therefore can be written as: 

                                                              (2) ( ) ( ) 1 ij1| 1 ij

ij i j jP Y s g
η η−α

 

With the assumption of local independence and independence among all examinees, the 
joint likelihood function of the DINA model can be written as: 

= = −
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 (3) 

The DINA model requires only two easily interpretable parameters for each item, i.e. js  
and jg . Both item parameters and examinees’ cognitive profiles can be estimated 
conveniently using MLE. Therefore the DINA model is a very computationally efficient 
model and a good candidate for building a real-time CAT program. 

The MMGDI Method for Item Selection in CD-CAT 

The critical component of CAT is the item selection algorithm. Currently many CAT 
programs use the maximum Fisher information method (Wainer et. al., 2000). Fisher 
information is the amount of information that an observable random variable X carries about 
an unknown parameter λ upon which the likelihood function of X, ( ) ( ; )L f Xλ λ= , depends. 
In the context of CAT, X is the item response vector of an examinee and the unknown 
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parameter of interest, λ, is his or her ability level θ. Under the three-parameter logistic (3PL) 
model, the Fisher information of the jth item evaluated at the latest θ estimate is given by 
(Hambleton, Swaminathan, & Rogers, 1991):  

 

                                                                (4) 

 

 

 

where ja , jb and jc are the discrimination, difficulty and pseudo-guessing parameter for the 
jth item respectively. The item with the largest Fisher information evaluated at θ̂  will be 
selected as the next item on the test.  

Note that Fisher information is additive, so the test information I is the sum of the Fisher 
information of all the administered items. The rationale behind the maximum information 
method is that as , n →∞ ˆSE( ) 1/ Iθ →  where ˆSE( )θ is the standard error of the latent 
trait estimate (Lord, 1980). Therefore the maximum information method yields the best 
measurement precision asymptotically. 

However, Fisher information does not naturally lend itself to cognitive diagnosis because 
it requires the conditional distribution of X given the unknown parameter λ to be continuous 
and differentiable with respect to λ, whereas the latent structure underlying cognitive 
diagnosis involves discrete latent classes, which can also be viewed as discretized 
multidimensional traits. Nevertheless another information measure, the Kullback-Leibler 
information, is applicable.  

The Kullback-Leibler information is a measure of “distance" or “divergence" between 
two probability distributions f(x) and g(x) (Cover & Thomas, 1991): 

( )[ , ] log
( )f

f xd f g E
g x

⎧ ⎫⎡ ⎤
= ⎨ ⎢

⎣ ⎦⎩ ⎭
⎬⎥                             (5) 

Note that the Kullback-Leibler information is not strictly a distance measure because it is 
not symmetric, i.e. d[f,g] d[g,f]. The reason why it is sometimes referred to as 
Kullback-Leibler distance is that the larger the d[f,g] is, the easier it is to statistically 
discriminate the two probability distributions f(x) and g(x) (Henson & Douglas, 2005). 

≠

In cognitive diagnostic assessments, we are interested in the conditional distribution of 
the ith examinee’s response to item j, ij  given iY α . The Kullback-Leibler distance between 
the distribution of ij  conditioning on the current estimated latent state/class, i.e. Y ˆ( | )ij if Y α  
and the conditional distribution of  given one possible latent state ijY cα , i.e. ( |ijf Y )cα , can 
be computed as  

1
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The quantity ˆ( || )j i cKL α α  indicates how good the jth item is in distinguishing ˆiα  from 
cα . In another words, ˆ( || )j i cKL α α represents how discriminating the jth item is regarding ˆiα  

and cα . 

Note that when there are K attributes, there are 2K possible latent cognitive states, and 
cα is only one of them. Since the true latent state is unknown, Xu, Chang & Douglas (2003) 

proposed the following global discrimination index (GDI), which is basically the sum of the 
Kullback-Leibler distances between ij iˆ( | )f Y α  and the conditional distribution of  given 
each of the 

ijY
2K possible latent cognitive states: 

 

                                                                (7) 

 

An implicit assumption of this index is that all the 2
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K states are equally likely to be the 
true state. Xu, Chang & Douglas (2003) proposed selecting the next item for the ith examinee 
that yields the largest global discrimination index, i.e. j iˆ )(KL α  [There are also other indices 
proposed on the basis of the GDI; for details, see Henson & Douglas (2005)]. Their study 
showed that the GDI method recovered examinees’ cognitive profiles fairly well. However, 
the method does not consider attribute coverage.    

Most of the traditional content balancing techniques in CAT do not apply to CD-CAT 
because they often require the content areas to be mutually exclusive. In other words, if one 
item belongs to content area 1, it cannot be in content area 2. With CD-CAT, however, an 
item can measure multiple attributes simultaneously. For example, an item can measure both 
addition and subtraction.  

The Modified Maximum Global Discrimination Index  

This paper proposes the modified maximum global discrimination index (MMGDI) 
method for item selection in CD-CAT. The basic idea is to compute an attribute-balancing 
index and multiply it by the global discrimination index. The attribute-balancing index 
measures how much contribution the item can make toward fulfilling the attribute-balancing 
requirement, while the global discrimination index concerns how attractive an item is in 
terms of psychometric property. The product therefore represents the general attractiveness of 
an item.  

The attribute-balancing index is defined as follows: 

   
1

jkqK
k k

k k

B b
B=

⎛ ⎞−
⎜
⎝ ⎠

∏ ⎟                        (8) 

where kB is the minimum number of items required that measures the kth attribute, k is the 
number of items measuring the kth attribute that are already selected. Then the modified 
global discrimination index (MGDI) becomes: 

b

 

1

ˆ ˆMGDI ( ) GDI ( )
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j i j i

k k

B b
B

α

- 4 - 

α
=

⎛ ⎞−
= ×⎜ ⎟

⎝ ⎠
∏



                                                   (9) 

The next item to be selected will be the one in the bank that yields the largest MGDI, 
instead of the largest GDI.  

Note that when ,  0jkq =

 

jkq

k k

k

B b
B

⎛ ⎞−
⎜ ⎟
⎝ ⎠

and consequently does not affect the MGDI. When 

 = 1               (10) 

kb = kB , meaning that one attribute is 

l 
es 

n 

hen all the reach the

measured by a sufficient number of items, then item  t  bank that measure the kth 
attribute will have an attribute-balancing index of 0 and the subsequent modified globa
discrimination index (MGDI) will be 0.  Meanwhile, another item in the bank which do
not measure attribute k but measures an attribute that is yet not adequately measured will 
have a positive MGDI. As a result, this item will be more attractive because its inclusion i
the test will be contributing more to balancing the attribute coverage.  

 

s in he

 skb skBW , the requirement of attribute coverage is met. Note that it 
is possible that fewer than 

 
1

K

k
k

B
=
∑                   (11) 

items are enough to meet the attribute coverage requirement because one item can measure 
more than one attribute. Meanwhile, reasonable skB should satisfy 

1

K

k
k

B L
=

≤∑  ,                  (12) 

where L is the test length. Therefore with a fixed-length CD-CAT it is not unlikely that the 
e 

 MMGDI can be implemented with the following 
alg

st on

attribute coverage requirement is met before L items are chosen. The remaining items can b
selected from the item bank using the original global discrimination index, instead of the 
modified global discrimination index.  

In summary, item selection using the
orithm: 

If at lea e k kB b> , meaning the attribute coverage requirement is not met yet, select 

DI).  

A simulation study was implement ectiveness of the MMGDI 
met

s, 

the next item with the largest modified global discrimination index (MGDI); 

Otherwise select the next item with the largest global discrimination index (G

Simulation Design 

ed to examine the eff
hod. An item bank of 300 items was simulated, with slipping and guessing parameters 

generated from a Uniform(0.05, 0.25) distribution. Items measured up to six attributes. Thu
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a 300 6× Q-matrix was also generated. Assuming independence among the items and 
independence among the attributes, the Q-matrix was generated entry by entry. One 
constraint imposed on the Q-matrix generation was that on average an item measured
the attributes. Therefore, a random number was generated from a Uniform(0,1) distribution 
and compared to 0.2. If the random number was less than 0.2, the corresponding entry data 
value was 1, otherwise 0. Another constraint was that every item should measure at least one
of the six attributes.  

A 1000 6×  A matrix was also g

 20% of 

 

enerated, with the ith row vector, iα ,representing the ith 
exa inees and independence 

ed 

able 1. Number of Items (Examinees) Measuring (Mastering) Each Attribute 

min  cognitive state. Assuming independence among exam
among attributes, the matrix was generated entry by entry. Another assumption made about 
the examinees was that on average one examinee mastered three out of the six attributes. 
Therefore, a random number was generated from a Uniform(0, 1) distribution and compar
to 0.5. If the generated number was smaller than 0.5, the corresponding data value was 1, 
otherwise 0. Descriptive statistics of the Q and A matrices are reported in Table 1 and 2.  

 

ee’s true

T

Attribute 
 

1 2 3 4 5 6 

Number of Items  87 74 82 84 77 84 

Number of 
Examinees  530 502 490 473 476 512 

 

Table 2. Number of Items (Examinees) Measuring (Mastering)  
a Certain Number of Attributes 

Attribute 
 

0 1 2 3 4 5 6 

Number of  0 159 100 35 6 0 0 Items 

Number of 
Examinees 13 106 247 287 234 92 21 

 

Two CD-CATs of 24 items were simulated, one using the original GDI method and the 
second using MMGDI method. The required minimum number of items measuring each 
attribute was 4. Note that the initial cognitive state/profile estimate, (0)α̂ , was randomly 
generated with approximately half 0s and half 's. Every time an item s administered, t
probability of answering this item correctly was obtained based on the DINA model. Item 
responses were simulated by comparing this probability with a randomly generated number
from a Uniform(0, 1) distribution. Based on the item responses, maximum likelihood 

 wa he 
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estimates (MLE) of the cognitive state/profile were updated. The latest MLE ofα was
used to calculate the GDI or MGDI for the selection of the next item. After L ite  were 
administered, the last MLE, i.e. ( )ˆ L

 then 
ms

α  was the final estimate of the cognitive state. The 
results were compared in terms of the recovery rate of each attribute, the recovery rate o
entire cognitive state, and the attribute coverage in the resulting tests.  

f the 

Results  

Table 3 compares the recov e of ea  and of the entire profile ained 
from

d. 
I 

 

Table 3. Recovery Rate for Each Attribute and the Entire Cognitive S ate 

Attribute 

ery rat ch attribute  obt

t

 the two item selection methods. The recovery rate of each attribute and the entire 
profile of the MMGDI method was almost uniformly higher than that of the GDI metho
While the difference in individual attribute recovery rate was small, the gain of the MMGD
method over the GDI method in terms recovering the entire pattern was substantial: 92.5% of
the cognitive profiles were correctly recovered with the MMGDI method, and only 84.8% of 
them were correctly recovered with the GDI method. This is because recovering the entire 
profile requires correctly recovering every attribute. Therefore the gain at attribute-level 
accumulates and makes the overall gain large.  

 

Item 
ion 

1 2 3 4 5 6 Entire Select
Method   Profile 

GDI 0.975 0.975 0.989 0.985 0.969 0.948   0.848

MMGDI 0.985 0.983 0.988 0.990 0.988 0.988 0.925 

 

The gain can be accredited to a more balanced test in terms of attribute coverage. Table 4 
sho

3, 
st 

f 
 

ws the percentage of tests that meet the attribute-coverage requirement, both at the 
attribute level and at the overall test level. For instance, the first entry in the table is 55.
meaning 55.3% of the tests of the GDI method met the distributional requirement of the fir
attribute, i.e. 55.3% of the tests of the GDI method have four or more items measuring the 
first attribute. Note that the MMGDI method was very effective in balancing the attribute 
coverage: 100% of its tests met all the attribute coverage requirements, i.e. all its tests had 
four or more items measuring each of the six attributes. The difference at the overall test 
level was remarkably large: with the GDI method, only 0.2% of the tests—namely 2 out o
the 1,000 tests—had adequate attribute coverage, whereas the MMGDI method ensured that
every test had adequate coverage.  
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Table 4. Percent of Attribute-Balanced Tests 

Attribute Item 
Selection 
Method 1 2 3 4 5 6 Overall

GDI 55.3 50.3 67.1 74.3 82.5 53.5 0.2 

MMGDI 100 100 100 100 100 100 100 

 

Discussion and Conclusions 

This paper proposed a new item selection method, namely the modified maximum global 
discrimination index (MMGDI) method for cognitive diagnostic computerized adaptive 
testing (CD-CAT). The simulation study showed that this method improved the recovery rate 
of each attribute and of the entire cognitive profile, especially the latter. Note that meeting 
content-balancing constraints in traditional CAT usually results in some loss in measurement 
precision of the underlying latent trait. An interesting question therefore is: why in CD-CAT, 
did meeting the attribute coverage requirement lead to measurement gain?  

The reason is that CD-CAT is essentially multidimensional. The recovery rate of the 
entire cognitive profile summarizes the measurement precision along all dimensions: when 
one dimension was not adequately measured, the recovery rate of the entire cognitive profile 
suffered. On the other hand, traditional CATs are typically considered unidimensional, and 
the content-balancing constraints are imposed upon the test out of concern for test validity 
and defensibility (Hambleton, 2005) rather than of measurement precision. Therefore, the 
presence of the content balancing constraints only impedes the optimization of the 
psychometric property of a test. This study called our attention to the fact that a CD-CAT 
cannot be treated as a traditional CAT and balancing attribute coverage is not only important 
to its validity and defensibility, but also to the psychometric property of a CD-CAT program. 

Although the current study demonstrated that the MMGDI method worked very 
successfully with the CD-CAT, it is limited in several aspects. First, the simulation study was 
based on an item bank with simulated guessing and slipping parameters and a simulated 
Q-matrix. The reason is that at present it is very difficult to find an item bank with a Q-matrix 
available and the process of identifying the Q-matrix for a large number of items can be very 
time-consuming. However, the results will certainly be more informative if a real item bank 
can be used. Another important issue is that in this study only fixed-length CD-CAT was 
considered. Additional future research is indicated on CD-CAT.  

- 8 - 



References 

Cover, T. M. & Thomas. J. A. (1991). Elements of information theory.  New York: John 
Wiley & Sons, Inc. 

Doignon, J. P., & Falmagne, J. C. (Eds.). (1999). Knowledge Spaces. New York: Springer 
Verlag. 

Haertel, E. H. (1984). An application of latent class models to assessment data. Applied 
Psychological Measurement, 8, 333-346. 

Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of 
achievement items. Journal of Educational Measurement, 26, 333-352. 

Haertel, E. H., & Wiley, D. E. (1993). Presentations of ability structures: Implications for 
testing. In N. Frederiksen, R. J. Mislevey, & I. I. Bejar (Eds.), Test theory for a new 
generation of tests (pp. 359-384). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Hambleton, R. K. (2005). Preface to Linear models for optimal test design.  In W. J. van der 
Linden, W. J. (2005). New York: Springer. 

Hambleton, R. K, Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response 
theory. Newbury Park CA: Sage. 

Hartz, S. (2002). A Bayesian framework for the Unified Model for assessing cognitive 
abilities: Blending theory with practice. Unpublished doctoral thesis, University of Illinois at 
Urbana-Champaign. 

Hartz, S., Roussos, L., & Stout, W. (2002). Skill diagnosis: Theory and practice. [Computer 
software user manual for Arpeggio software]. Princeton, NJ: ETS. 

Henson, R. & Douglas J. (2005). Test construction for cognitive diagnosis. Applied 
Psychological Measurement, 29, 262-277. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. 
Mahwah, NJ: Erlbaum. 

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and 
connections with nonparametric item response theory. Applied Psychological Measurement, 
25, 258-272. 

Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment 
of mastery. Journal of Educational Statistics, 33, 379-416. 

Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 
187-212. 

Mislevy, R. J., Almond, R. G., Yan, D., & Steinberg, L. S. (1999). Bayes nets in educational 
assessment: Where do the numbers come from? In K .B. Laskey & H. Prade (Eds.), 
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 
437-446). San Francisco: Morgan Kaufmann. 

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on 
item response theory. Journal of Educational Measurement, 20, 345-354. 

- 9 - 



- 10 - 

Tatsuoka, K. (1995). Architecture of knowledge structures and cognitive diagnosis: A 
statistical pattern recognition and classification approach. In R. D. Nichols, S .F. Chipman, & 
R. L. Brennan (Eds.), Cognitive diagnostic assessment (pp. 327-359). Hillsdale, NJ: 
Erlbaum. 

U.S. House of Representatives (2001) Text of No Child Left Behind Act. 

Wainer, H. et. al. (2000). Computerized adaptive testing: A primer (2nd Ed.). Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. 
Applied Psychological Measurement, 6, 473-492. 

Xu, X., Chang, H., & Douglas, J. (2003). A simulation study to compare CAT strategies for 
cognitive diagnosis. Paper presented at the annual meeting of National Council on 
Measurement in Education, Montreal, Canada. 


	The DINA Model
	The MMGDI Method for Item Selection in CD-CAT
	The Modified Maximum Global Discrimination Index 
	Simulation Design
	Results 
	Discussion and Conclusions
	References

