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1. Introduction 

 

During an important part of the 20th century, the paper-pencil approach to tests has been 

privileged to gather certain pieces of information from individuals, subjects, candidates or 

exminees. When all the items of a test are the same for all examinees, according to the content 

as well as the number of items, the test can be label as fixed and invariable. When the number 

of items varies and when they can differ for each examinee, the test fits into the category of 

adaptive tests. In other words, it goes to the category of tests that are tailor-made owing to the 

problems met by the examinee at each item that is presented. The sequence of items then 

depends on the responses given to each item previously presented. The development of 

computers during the last twenty years has enabled a fast evolution of adaptive tests. In fact, 

while the models and branching strategies for adaptive testing have existed almost for fifty 

years, it is only recently that this testing strategy has been able to fully exercise its advantages 

over more conventional ones. 

 

One of the most important characteristics of adaptive testing is the fact that it allows the 

administration of items with difficulty level corresponding to the proficiency level of the 

examinee. Contrary to the fixed and invariable paper-pencil tests, where all the items of the test 

are administered without considering the person’s proficiency level, adaptive testing enables 

the administration of tailor-made tests, in such a way that the difficulty level of the items be 

neither too high or too low for the examinee. Hambleton, Swaminathan and Rogers (1991, 

p.145) underline that the number of items administered, like the duration of the administration, 

are then reduced comparing to a paper-pencil version of the test, without reducing the precision 

of the proficiency level estimate. According to Lord (1980, p.201), adaptive testing should 

provide a more precise estimate of the proficiency level, more specifically when the 

performance level is low or high. 

 

Several characteristics of adaptive testing have received particular attention and been the object 

of some research work. Some authors have made comparisons between the proficiency level 

estimate obtained from different item response models (Dodd, de Ayala and Koch, 1995) and 

from different estimation methods (Chen, Hou and Dodd, 1998). Others have studied the 
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influence of the dimensionality of the bank of items (de Ayala, 1992), the conformity to the 

postulate of local independence (Mislevy and Chang, 2000), the characteristics of the items' 

bank and the impact of different stopping rules on the proficiency level estimate (Dood, Koch 

and de Ayala, 1993). Comparisons have been made between item's selection rules (Chang and 

Ying, 1999), between methods used to assess the differential item functioning (Zwick, 1997) 

and between indices of adjustment of the proficiency level estimate or person fit (van Krimpen-

Stoop and Meijer, 1999). But several aspects of the computer-based adaptive testing still 

remain to be studied. 

 

Among the aspects of adaptive testing remaining to be studied, we have chosen to examine 

some characteristics of the statistics associated with the sampling distribution of the 

proficiency level estimate when the Rasch model is used. These characteristics enable to judge 

the meaning to be given to the proficiency level estimate obtained in adaptive testing and, as a 

consequence, can serve to illustrate the meaningfulness of the proficiency level estimate. If the 

sampling distribution of the proficiency level estimate follows a normal probability 

distribution, the precision of that estimate, when it is measured by its standard error, enables to 

determine a confidence interval for the proficiency level estimate. The determination of this 

interval is valid only when the sample distribution of the proficiency level estimate is 

symmetrical and mesokurtical, say neither too high nor too low. 

 

According to Dodd et al. (1993), the characteristics of the sampling distribution of the 

proficiency level estimate in adaptive testing are affected by the use of different stopping rules.  

The aim of this research is precisely to study the effect of two stopping rules of frequent use on 

the characteristics of various statistics associated with the sampling distribution of the 

proficiency level estimate in adaptive testing. More exactly, it attempts to verify the impact of 

a stopping rule according to the a priori determination of the standard error of the proficiency 

level estimate and of a stopping rule according to the number of items administered on the 

second, third and fourth centered moments of the sampling distribution of the proficiency level 

estimate with the Rasch model. 
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2. Methodology 

 

To exercise a strict control of the testing situation and needing that an important number of 

observations be available, we used a computer-based simulation. According to Harwell, Stone, 

Hsu and Kirisci (1996), a computer simulation with item response models is appropriate when 

we want to study the sampling distribution of the estimates or when we are comparing several 

methods oriented toward the same objective, without any possibility to obtain an exact 

analytical solution. According to the same authors, the utilization of a simulation also enables 

to manipulate more easily different factors at the same time, which is not always realizable in 

real conditions. The observations, viewed here as different values of the proficiency level, are 

generated at random, which characterizes a simulation of the Monte Carlo or stochastic type. 

 

The initial values on the proficiency scale are randomly selected from a normal probability 

distribution with mean zero and variance one. A sample of 2000 values is generated in a 

random manner. It seems an appropriate sample size considering that sample sizes used in 

similar studies vary between 100 and 10,000, with a median value of 500. Adaptive tests are 

simulated for each of the 2000 random values of the proficiency level. Each simulation is 

performed according to a method for generating items response frequently used within the 

researches on item response models (Nicewander and Thomasson, 1999). For each value of the 

proficiency level generated, one obtains the response to each of the items by calculating the 

probability of obtaining a correct response to the item with the Rasch model as well as the 

value of the proficiency level. That probability is then compared to a random number, ranging 

from 0 to 1, drawn from a uniform probability distribution U(0,1). If the probability of 

obtaining a correct response to the item is superior to the drawn random number, the response 

to the item takes on the value 1, otherwise the response to the item takes on the value 0. 

 

At all the simulated proficiency levels, the test begins with the administration of an item with a 

difficulty level, b1, equal to 0, say the mean of the a priori distribution. The use of a constant 

starting difficulty level enables to assure that the proficiency level estimate obtained does not 

vary in relation to the difficulty level of the first item administered. We use Urry’s method 

(Thissen and Mislevy, 1990, p.111; Urry, 1970, p.82) to select the next item. According to that 



 5 

method, the next item (j+1)th to be administered corresponds to an item with a difficulty level 

equal to the provisory proficiency level estimate obtained after the administration of the jth 

item. With the Rasch model, this selection rule allows to obtain the next item that provides 

maximum information; it is therefore equivalent to a strategy of information maximization. 

Moreover, it enables to choose the values of the difficulty parameter according uniquely to the 

selection rule in such a way that the characteristics of the items' bank do not affect the values 

of the proficiency level estimate. 

 

The estimate of the proficiency level is obtained using a Bayesian estimation method proposed 

by Bock and Mislevy (1982). If we specify a prior distribution ( )θf  for the proficiency level 

θ , then we can obtain the posterior distribution of θ using its likelihood function: 
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With this distribution, there are different statistics that can be use to estimate the value of θ . 

Bock and Mislevy proposed to use the mean and to call it the expected a posteriori estimate 
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The Hermite-Gauss quadrature is used to approximate the distribution ( )θf  and the quadrature 

form of the preceding equation becomes (Baker, 1992, p.211): 
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where Xk is one of q equidistant quadrature points comprised between θ = -4 and θ = 4, A(Xk) 

is the weight associated to each of the quadrature points according to a normal probability 

distribution with mean zero and variance one, and where ( )kXL  is the likelihood of the 

responses pattern, rj after the administration of j items. The following constraint is additionally 

imposed: 
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The integration was realized according to Mislevy’s histogram method (Baker, 1992, p. 187), 

with 40 quadrature points and with weights equal to the a priori probability for these points 

(Bock and Mislevy, 1982; de Ayala, Shafer and Sava-Bolesta, 1995). 

 

The standard error of the expected a posteriori estimate is calculated according to: 
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The following equations, in concordance with the calculation of the centered moments 

proposed by Spiegel (1961, p.90), are respectively used to estimate the skewness a3 and the 

kurtosis a4 of the sampling distribution of the proficiency level estimate. The values of these 

statistics are used to determine if the shape of the sampling distribution of the estimate is 
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symmetrical and not too far from a normal probability distribution. If these values are lower 

than 0.40, then we can be confident that the studied distribution is sufficiently close to a 

normal distribution to build a classical confidence interval with level α  around the proficiency 

estimate  (Raîche 2000, pp.146-158). 
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In the simulation, all the tests end after the administration of 60 items. Nevertheless, the 

availability of the intermediary results (from 1 to 60 items administered) enable to know the 

value of the proficiency level estimate and its standard error after the administration of each of 

the 60 items. As a consequence, the results concerning that estimate after reaching a pre-

determined level of the standard error of the proficiency level estimate are also available. The 

final proficiency level estimate is then equal to the provisory proficiency level estimate for the 

jth item administered. 

 

 

3. Results 

 
3.1 Maximum standard error as the stopping rule 

 

Table 1 presents a summary of our observations as for the minimums and maximums of the 

statistics studied by relying upon the values of standard error ranging from 0.20 to 0.80. We 
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can observe that when the standard error retained for the stopping rule is comprised between 

0.40 and 0.20, the value of the skewness does not exceed 0.29 in absolute value, whereas that 

of the kurtosis does not reach beyond 0.39 in absolute value. We can also observe that the 

proficiency level estimate well covers the whole width of the integration interval and that the 

standard error of the proficiency level estimate has a difference of only 0.03 when the standard 

error retained for the stopping rule is les or equal to 0.40. 

 

In general, the smaller the standard error retained for the stopping rule, the more the sampling 

distribution of the proficiency level estimate behaves according to a normal probability 

distribution. When the retained standard error for the stopping rule is equal or inferior to 0.40 it 

is not at all necessary to take into account the skewness and the kurtosis of the sampling 

distribution of the proficiency level estimate; these ones showing values within the interval 

ranging from –0.27 to 0.29, for the skewness, and from –0.39 to 0.23, for the kurtosis. These 

values affect only very little the standard interpretations related to a normal distribution 

N(EAP, SEAP). For larger standard errors, the skewness and the kurtosis are located in a range 

of acceptable values but the EAP estimates do not span the entire integration interval and could 

produce some biased values for the extreme proficiency level.  

 

According to certain supplementary analyses, we find it necessary to apply the correction 

suggested by Bock and Mislevy (1982) so as to alleviate the bias of the proficiency level 

estimate all over the proficiency level. It must be indicated, however, that that correction brings 

back the bias of the proficiency level estimate practically to zero only over part of the limited 

proficiency level to the interval [-3.00, 3.00] and in the case when the standard error retained 

for the stopping rule is below or equal to 0.40 (see Raîche and Blais, 2002). 
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Table 1: Minimums and maximums of the statistics associated with the sampling distribution 
of the proficiency level estimate with the stopping rule according to the standard error. 

 

S.E. EAP estimate SEAP a3: skewness a4: kurtosis 

 Min. Max. Min. Max. Min. Max. Min. Max. 
0.85 -0.56 0.56 0.82 0.82 -0.11 0.11 0.13 0.13 

0.80 -0.99 0.99 0.69 0.73 -0.18 0.18 0.16 0.22 

0.75 -0.99 0.99 0.69 0.73 -0.18 0.18 0.16 0.22 

0.70 -1.33 1.33 0.62 0.69 -0.22 0.22 0.17 0.22 

0.65 -1.63 1.63 0.57 0.62 -0.24 0.24 0.15 0.24 

0.60 -1.90 1.90 0.54 0.59 -0.24 0.24 0.12 0.25 

0.55 -2.36 2.36 0.49 0.55 -0.25 0.25 -0.01 0.26 

0.50 -2.76 2.76 0.45 0.50 -0.29 0.29 -0.20 0.26 

0.45 -3.10 2.78 0.41 0.45 -0.26 0.28 -0.37 0.24 

0.40 -3.38 3.05 0.37 0.40 -0.27 0.29 -0.39 0.16 

0.35 -3.28 3.04 0.33 0.35 -0.22 0.23 -0.28 0.16 

0.30 -3.28 3.21 0.29 0.30 -0.19 0.17 -0.15 0.17 

0.25 -3.10 3.34 0.24 0.25 -0.15 0.15 -0.06 0.15 

0.20 -3.16 3.16 0.20 0.20 -0.12 0.10 0.04 0.12 

 

 

3.2 Number of items administered as the stopping rule 

 

Table 2 presents a synthesis of our results for the stopping rule according to the number of 

items administered. The various values of the number of items administered retained for the 

stopping rule enable to approximate the most current situations observed in the literature about 

the adaptive tests and about the practice of their administration. The values of the skewness and 

of the kurtosis associated with the sampling distribution of the proficiency level estimate do 

not respectively exceed 0.29 and 0.41 in absolute value: values that affect very little the 

interpretations concerning the sampling distribution of the proficiency level estimate. With 

only ten items, however, the proficiency level estimate does not cover adequately the values of 

the integration interval. 
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We suggest that the stopping rule according to the number of items administered should be 

applied only if at least 13 items are administered. We also recommend the application of the 

correction proposed by Bock and Mislevy (1982) to bring the bias of the proficiency level 

estimate down to zero as far as the proficiency level is comprised within the interval [–3.00, 

3.00] and that the number of items administered is at least equal to 10. 

 

Table 2: Minimums and maximums for the statistics associated with the 
sampling distribution of the proficiency level estimate when the stopping 

rule according to the number of items administered is used. 
 
Stopping 

rule 

EAP estimate SEAP a3: skewness a4: kurtosis 

Item Min. Max. Min. Max. Min. Max. Min. Max. 
1 -0.56 0.56 0.82 0.82 -0.11 0.11 0.13 0.13 

2 -0.99 0.99 0.69 0.73 -0.18 0.18 0.16 0.22 

3 -1.33 1.33 0.61 0.67 -0.22 0.22 0.17 0.24 

4 -1.63 1.63 0.55 0.62 -0.24 0.24 0.15 0.25 

5 -1.90 1.90 0.50 0.59 -0.25 0.25 0.12 0.26 

6 -2.14 2.14 0.46 0.56 -0.27 0.27 0.06 0.26 

7 -2.36 2.36 0.43 0.53 -0.28 0.28 -0.01 0.26 

8 -2.57 2.57 0.40 0.51 -0.29 0.29 -0.10 0.26 

9 -2.76 2.76 0.38 0.49 -0.29 0.29 -0.20 0.25 

10 -2.94 2.94 0.36 0.47 -0.29 0.29 -0.30 0.24 

11 -3.10 2.78 0.35 0.46 -0.29 0.28 -0.37 0.24 

12 -3.25 2.92 0.33 0.45 -0.29 0.28 -0.41 0.24 

13 -3.38 3.05 0.32 0.42 -0.28 0.29 -0.39 0.24 

14 -3.27 3.13 0.31 0.38 -0.25 0.23 -0.34 0.21 

15 -3.38 3.25 0.30 0.38 -0.22 0.23 -0.36 0.39 

20 -3.35 3.29 0.26 0.34 -0.21 0.23 -0.26 0.18 

25 -3.16 3.35 0.23 0.28 -0.19 0.17 -0.15 0.14 

30 -3.10 3.29 0.21 0.26 -0.16 0.16 0.00 0.11 

40 -3.13 3.20 0.19 0.23 -0.12 0.11 0.04 0.08 

60 -3.40 3.16 0.15 0.17 -0.10 0.08 0.01 0.06 
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Conclusion 

 

The quest for precision in the measurement venture is not a new thing in the history of science 

as was illustrated in the book «The values of precision» edited by M.N. Wise (1995). This is 

precisely what constitutes one of the goals of computerized adaptive testing: being able to 

match more adequately the items and the examinees so that the estimate of the proficiencies are 

more informative. But there will always be some imprecision in measurement, since no 

imprecision would mean absolute precision, something impossible because it would also mean 

obtaining an infinite amount of information (Brillouin, 1964). According to Berka (1983, 

p.198), the imprecision of measurement depends on various factors: whether the probability 

distribution of the measure condenses around a certain value; whether it converges to a 

relatively stable value of deviation; whether it's dispersion is too wide to be confident about the 

inference on the center of the distribution.  

 

These are precisely the features we have studied for a computerized adaptive test using the 

Rasch model and the expected a posteriori estimation method to estimate the proficiency level. 

With the Rasch model and the EAP estimation method, we found that if we want to postulate 

that the theoretical distribution of the proficiency estimate is normal N(EAP, SEAP), then the 

stopping rule according to the number of items administered should be applied only if at least 

13 items are administered and that, in general, it is preferable not to utilize the stopping rule 

according to the standard error with a standard error retained above 0,40. We also suggest the 

application of Bock and Mislevy’s correction (see Raîche and Blais, 2002), no matter which 

stopping rule is utilized, so as to reduce considerably the bias of the proficiency level estimate 

over the entire proficiency range. 
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