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Abstract

This paper considers a multi-stage adaptive test (MST) where the testlets at each stage are
determined prior to the administration. The assembly of an MST requires target information
functions and target characteristic curves for the MST design. The targets are chosen to create
tests with limited scoring error and high pool utilization. Forcing all MSTsto have information
functions and characteristic curves to be within an interval about the targets will yield parallel
MSTSs, in the sense that standardized paper-and-pencil tests are considered parallel. The
objective of this paper isto present a method to determine targets for the MST design based on
an item pool and an assumed distribution of test taker ability. This method can be applied to
obtain Item Response Theory targets for paper-and-pencil tests.

Key words: Multi-stage tests, targets, test assembly, shadow CAT, item response theory, mixed

integer programming.

A multi-stage adaptive test (MST) consists of testlets created for different ability levels.
These testlets are selected before the administration, and test takers are routed to testlets based on
an ability estimate. It isatype of computerized adaptive test (CAT), but it adapts less frequently
than the standard CAT, and testlets are created for an ability range while CAT usually considers
an ability point as abasisfor selecting items. Luecht and Nungester (1998, 2000) present an
overview of the MST approach. Patula (1999) compares the MST approach with conventional
CAT. Armstrong, Jones, Koppel and Pashley (2004) discuss the various issues associated with
an implementation of aversion of MST referred to as a Multiple Form Structure. Whilethis
paper uses the design scheme for Multiple Form Structures, the more generic MST terminology
isused here. Issuesrelated to the creation of targets, the subject of this paper, are more genera
and applicable across all MST designs.

Luecht and Nungester (1998) discuss determining targets by matching the reciprocal test
information function to a desired degree of accuracy. The conditional error variance of the
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ability estimate isthisreciprocal. Luecht and Burgin (2003) take a more detailed look at target
creation, but they concentrate on targets for proficiency tests while this paper considers the
problem for an admission test. The central issues addressed by Luecht and Burgin are, however,
the same as those addressed here. The MSTs assembled based on the targets must provide
enough information to yield reliable scores and the item pool must support the assembly of
multiple MSTs. Thereis atrade-off between these conflicting goals. A formal method is needed
to create targets that remain stable over time and meet the objectives of the testing agency.
Neither this paper nor Luecht and Burgin attempt to define optimal targets, asitem pools and
population abilities change over times, and all issues related to evaluating targets are difficult to
guantify. The purpose of target creation methods is to provide an analysis to facilitate the choice

of operational targets.

The approach taken in this paper utilizes the ability distribution of the population and an
item pool, representative of future item pools to be maintained by the testing agency, to
determine the targets. The targets are a weighted average of information functions and
characteristic curves of items administered from a simulation to be described. It is possibleto
develop an operational MST without target characteristic curves, but similar characteristic curves
across MST's promote a similar score distribution across MSTs. The following gives an

overview of the steps used to create the targets.

Step 1. Simulate multiple administrations of alinear test assembled with knowledge
of the test takers' true abilities. All constraints for the MST design must be
satisfied and exposure control is enforced. The true abilities for the
simulation are drawn for the population’ s ability distribution. Save the
observed results of the simulation once the pool’ s exposure rate has
stabilized.

Step 2. Consider the bins sequentially starting abin 1.

Step 3. Calculate the probability of reaching the current bin for each test taker
recorded in the ssimulation. Create test-taker weights by dividing the
probability of visiting the bin by the sum of all the probabilities; thus, the
weights for all test takers sum to one. Create the target for the bin by
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computing the weighted sum of the observed characteristic curves and

information functions associated with the bin.

Step 4. Determine the rules for routing test takers out of the current bin to the next
stage.

Step 5. Proceed to the next bin and return to step 3, or terminate if al bins have been

considered.

The next section gives an example of an MST Design. Thisisfollowed by a description
of the simulation for an omniscient testing method which provides a nearly optimal utilization of
the item pool subject to the constraints. The results of this simulation provide data to be used to
create targets. The next sections devel op the probabilities needed to create targets. A step-by-
step procedure to devel op targetsis given next. MST evaluations are given to demonstrate the
effect of target variation on test reliability and information. Finally, asummary discussion is
provided.

Multi-Stage Adaptive Test Design

A multi-stage adaptive test design (MSTD) provides the MST requirements and the
population subgroup intended to visit abin at agiven level. A multi-stage adaptive test (MST)
has testlets that satisfy the framework specified by the design. Table 1 givesthe outline of an
MSTD. Every bininthe MSTD is assigned a range on the required number of items. The
targets and routing rules are calculated by considering all assembly constraints, the item pool and
the distribution of the population’s ability. Mathematical programming issues are not the subject

of this paper and constraints will not be stated explicitly. The constraints varied across MSTDs.

In practice, many MSTswill be assembled from an MSTD. Theitems assigned to abin
may be broken into two or more testlets for administrative purposes. For example, the design
may specify that several items be administered before arouting decision ismade. A testlet with
more than eight items may be cumbersome for atest taker to review. Also, if items have a
common stimulus, it is natural to create atestlet for those items. The administration aspect does
not affect the devel opment of the targets.

(Insert Table 1 about here.)
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Let 0 denote arandom variable giving the ability of atest taker. It isassumed that the
distribution of 0 isknown. The distribution may be represented by a probability density
function or empirically derived; for example, atable with the ability estimates of a previous test

administered to the population can be used. This study assumesthat 6 has anormal distribution,
N(u,0).

The MST approach to CAT can be implemented with classical test theory, but our
application uses a 3-parameter IRT model. The Bernoulli random variable U, indicates whether

the i™ item is answered correctly or incorrectly, and 8 gives the true ability of the test taker.
The IRT parameters for item i are denoted by a,,b.,c,. Assume that the parameters are
accurately calibrated and the U, ’s are independent of each other. The probability of a correct
response from atest taker with ability & iscalled the item characteristic curve and is given by

the following.

- = = = 1_C|
P(U, =16 =6) =CC,(6) =¢ +(1+exp(-1.7q(6-h) X

When stating conditional probabilities, the remainder of this paper gives only the vaue of
the random variable when the reference is apparent from the usage. Thus, P(U, = 1|9 =6)

becomes P(U; =1/6).
Let IF (6) betheinformation function of itemi (Lord, 1980, page 73).

B ,[P(U, =0|6)0PU, =1/6) -¢
IF.(6) = (1.7a,
O™ PO e 16 ¢

(2

The characteristic curve and information function for the items assigned to bin t of stage
S isthe sum of the information curves for the individual items. Testlet effects (Bradlow, Wainer
& Wang, 1999, Lee, 2000 and Lee, Dunbar, & Frisbie, 2001) are not considered in this paper.
Studies suggest that atestlet should be used as the unit of analysis, or the local item
dependencies induced by the testlet should be modeled. 1f dependence is modeled between items
with atestlet, then the score distribution of the testlet can be determined. Targets can be
developed using the approach of this paper as long as the responses between testlets are
Independent.



MST Targets Page: 5

Targets and Routing

MSTDs have target bin information functions (TBIFs) and target bin characteristic curves
(TBCCs). Thesetargets are based on the previously mentioned item response model. The
targets facilitate accurate test equating by providing parallel tests. Targets are common with
paper-and-pencil (P& P or linear) tests, but the problem of choosing of targets for the MST
testing approach is more complex because routing decisions have to be made. The targets for
each bin and the routing rules are interrelated. Routing rules should depend on the targets and
viceversa. Since MSTs associated with an MSTD are assembled after the targets are created,
this report concentrates on routing for an MSTD and one routing method is devel oped later.

A good target for abin will be based on the sub-population visiting the bin. Let
TBIF,(8) and TBCC,(6), represent the TBIF and TBCC at bint,t=1,...,T. The procedure

does not work with the actual TBIF,(8) and TBCC, (&), but with the values at discrete points on

the @-axis. Thetarget functions are not derived. A linear extrapolation is performed to obtain
values for points between the discrete points. Our implementation had points between —3 and +3
In steps of .3.

This study looked at the distribution of Law School Admission Test (LSAT) test-taker’s

ability over recent years. It wasfound to be approximately N(u',0’) where 1/ wascloseto 0

and o' wascloseto 1; to be explicit, aN(.122,.932) distribution. The results reported in this
paper utilize aN(0,1) distribution of ability. The general approach of creating targets can be
implemented with any reasonable ability distribution. The target creation process requires an
item pool that accurately reflects the characteristics of future item pools to be used by the testing
agency. This can be an existing pool or one created by simulation to have the desired attributes.
The composition of the pool can have a significant effect on the targets. Xing and Hambleton (in
press) discuss the importance of theitem pool on the MST design. A method to derive an item
bank design is given by van der Linden, Veldkamp and Reese (2000). The study to be reported
here utilized a subset of an LSAT operational pool with both discrete and set based items. The
pool dimensions are given later.

The objective of this paper isto describe a method for generating targets from an MSTD
based on the ability distribution and item pool. A simulation is used to determine itemsto be
administered at each stage under ideal conditions when the test taker has a known ability. The
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known ability is drawn from the assumed population. The observed IF(8) 'sand CC(0) 'sare

used to create the bin targets by weighting them based on the probability of atest taker visiting a
bin. The method can be applied to P& P target generation because thisis a special case of the
MST where thereisasingle bin and a single stage.

Omniscient Testing

An omniscient testing method is used to create data for deriving the bin targets.
Omniscient testing was inspired by the shadow CAT proposed by van der Linden and Reese
(1998), and van der Linden (2000b) where an active test, satisfying all constraints, is maintained
and items to deliver are chosen from this active test. The constraints are the same as those
specified for an MST path, but without the target constraints. Items already administered to the
current test taker are forced to be on the active test and cannot be administered again during this
test. Theitems on the active test are updated at specified points in the administration based on
responses to those items fixed on the test and the current ability estimate. An application of the
shadow CAT to multidimensional adaptive testing can be found in Veldkamp and van der Linden
(2002).

Omniscient testing knows the true ability of each test taker before the administration, and
uses the true ability to choose items for the active test. No adaptation takes place because the
true ability of the test taker is known. The motivation was to produce the best average bin
information functions and testlet characteristic curves that the pool could support subject to

exposure control and other constraints. The abilities of the test takers were drawn from a N(0,1)

distribution in this study.

Objective Function

An important issue isitem pool usage. There are various methods to promote the usage
of all, or at least mogt, of the items in the pool. The approach employed hereisto adjust the
information provided by an item with a penalty based on the empirical exposure rate. Consider
the sequential assembly of an individualized test for each of 2K simulated test takers. The first
K test takers are used to establish item exposure rates and the second K test takers are used to
create the targets. The items administered to the k™ test taker are assembled based on knowing
all tests administered to the previous k-1 test takers. All items used in the assembly of the

omniscient tests come from a pool where the items are indexed by D :{L 2,3,...} . Consider the
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problem of assembling atest for the k™ test taker. Let x denote a zero-one decision variable
for item selection, i 0D . The assembly process has x =1 whenthe i" item is present on the
test, and x =0 whenitisnot present. Let 6§, be the true ability of the k™ test taker, randomly
drawn from the population distribution of ability.

A cost is associated with each item. This cost is the value of afunction H, (G,,T;,6,)
where 0, isarandom number uniformly distributed between 0 and 1, and T, isthe empirica

exposure rate of the i™ item. The empirical exposure rate is measured as the total number of
tests where the item has appeared over the total number of tests previously administered (k -1,

in this case).
The objective of the test assembly problem for the k™ test taker is the following:

Minimize; H, (G.,T,8)x . (3

The study reported here uses the following representation for H,, (G,,T.,6,):
Hy (G.T,6,) = al +a,b —a,l,@,). 4

The coefficients a,, a,, and a, are pre-defined. Sample values and the reasons for their choice

are given later in this section. The computational results section provides selected summary

results with the values.

Thefirst term, a0, , creates randomization in the item selection process. This assures no
discernible pattern in the administration of items. The value of a; = 0 must be large enough to
introduce randomness, but not so large as to dominate the other terms. Thevalueof G, is

generated anew for each test taker. Since objective coefficient isrelative to the a values

assigned to each term, a, =1.0 for all simulations.

The second term, .U, , penalizes items that have already been exposed as a linear

expression of the empirical exposurerate. Thevalueof a, > 0is chosen based on desired pool

usage. Thisapproach gives an acceptable method to distribute items over the testing period. The
results of the simulation for the first K test takers are not recorded, but are used to stabilize the
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exposure rates. The ultimate goal isto produce targets that will effectively utilize the item pool.
The success of achieving thisgoal can only be evaluated fully after the targets are defined and
MSTsare assembled. Experience with the items used in this study indicates that an immediate
goal of keeping the maximum exposure rate under 15% and the median exposure rate around 2%

produces acceptable pool utilization. In genera, a, should increase when the pool size

increases and decrease when the number of items on an MST path increases.

Thethird term, —a,l,(6,), isthefocus in astandard CAT implementation where the
objective isto maximize information. High information itemsat a 8, point should be utilized

more than items with lower information, but over the course of the simulation, al acceptable
items should be administered. Thereis atrade-off between information and exposure rate. The

higher thevalue of a, relativeto a,, the higher the target information curves and fewer non-

overlapping MST's can be assembl ed.

The constraints on the optimization problem are those usually associated with automated
test assembly. They include limitations on cognitive skills, answer key count, topic, diversity
and stimulus usage. The constraints will not be stated explicitly here as they can found in
Armstrong, Jones and Kunce (1998), Boekkooi-Timminga, E. (1990), Theunissen (1985) and
van der Linden (1998).

Constraints and Assembly
A commercial mixed integer programming (MIP) package was used for the assembly of

omniscient tests. An introduction to general MIP theory and models are given in Nemhauser and
Wolsey (1988). Thisstudied used CPLEX (ILOG, 2002) to solve the MIP problems, but any
software for large-scale MIP solution could be used. Computer programs written in C/C++
interfaced directly with the CPLEX library. The objective function for all the problems was
given by (3). The details of the assembly and model constraints are not the focus of this paper.
The following outlines the two different models that were used. One model isfor discrete items
where the stimulus and the question can be treated as a unit. The second model is for set based
items where multiple items are associated with a single stimulus. Models for set based items are
discussed by van der Linden (2000a).

An item pool developed for the P&P LSAT was used in the study. All constraints for the

omniscient testing were a scaled version of P&P LSAT constraints. For example, if the MST
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had half the number of items as the corresponding section in the P& P LSAT, the constraint upper
and lower limits for word count, cognitive skills distribution and key count distribution were
halved. The exception was the most general cognitive skill constraint which corresponded to the
enforcing the number of items on aform. The requirement for this constraint was randomly
chosen to be avalue in the range for the number of items on an MST path; thus, for the
omniscient testing assembly, the number of items on aform was fixed. If the number of items on
the form was not fixed, maximizing the objective would force the maximum allowable number

because the information term in the objective function was the dominant term.

A parameter was set in CPLEX to assure a solution within 10% of the optimal solution.
Since randomness is built into the problem, the lack of atrue optimal solution was not a concern.
The solution should, however, be close enough to the optimal to allow the objective function to
impact the solution. Time for solving the MIP was not an issue as a discrete item problems

terminated after less than one second, and the set based problems after about three seconds.

MST with Discrete | tems

The following constraints were considered for the discrete items.

* Single occurrence. An item can appear at most once on aform.
» Cognitive skill content. A distribution of the cognitive skills being tested must be satisfied.

* Answer key count distribution. A constraint on the distribution of the multiple-choice
answer keys was imposed.

e Word count. A range on the total number of words found on the form was enforced.

The word count constraint was the only constraint that could not be placed in a network
flow model (Armstrong, Jones and Kunce, 1998). The network flow model facilitates the
convergence of the branch-and-cut algorithm used by CPLEX. Williams (1990) presents
modeling methods for MIP.

The sample pool for the study had 1,336 discrete items. A representative discrete item
MFSD had 3 stages, 6 bins, and between 35 and 37 items per form. The number of zero-one
variables was 1336, the number of constraints was 25 and the number of nonzero entriesin the

constraint matrix was 4055. The objective function, (3), had a, =1.0, a, =25.0 and a, =75.0.

The rationale used for this choice of objective parametersis given in the next paragraph.
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Omniscient simulations were run on a desktop PC with a2.0GHz CPU took about 25 minutes
with K =5000; that is, 10000 omniscient forms were assembled. The maximum exposure rate
was found to be 15.1% and the median exposure rate was found to be 1.9%.

To obtain an appropriate value for a,, the omniscient test simulation was run without any
randomization or exposure control for 1000 test takers; thet is, a, =0, a,=0and a,=1. The
solutions yielded an average per item information at the 6,’s of about .67. Randomization alone
should not significantly impact the item choice. Consider two candidate items denoted by i, and
i, where |, (6,) isat least 10% larger than |, (6,). If a;=1, a,=0and a,=25, randomization
alone would rarely cause the assembly to choose i, over i, for the omniscient test. The value of
a, was adjusted, with a, =1 and a,=25, to achieve a desirable exposure rate distribution. This

occurred at a, =75.0.

MST with Set Based Items
The following additional constraints were considered for the set based items.

* Singleoccurrence. A stimulus can appear at most once on aform.

e Stimulusto form assignment. A specified number of stimuli must be assigned to the form.
This number equals the number of testlets on an MST path.

» Item set usage. When a stimulus was assigned to a form, upper and lower bounds on the total
number of items from the associated item set were required.

* Priority itemsin the set. There may be a subset of items within the item set where at |east
oneitem from the subset must appear in the MST when the associated stimulus was assigned
toaform.

* Topic specifications. The stimuli for set based items are categorized according to general
topics. Every stimulus has a single general topic; for example, “science” might be atopic.
Each MST must have a specified number of stimuli of each topic.

» Diversity specifications. Certain stimuli were oriented toward a diversity group. An MST
may have a specified diversity representation enforced.

The model for the set based items is more complicated than the model for discrete items.

Aswith the discrete item case, much of the problem could be modeled with a network flow
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approach but fixed charge nodes were required to account for the item set usage and priority item

restrictions.

Two separate set based item pools were used in the study. The first pool had 110 stimuli
and 950 items, and the second had 108 stimuli and 1021 items. The assembly for the second
pool enforced diversity constraints and the first pool had no diversity field; otherwise, all the
constraint types mentioned above were present. The sample MFSD for the first pool was given
by Table 1. The sample MFSD for the second pool had the same structure but between 5 and 8
items per testlet, and between 31 and 33 items on a path. The omniscient test assembly problem
for the first pool had 1060 zero-one variables, 1227 decision variables, 228 constraints and 3713
nonzero entries in the constraint matrix. The omniscient test assembly problem for the second
pool had 1129 zero-one variables, 1274 decision variables, 238 constraints and 3911 nonzero
entries in the constraint matrix. The objective parameters for the two pool were a, =1.0,
a,=50.0 and a,=35.0,and a, =1.0, a, =75.0 and a, = 25.0, respectively. The parameters
were chosen using the same method as described for the discrete item types. Thetotal solution
time with K =5000 was about 3.5 hours for each simulation. The maximum item exposure rate

for the first pool was 14.1% and the median exposure rate was 2.3%. The second pool yielded

an maximum exposure of 13.1% and a median rate of 2.5%.

Omniscient Testing Administration

The omniscient test items should be administered as they would be administered in an
MST. Any sequencing of the administration must be enforced. For example, it may be desirable
to begin the CAT may with items covering specific topics. A testlet for the set based items
corresponds to a stimulus and associated items. The testlets for the discrete items were
assembled in arandom manner, where each item was equally likely to be placed in any testlet,
and the number of itemsin atestlet was randomly chosen from the permissible number of items
for atestlet. Thetest was administered onetestlet at atime. |If more than one testlet could be
administered at a stage, the testlet to administer was chosen randomly with equal probability as
the other eligible testlets. No modification of the assembled test during the administration was

necessary since the test taker’ s ability was known.
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Data Saved from Omniscient Testing
During the simulated administration of the omniscient test, datais saved and used when
deriving the targets. Let Srepresent the number of stagesinagiven MSTD and n,,s=1,...,She

the number of items administered to test taker k at stages. The mean of n,, rounded to the
nearest integer, denoted by N, s=1,...,S, issaved. Theitems administered to the k™ test taker

during the omniscient test are denoted by the following indices.

i(k,s,j), k=1..,2K; s=1..,S;, j=1..,ng; (5)
where s isthe stageand j isthe sequencing index of the items within the testlet at stage s.

Each item’s CC,(f) and IF. () can be computed from (1) and (2). Let L represent the
number of discrete points along the ability axis where values for the targets, TBIF, () and
TBCC,(8), will be provided. Label these points 5'4, (=1,..,L. Thisstudy used 21 points from

-3.0to +3.0in steps of .3. The same points are used to save the value of the stage characteristic

curves, SCC, (), and stage information functions, SF, ((6) , observed for the k™ test taker at

stage s.
scC, .(6) = chi(kysyj)(é[), k=K +1,..,2K; s=1..,S (=1..,L;. 6)
]:
SF,..(8)= Z IFwop(8), k=K+1..,2K; s=1..,S (=1..,L. @)
IE

Weighted sums of the SCC, ((6,) and SIF, (,) are used to create the TBCC,(6,) and

TBIF, (676,) . The weights are derived from the probabilities found in the next section.
Routing and Probabilities

A path through the M ST is the sequence of binsthat atest taker may traverse during the
test administration. Each test taker visits exactly one bin from each stage. A path of an MST
provides atest form. The collection of all pathsin an MST provides the multiple forms derived
from the MST. Anincomplete path isthe set of bins traversed up to some stage s<S. Let @,

be the random variable representing the bin visited by atest taker at stage s. Theinitia binis
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visited with certainty (®, =1 with probability 1) because the design has every test taker being
administered the same items at stage 1. Suppose that @ takeson thevalues @, s=1...,S

during the administration of an MST. The sequence {q ,..., @} definesapath. For example,
referring to the MST of Table 1, apath is given by {(g =19 =3¢ :5} . The possible paths are

not known until the routing rules have been obtained.

Path Probabilities
Mislevy and Chang (2000) present the calculation of path probabilitiesin a CAT by

considering the mechanism for administering items. Local item independence does not imply
that a path probability can be calculated by the product of the marginal probabilities when the
test isadaptive. The approach is specialized for an MST in this section. The bin information
function, BIF,(8), and bin characteristic curve, BCC,(8), for bin t can be obtained from the

items assigned to bins once an MST has been assembled. The probability distributions of
number correct could be computed from the testlets of the MST. However, the creation of the
MST requires the paths and targets; therefore, paths and targets must be developed from the
design missing these attributes. The routing rules for an MST need not be the same routing rules
as used when creating targets. Ability estimates or expected number correct conditioned on
ability could be used for MST routing.

The method used to obtain the targets for abin at stage s requires an estimate of the
probability distribution of the number of correct responsesfor al binsin stageslessthan s. Itis
assumed that the targets for all bins at stageslessthan s are known. Thiswill be the case since
the targets are obtained in sequence starting at bin 1. The probability of a correct response,
conditioned on ability, can be estimated from TBCC,(6) . The probability of a correct response
by atest taker with ability @ to any item at bin t of stage s is estimated by

p,(8) =TBCC,(6)/n,. Let X, beabinomial random variable with the following distribution

conditional on ability.

P(X, = j|6) =- ﬁﬁ p.(8) A-p()~; | =01.., ©)

jrg = )

The MST assembly does attempt, even though indirectly, to match the bin targets. Thus,

assuming that, on the average, the expectation of number of correct responsesto an arbitrary
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testlet at bin t, conditioned on ability, equals TBCC, () isreasonable. Assuming the probability

of acorrect response to al items at this bin is equal may not be justifiable. It does facilitate the
computations and provides a practical estimate for this application. It iseasily shown that taking

p,(8) asthe probability of every item at bin t maximizes the variance of the distribution, when
compared to other estimates of number correct for testlets from bin t where the item

probabilities sum to TBCC, (6).

Let Y, bearandom variable representing the number of correct responses by a test taker
after she/he has been administered the items up to and including the testlet of stages. Itis
assumed that X, , the probability distribution as defined by (8), is an accurate representation of
correct responses at bin t. The number of correct responses at the completion of the test is
denoted Y =Y. Also, thefirst bin has Y, = X,. The probability distribution of Y,

conditioned on both the test taker’s ability and the path traversed, will be derived inductively
starting at stage 1. The following assumes that the routing rules are based on the cumulative

number of correct responses at the time the routing decisions are made.

Assume that the probability distribution of Y, conditioned on both the test taker’s

oy
ability and the visiting bins {q qg_l} , has been computed. To remain on the a specific path
after leaving bin ¢, (i.e., berouted to bin ¢ ), the test taker must have between y and ¥,
inclusive, cumulative correct responses after the completion of theitemsinbin ¢_,. (A method
to derive y and ¥ will be presented in the next section of this paper.) The lower limit (y)
cannot be less than 0 and upper limit () cannot be more than the number of items administered

to thispoint. The path ispossible; thus, there is a positive probability that the test taker can be
routed to bin ¢ regardless of the value of 6.

Let y represent possible number of correct responses after stage s given a specific path,
and n the number of itemsto administer at stage s. Since the distribution is conditional on the

routing, the probability distribution of Y, isthefollowing.
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0 min{y-y,}

5 P(Yo,=Yy-X6,4,... @1)P(X, =x|6)/ A(6),

Ek:max 7.4

P(Y.=y|6.¢,...@) =0 for y=V,..,y +n 9

0

H 0, otherwise

A

where
7 .
AO)=P(@|0.9,..a)=S P(Y,,=jl6.9,... @) (10)

]

<

Thevaueof A (6) isthe probability of atest taker with ability & staying on this path at

stage s, given that they have been on the path to stage s—1. Multiple paths could have the same
sequence of binsup to stage s<S. Define A, () =1.0.

A sample MST based on Table 1 is utilized to help explain the derivation of (9). Take
s=3 and the path to be{(g =1,¢9=3 ¢ =5}. Consider the routing from bin 3 to bin 5.

Assume ¥ =7 and ¥ =10, and n=5. Thevaues Y_, with apositive probability are between 7
and 15, inclusive. Taketwo valuesfor y toillustrate. First, y =9. There are three waysto

obtain 9 correct responses at the completion of bin 3. The test taker can enter bin 3 with 7, 8 or 9
correct responses and obtain 0, 1 or 2 correct responses from the bin 3 testlet; therefore, the

summation over x is0, 1 and 2. Next, consider the case where y = 14. There are two waysto

obtain 14 correct responses at the completion of bin 3. The test taker can enter bin 3 with 9 or 10

correct responses and obtain 5 or 4 correct responses from the bin 3 testlet; therefore, the
summation over X is4and 5. Thedivision by A (8) isan application of Bayes formula (see

Ross (1997), page 79) and causes the probabilitiesto sumto 1.

When s=S, the probability (9) isthe conditional path scoring distribution. The
probability of atest taker with ability 8 being routed on a path is the following.

P(@... 2]6) =[] 24(6) (11)

Thejoint probability distribution of Y and a path conditioned only on ability isthe

following.
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P(Y=v.9,..2|0) =P(Y =y|0.,q.... @)P( @.... ¢6). (12)

Probabilities for Populations
The probability of number correct through stage s of path r without conditioning on

ability, but knowing the density function of 8 (denoted by f(8)), isthe value of an integral.

P(Y =K|g .. @) = [ HOP(Y =k|6.¢ ..., @)d6 (13)

It isassumed that 0 isdistributed N(u,o0) ; thus, numerical integration is required.
Gauss-Hermite weights can be used to closely approximate the true value of the integral. The

tables by Abramowitz and Stegun (1965) can be used to obtain the values of weights for the
integration.

Let ©, represent the subpopulation targeted by bin t; for example from Table 1, ©, is
the abilities between the 33" and 67" percentiles. Define A (©,) to be the probability that atest
taker from ©, isrouted to bin ¢ given they have been on the specified path through stage s-1,
and A (©) bethe same event but for the complete population. Thus, A (©) isthe fraction of
test takers who have been on the path through stage s—1 to reach bin ¢, . The probabilities for

the populations are analogous to A (8) of (10), but it is not conditioned a specific ability, but on

the ability coming from a population. The calculation is similar and is given by the following.

;
0,(0)=P(®.=¢[0® ,q..@,)= ) P(Y.,= |[@0 , ¢.. @) (14)
B
i
A(©)=P(®@. =@ |@.. @,) =) P(Y., =i|@.. @) (15)
1=y

Givenbin t = ¢ at stage s, the probably of atest taker from the subpopulation of

traveling the bin sequence {(g qg} isthe following.

P@... 60 JF [0 (16)

The probability of this routing for the complete population is the following.
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P@... @)= [] 5,0 (17)

To develop the routing rules, the fraction of the total population that comes from ©, and
follows {(q qg} isneeded. In other words, the probability of 8[® , conditioned on visiting
bins {(g qg} . Thefraction of abilities coming from ©, and traversingbins {¢q ,..., @} is

given by the following.

P(g...@|6d© )P(® )

¥,(©) = (18)
P@.... @)
For example, assume the following values for the components of (18).
P(@...¢|0® ) 06, P(g@.., ¢gr 0.4 and P(@® F 05 (19)

The percentile group for bin t contains 50% of the total population and 0.6 of this 50%
would travel the specified path up to stage s. These numbers yield 30% of the test takers have
ability within ©, and arrive at bin t viathe specified path. Forty percent of the total population

follows {(g (Q} ; thus, 75% of the test takers traversing this incomplete path come from ©, ,
and ¢, (©,) =.75.
A Routing Rule

Routing rules are necessary to direct atest taker to abin at the next stage of the MST.

Consider the case where the test taker has visited bins{(q qg} . Therouting from abin ¢ at

stage s to each bin at stage s+1 isconsidered. The following provides arouting rule for a
design using the probabilities devel oped earlier.

All bins of the MSTD are intended to attract a specific subpopulation. We assume the
total populationis N(u,0). Therouting frombin ¢ at stage s to abin at the next stageis

considered. The path takento arrive at ¢ iscritical for therouting rule. First, the probability of
arandomly chosen test taker from the overall population arriving at bin ¢ iscalculated. Thisis
A () from (15). Each subpopulation at the next stage is considered. The expected fraction of

the test takers visiting bin ¢ and whose @ value comes from each targeted subpopulation is
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computed. Thisis ¢,(©,) from (18). If any fraction issmall (lessthan .075 say), the fraction is

allocated proportionally to the other subpopulation fractions and the small fraction set to zero.

Routing will not be permitted to bins when its subpopul ation has little chance of arriving at bin

@ . Let g (0,) bethe adjusted expected fraction of test takers at bin ¢ arriving viathe
incomplete path {¢ ,..., @} and coming from the subpopulation defined by bint. Test takers are

routed out of bin ¢ based on these fractions and the population distribution of Y conditioned

on the path. Each path will have its own routing rules.

Let y denote the observed number correct after the completion of bin ¢ . The objective
of the routing is to maximize the number of test takersfrom ©, visiting bin t. Consider the
cumulative distribution function of the probability of (13). Let bin t be the bin meant for the
lowest ability at stage s+1 and having ¢, (©,) ispositive. Thevaueof y of (9) for thebinis
the smallest number of correct responses possible after the completion of bin ¢ . The upper
limit on the branching range, y, isthe value of y where the cumulative distribution is closest to
@, (©,). Thenext binto consider at stage s+1 ismeant for the next highest ability group. The
lowest number correct for thisrouting is the previous y plusone. The upper limit can be

obtained from the cumulative distribution function by having the fraction of those test takers on

the path and being routed to the bin as close as possible to the @ (©,) of the bin.

Consider arouting out of bin 1 from an MST based on the design of Table 1 to illustrate

the process. Assume that ten items have been administered. The probability distribution and
cumulative distribution of Y, can be computed from (9). The first routing attempts to divide the

test takersin half, with the lower 50% going to bin 2 and the top 50% going to bin 3. The design

hasthe arrival at bin 1 certain for all subpopulation and fractions from the subpopul ations

arriving at bin 1 are ¢,(©,) =.5 and ¢,(0,) =.5. For the sample MST chosen, 11 items were
administered at stage (i) and P(Y, < 5|¢g =1) =.369 and P(Y, <6|¢ =1) =.515; therefore, the

best alternative for the attempt to split the population isto send all test takers with atotal number
correct less-than-or-equal-to 6 to bin 2, and greater than 6 to bin 3.
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A more complex routing decision isillustrated considering routing out of bin 3 from this
design. Table 2 gives the cumulative distribution of Y, conditioned on the path {g =1, g =3 .
Thereisonly one path to bin 3 (bin 2) at stage 2. A total of 15 items have been administered to
the test taker at the end of stage 3. If the test taker had obtained fewer than 7 correct responses at
the end of stage (ii) they would have been routed to bin 3; thus, the minimum number of correct

responses after the completion of the testlet in bin 3is 7.

(Insert Table 2 about here)

There are three subpopul ations targeted by bins at the next stage. These are the percentile
groups[0,33], [33,67] and [67,100]. Figure 1 givesthe expected fraction of the total population

to visit bin 3 and the expected fraction to come from each of the subpopul ations.

(Insert Figure 1 about here)

Thereis no routing from bin 3 to bin 4 because the fraction of those arriving at bin 3 and
coming from the lowest 33 percentileis small (¢, (©,) =.059). Routing to bin 5 is considered
next. The probability of someone from the percentile group targeted by bin 5 being routed to bin
31is.469 and 31.9% of the test takers arriving at bin 3 are from ©,. The option of atest taker
arriving at bin 3 from the subpopulation of bin 6 (top 33 percentile) is.899, and ¢, (0,) =.612.

The adjusted numbers are 7, (©,) =0, #,(©,) =.350 and &, (©,) =.650; in other words, the
routing decision is based on the assumption that 35.0% of the test takers arriving at bin 3 have an
ability from ©,. Thus, the test takers with lowest 35.0% of the scores should be routed from bin
3tohbin 5. From the cumulative distribution presented in Table 2, it can be seen that this occurs

closest to 10 correct. Theruleisto route test takersfrom bin 3 to bin 5if he/she has 10 or fewer

correct responses, and the remainder to bin 6.

If the adjustment had not been made with the fractions, test takers with 7 and 8 correct
responses after bin 3 would have been routed to bin 4. The likelihood of someone from the
bottom 33% of the ability scale being routed to bin 3issmall. One classification error isthe
routing of atest taker with ability 6[® , tobin5or 6. Another classification error is the routing
of atest taker with 8[® , or 8[O . tobin 4. If the rule were modified to route test takers with

7 and 8 correct responses after bin 3 to bin 4, the probability of a misclassification would be
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greater than the misclassification error attained by the stated rule. Also, the suppression of

possible routings simplifies the final structure. A structure that is easy to work with isimportant

for a successful implementation.

Target Generation

If there is more than one path to bin t, then A, (6,) given below isthe sum of possible

A, (6,) from (10). Let T represent the total number of bins. The following summarizes the

approach to generate targets.

Step 1.

Step 2.

Step 3.

Execute the omniscient test smulation with 2K test takers randomly drawn
fromthe N(u,0) population. Results are not recorded to the database for
thefirst K test takers, but are used to stabilize the exposure rate. For each of
the next K test takers, save the expected number correct and information
obtained over the ability range [-3,+3 with steps of .3 for theitems
administered at each stage. Thisisgiven by (6) and (7). Also, save the mean
number of items administered at each stage during the ssimulation and the true
ability of each test taker.

Let t represent the current bin in the target development process. Targets will
be developed sequentially beginning at stage 1; thus, initialy, t =1 and s=1.
Calculate the probability that atest taker with ability 8,, k=K +1,...,2K
will berouted to bint. Thisis based on (10) adjusted for possible multiple
paths. The values obtained for the targets are the following.
2K -
3 A (6,)SCC((6)
TBCC,(6,) = 21— . (=1,..,L. (20)

S A(6)

k=K+1

S 4,(8)SF,.(8)
TBIF.(9,) =K1 __ . (=1,...,L. (21)
> A(6)

k=K+1
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Step 4. Determine the MSTD routing rules out of bin t from the procedures found in

the preceding section.

Step5. Lett=t+1. Ift<T, set stobethe stagewhere bintisfound and return to

Step 3; otherwise, terminate the process as al targets have been determined.

Figures 2 and 3 show an attempt to fit a symmetric function given by g(8) =

H exp[@ - 6]/ 3] to possible target information functions. Both H and S are parameters
adjusted for the fit. Figure 2 presents atarget for a percentile group whose ability is centered
about 0, and Figure 3 presents atarget for a high ability group. The function g(€) provides
reasonable fit. The characteristics of the item pool are reflected in the fit errors. For example,
the high ability target drops below g(8) because the pool does not have enough good items with
adifficulty closeto 3. Figure 2 showsthetarget alittle below g(6@) to theleft of 0 and alittle
above g(0) totheright of 0. The average difficulty of items from the pool is .31, and this can

explain the capability to achieve more information with the positive abilities. The pool affects
the targets and the targets, in turn, affect the routing.

(Insert Figures 2 and 3 about here)
Computational Results

The omniscient test simulations were conducted for each of the three item pools with the

a,, a, and a, values stated in the omniscient testing section. The targets were created with the

process of the previous section. Eight non-overlapping MSTs were assembled sequentially with
CPLEX for each design. Non-overlapping forms were assembled because the MST
administration is envisioned to follow more closely the current practices of P& P than the open
sitting format found in some CAT programs; that is, items are exposed to many test takers, but
over ashort duration. Additional non-overlapping MSTs could have been assembled, but it was
felt that eight M STs were adequate to demonstrate the impact of design changes. The constraints
on each path were the same as the constraints enforced in the omniscient test, but the target
constraints were added for the paths. Path information functions and characteristic curvesfor an
MST were required to be within plus or minus 10% of the path targets. No attempt was made to

minimize the distance from the target curves. At each point ,, (=1,...,L the conditional

probability of traversing each path was approximated. If the probability was lessthan 0.1, the
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target constraint at that point was omitted. Thisresulted in 35, 37 and 35 target constraint pairs
appearing for the three pools, respectively. Once the MSTs were assembled routing rules were
determined for each MST individually.

The MSTswere evaluated based on the scaled score derived from true score equating
(Kolen and Brennan, 1995). Scaled scores ranged from 120 to 180. The conditional number
correct distribution for each path and a conditional expected scaled score was obtained. The

expected squared error of the conditional score was calculated by the following.
> P(Ys = y|0)(SCS(y) ~ SCS(y,))*; (22)
y

where SCS(y) is the function creating a scaled score from atrue scoreof y, and y, isthetrue

score evaluated at . Numerical integration was used to derive the scoring error for the
population from (22). The sgquare root of this error is defined as the MST’ s standard error of the
scaled score. The fidelity coefficient is the correlation between the SCS(y,) and SCS(y) over

the population. Summary results from the assembled forms are given in Table 3.
(Table 3 about here)

The effect of the percentiles on the MST was studied by varying the percentiles for the
last stage of the MTSD for Table 1. The new design had percentiles of [0,10] for bin 4, [10,90]
for bin 5, and [90,100] for bin 6; otherwise, the new design was identical to the design previously
studied for the first set based pool. Since only the percentiles changed, the simulation results
from the omniscient test ssmulation for the pool could be used to create the new design’ stargets.
Eight non-overlapping M STs were assembled from the new design. The conditional expected
information for each of 21 abilitiesis given for the 16 MTSsin Table 4. The conditional
expected information is computed by summing, over al paths, the total information on a path
times the probability of atest taker with the given ability traversing the path. The changein
information was not dramatic. The three highest ability values obtained consistently more
information with the new design. Overall, the original design provided slightly more
information for the middle abilities. The change from varying the percentiles would be more
pronounced if the exposure control in the omniscient testing was relaxed. This, however, makes

the assembly of non-overlapping M STs more difficult.

(Table 4 about here)
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Conclusions

This paper has presented a method to obtain targets for multi-stage adaptive tests (MSTSs).
The design specifies a desired population percentile group to visit each bin. The targets for the
bins are created by assuming the ability distribution of the population being tested. This
population can be represented by a probability density function, as was used for the examples of
the paper, or atable giving the abilities of test takers from a previous administration of arelated
test. Also, the targets depend on the data from an item pool. The item pool must be
representative of future pools to be used for the MST approach. This study used an existing
operational pool created to support P& P tests. It is reasonable to expect that an MST approach
will useitemsin adifferent manner than P& P testing, and the item development process may be
modified from the one used for P& P testing. Thus, further research is taking place to specify the

characteristics of the item bank for an MST approach.

The results indicate the capability of the targets to capture the desired attributes. 1f more
scoring accuracy is desired at certain ability levels, a bin targeting a narrower percentile of the
population can be specified in the design. In generad, it has been found that three, or at most
four, target levels are desirable at the final stage. The small benefit of the additional levelsin
improving scoring accuracy is outweighed by the added complexity.

The omniscient test simulation has parameters to create randomness, control item
exposure rate and improve information. An attempt has been made to balance the accuracy of
the test scores and the effective usage of the item pool. It does not appear to be practical to
define “optimal” targets. The future distribution of ability and the components of the future item
pools would be needed and, even then, the multiple objectives make a precise definition of
optimality difficult. A lengthy appraisal processis required to set targets. Once atest based on
the targets for the bins have been made operational, it is difficult to change the targets. The
significant time and effort to create and evaluate targets prior to implementation is highly
justified.
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Sage ) (i) (iii)
Percentile 10-14 items 5-7 items 10-14 items
[67,100] Bin6
[50,100] Bin3
[0,200],[33,67] Binl Bin5
[0,50] Bin2
[0,33] Bin4
Table1l. An MST design with 3 stagesand 6 binsisgiven. Each bin in the
M ST depicted istargeted for a particular population percentilerange as
indicated in the left margin. Therange on the number of itemsassigned to
each bin isgiven in the column header. Thisisa set based design with5to 7
items from each set.
y 7 8 9 10 11 12 13 14 15 16
Y, <y | 013 .081 236 443 642 799 905 966 993 1.00

Table2. A cumulative distribution function of the number of correct
responses after arandom test taker from a N(0,1) population has completed
bin 3 of an M ST based on the design from Table 1.

Discrete Item Pool Set Based Pool 1 Set Based Pool 2

MFS | Fidelity SE. Score Fidelity SE. Score Fidelity SE. Score
#

1 .93 3.69 149.85 .88 5.14 149.90 92 4.35 149.70
2 .93 3.69 149.86 .89 4.95 149.84 92 4.26 149.74
3 .93 3.69 149.86 .88 5.27 149.86 92 4.22 149.79
4 .93 3.75 149.78 .89 4.85 149.86 92 4.40 149.73
5 .93 3.76 149.78 .89 5.03 149.80 92 4.24 149.78
6 .93 3.68 149.84 .88 5.09 149.92 92 4.32 149.62
7 .94 3.64 149.84 .89 4.88 149.90 91 4.43 149.77
8 .93 3.74 149.83 .89 5.02 149.79 92 4.17 149.68

Table3. Thefiddity, unconditional standard error of the scaled score and
the expected scaled score of eight MSTsareshown. TheMSTswere
assembled from the three pool described in thereport.
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MSTs[0,33],[33,67],[67,100]

MSTs[0,10],[10,90],[90,100]

[ 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

-3.0 106|104|090|1.06)|090| 106|108 |09 ]120]|1.00|09 |113|103]0.99|1.08]| 103
-2.7 138143125148 |126|142|148|128|153|135|129|148|138|141 144|135
-2.4 1751193169199 1.71|184|198|167|189|177|170]190|180]|192|187|172
-2.1 21812511221 | 257|223 |231 256|213 |229|226|215]|236| 226|248 | 237|215
-1.8 2673141279318 | 277282316265 |270|279|264]|284| 274|302 289 | 261
-1.5 3183741339379 |329|333|370]|318|312|331|316|332] 320 | 350 | 3.38 | 3.08
-1.2 37114241395 434|373|382|410|3.67|359|377|368|381]363|391|379]|351
-0.9 4.22 | 456 | 440 | 478 | 409 | 424 433|406 | 410|411 ]|412| 430|401 | 426 | 408 | 3.88
-0.6 4.66 | 466 | 471 | 503 | 440 | 454|446 | 433|463 |432]|441 | 467|430 [455]|428)|4.20
-0.3 4.96 | 463 | 484 | 508 | 462 | 471 | 454 | 451 | 504 | 443|453 | 478|452 | 476 | 444 | 450
0.0 5091457148249 | 470 474|461 |464|520| 453 |455|4.68|4.68| 486 | 458 | 4.79
+0.3 [ 501|456 |470|474)|4.66| 472|461 |470]|509)4.64|458|454|478]|4.83| 4.67 | 5.00
+0.6 | 479]460|455]|453|456 | 476|456 | 467 | 477|474 | 465|445 |4.77]470| 468 | 5.01
+0.9 [ 451464442441 451|491 |449|455]|440)|4.76| 466 | 442|466 | 455|457 | 4.80
+1.2 [432]460|432]439|454 505|443 440|417 471 | 458|443 452|444 | 438|449
+15 [427[445]1425]|436| 465|502 |434 423|418 | 461|446 |445|442|444| 426|424
+1.8 429417416423 |471|476|415|406| 437|449 |438|446|440|447|431| 412
+21 [420[381|395]396|449|434|384|386|451)|430|434|438|435]|4.39|445| 4.06
+24 [1383]341|357[355)|392|382|341|358|431)|39 |439|413|413]4.08| 4.38| 3.92
+2.7 13231297 |306]305)|318|325|289|317|3.72]|347|406|370|364]|357|39 | 364
+3.0 [254]249|250]251)|249|265|233|266|293)287|349|315]299]296 325|321

Table4. The expected information conditioned on ability isgiven for 16
MSTs. Eight M STswere assembled with final stage per centilesas[0,33],
[33,67] and [67,100], and the other 8 M STswith percentiles[0,10], [10,90]

and [90,100].
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P(g =1 ¢ =3)=.485
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Bin 6

A,(©,)=.899

Y,(0;) =.612

@,(©,) =.635 (adjusted)

Bin5

A,(©,) =.469
5(9,)=.339

@, (O,) =.350 (adjusted)

Bin4

A,(©,)=.087
4(0,)=.059

,(0,) =0 (adjusted)

Figure 1. The probability of arandomly chosen test taker following the path
tobin 3isgiven in thebin 3 box. Theboxesfor bins4, 5, and 6 givethe
probability of atest taker from the associated percentilegroup arriving at
bin 3, the fraction of test takersarriving at bin 3 and coming from the
associated percentile group, and the adjusted fractions used for routing.
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Figure 2.
Target Information - Curve Approximation

1-Q
1.0

=

»

)Y

N

=

——TBIF
—=&— gpproximation

=

information

0.8
/A N

B=3.25

0.4 H=1.61

)
D ™

3 2 0 1 2 3
ability

Figure2. A possibletarget information function for an ability group with a
central tendency closeto O is plotted against a symmetric function of the

form given by H exp[@ - 6]%/ 3] .
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Figure 3. A possibletarget bin information function for a high ability group

isplotted against a symmetric function of the form given by

H exp[@ - 6)°/ 3] .
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