
Abstract 

This paper considers a multi-stage adaptive test (MST) where the testlets at each stage are 

determined prior to the administration.  The assembly of an MST requires target information 

functions and target characteristic curves for the MST design.  The targets are chosen to create 

tests with limited scoring error and high pool utilization.  Forcing all MSTs to have information 

functions and characteristic curves to be within an interval about the targets will yield parallel 

MSTs, in the sense that standardized paper-and-pencil tests are considered parallel.  The 

objective of this paper is to present a method to determine targets for the MST design based on 

an item pool and an assumed distribution of test taker ability.  This method can be applied to 

obtain Item Response Theory targets for paper-and-pencil tests.  

Key words: Multi-stage tests, targets, test assembly, shadow CAT, item response theory, mixed 

integer programming. 

 

A multi-stage adaptive test (MST) consists of testlets created for different ability levels.  

These testlets are selected before the administration, and test takers are routed to testlets based on 

an ability estimate.  It is a type of computerized adaptive test (CAT), but it adapts less frequently 

than the standard CAT, and testlets are created for an ability range while CAT usually considers 

an ability point as a basis for selecting items.  Luecht and Nungester (1998, 2000) present an 

overview of the MST approach.  Patula (1999) compares the MST approach with conventional 

CAT.  Armstrong, Jones, Koppel and Pashley (2004) discuss the various issues associated with 

an implementation of a version of MST referred to as a Multiple Form Structure.  While this 

paper uses the design scheme for Multiple Form Structures, the more generic MST terminology 

is used here.  Issues related to the creation of targets, the subject of this paper, are more general 

and applicable across all MST designs.   

Luecht and Nungester (1998) discuss determining targets by matching the reciprocal test 

information function to a desired degree of accuracy.  The conditional error variance of the 
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ability estimate is this reciprocal.  Luecht and Burgin (2003) take a more detailed look at target 

creation, but they concentrate on targets for proficiency tests while this paper considers the 

problem for an admission test.  The central issues addressed by Luecht and Burgin are, however, 

the same as those addressed here.  The MSTs assembled based on the targets must provide 

enough information to yield reliable scores and the item pool must support the assembly of 

multiple MSTs.  There is a trade-off between these conflicting goals.  A formal method is needed 

to create targets that remain stable over time and meet the objectives of the testing agency.  

Neither this paper nor Luecht and Burgin attempt to define optimal targets, as item pools and 

population abilities change over times, and all issues related to evaluating targets are difficult to 

quantify.  The purpose of target creation methods is to provide an analysis to facilitate the choice 

of operational targets. 

The approach taken in this paper utilizes the ability distribution of the population and an 

item pool, representative of future item pools to be maintained by the testing agency, to 

determine the targets.  The targets are a weighted average of information functions and 

characteristic curves of items administered from a simulation to be described.  It is possible to 

develop an operational MST without target characteristic curves, but similar characteristic curves 

across MSTs promote a similar score distribution across MSTs.  The following gives an 

overview of the steps used to create the targets. 

Step 1.   Simulate multiple administrations of a linear test assembled with knowledge 

of the test takers’ true abilities.  All constraints for the MST design must be 

satisfied and exposure control is enforced.  The true abilities for the 

simulation are drawn for the population’s ability distribution.  Save the 

observed results of the simulation once the pool’s exposure rate has 

stabilized. 

Step 2.   Consider the bins sequentially starting a bin 1.  

Step 3.   Calculate the probability of reaching the current bin for each test taker 

recorded in the simulation.  Create test-taker weights by dividing the 

probability of visiting the bin by the sum of all the probabilities; thus, the 

weights for all test takers sum to one.  Create the target for the bin by 
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computing the weighted sum of the observed characteristic curves and 

information functions associated with the bin.  

Step 4.   Determine the rules for routing test takers out of the current bin to the next 

stage.  

Step 5.   Proceed to the next bin and return to step 3, or terminate if all bins have been 

considered.  

The next section gives an example of an MST Design.  This is followed by a description 

of the simulation for an omniscient testing method which provides a nearly optimal utilization of 

the item pool subject to the constraints.  The results of this simulation provide data to be used to 

create targets.  The next sections develop the probabilities needed to create targets.  A step-by-

step procedure to develop targets is given next.  MST evaluations are given to demonstrate the 

effect of target variation on test reliability and information.  Finally, a summary discussion is 

provided. 

Multi-Stage Adaptive Test Design 

A multi-stage adaptive test design (MSTD) provides the MST requirements and the 

population subgroup intended to visit a bin at a given level.  A multi-stage adaptive test (MST) 

has testlets that satisfy the framework specified by the design.  Table 1 gives the outline of an 

MSTD.  Every bin in the MSTD is assigned a range on the required number of items.  The 

targets and routing rules are calculated by considering all assembly constraints, the item pool and 

the distribution of the population’s ability.  Mathematical programming issues are not the subject 

of this paper and constraints will not be stated explicitly.  The constraints varied across MSTDs.  

In practice, many MSTs will be assembled from an MSTD.  The items assigned to a bin 

may be broken into two or more testlets for administrative purposes.  For example, the design 

may specify that several items be administered before a routing decision is made.  A testlet with 

more than eight items may be cumbersome for a test taker to review.  Also, if items have a 

common stimulus, it is natural to create a testlet for those items.  The administration aspect does 

not affect the development of the targets. 

(Insert Table 1 about here.) 



 MST Targets Page: 4 

   

Let �  denote a random variable giving the ability of a test taker.  It is assumed that the 

distribution of �  is known.  The distribution may be represented by a probability density 

function or empirically derived; for example, a table with the ability estimates of a previous test 

administered to the population can be used.  This study assumes that �  has a normal distribution, 

( , )N µ σ . 

The MST approach to CAT can be implemented with classical test theory, but our 

application uses a 3-parameter IRT model.  The Bernoulli random variable iU  indicates whether 

the thi  item is answered correctly or incorrectly, and θ  gives the true ability of the test taker.  

The IRT parameters for item i are denoted by iii cba ,, .  Assume that the parameters are 

accurately calibrated and the iU ’s are independent of each other.  The probability of a correct 

response from a test taker with ability θ  is called the item characteristic curve and is given by 

the following. 

1
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When stating conditional probabilities, the remainder of this paper gives only the value of 

the random variable when the reference is apparent from the usage.  Thus, ( 1 )iP θ= =U �  

becomes ( 1 )iP θ=U . 

Let ( )iIF θ  be the information function of item i (Lord, 1980, page 73). 
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The characteristic curve and information function for the items assigned to bin t  of stage 

s  is the sum of the information curves for the individual items.  Testlet effects (Bradlow, Wainer 

& Wang, 1999, Lee, 2000 and Lee, Dunbar, & Frisbie, 2001) are not considered in this paper.  

Studies suggest that a testlet should be used as the unit of analysis, or the local item 

dependencies induced by the testlet should be modeled.  If dependence is modeled between items 

with a testlet, then the score distribution of the testlet can be determined.  Targets can be 

developed using the approach of this paper as long as the responses between testlets are 

independent. 
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Targets and Routing 

MSTDs have target bin information functions (TBIFs) and target bin characteristic curves 

(TBCCs).  These targets are based on the previously mentioned item response model.  The 

targets facilitate accurate test equating by providing parallel tests.  Targets are common with 

paper-and-pencil (P&P or linear) tests, but the problem of choosing of targets for the MST 

testing approach is more complex because routing decisions have to be made.  The targets for 

each bin and the routing rules are interrelated.  Routing rules should depend on the targets and 

vice versa.  Since MSTs associated with an MSTD are assembled after the targets are created, 

this report concentrates on routing for an MSTD and one routing method is developed later. 

A good target for a bin will be based on the sub-population visiting the bin.  Let 

( )tTBIF θ  and ( )tTBCC θ , represent the TBIF and TBCC  at bin t, t = 1,…,T.  The procedure 

does not work with the actual ( )tTBIF θ  and ( )tTBCC θ , but with the values at discrete points on 

the θ -axis.  The target functions are not derived.  A linear extrapolation is performed to obtain 

values for points between the discrete points.  Our implementation had points between –3 and +3 

in steps of .3. 

This study looked at the distribution of Law School Admission Test (LSAT) test-taker’s 

ability over recent years.  It was found to be approximately ( , )N µ σ′ ′  where µ′  was close to 0 

and σ′  was close to 1; to be explicit, a N(.122,.932) distribution.  The results reported in this 

paper utilize a N(0,1) distribution of ability.  The general approach of creating targets can be 

implemented with any reasonable ability distribution.  The target creation process requires an 

item pool that accurately reflects the characteristics of future item pools to be used by the testing 

agency.  This can be an existing pool or one created by simulation to have the desired attributes.  

The composition of the pool can have a significant effect on the targets.  Xing and Hambleton (in 

press) discuss the importance of the item pool on the MST design.  A method to derive an item 

bank design is given by van der Linden, Veldkamp and Reese (2000).  The study to be reported 

here utilized a subset of an LSAT operational pool with both discrete and set based items.  The 

pool dimensions are given later. 

The objective of this paper is to describe a method for generating targets from an MSTD 

based on the ability distribution and item pool.  A simulation is used to determine items to be 

administered at each stage under ideal conditions when the test taker has a known ability.  The 
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known ability is drawn from the assumed population.  The observed ( )IF θ ’s and ( )CC θ ’s are 

used to create the bin targets by weighting them based on the probability of a test taker visiting a 

bin.  The method can be applied to P&P target generation because this is a special case of the 

MST where there is a single bin and a single stage.   

Omniscient Testing 

An omniscient testing method is used to create data for deriving the bin targets.  

Omniscient testing was inspired by the shadow CAT proposed by van der Linden and Reese 

(1998), and van der Linden (2000b) where an active test, satisfying all constraints, is maintained 

and items to deliver are chosen from this active test.  The constraints are the same as those 

specified for an MST path, but without the target constraints.  Items already administered to the 

current test taker are forced to be on the active test and cannot be administered again during this 

test.  The items on the active test are updated at specified points in the administration based on 

responses to those items fixed on the test and the current ability estimate.  An application of the 

shadow CAT to multidimensional adaptive testing can be found in Veldkamp and van der Linden 

(2002). 

Omniscient testing knows the true ability of each test taker before the administration, and 

uses the true ability to choose items for the active test.  No adaptation takes place because the 

true ability of the test taker is known.  The motivation was to produce the best average bin 

information functions and testlet characteristic curves that the pool could support subject to 

exposure control and other constraints.  The abilities of the test takers were drawn from a (0,1)N  

distribution in this study. 

Objective Function 

An important issue is item pool usage.  There are various methods to promote the usage 

of all, or at least most, of the items in the pool.  The approach employed here is to adjust the 

information provided by an item with a penalty based on the empirical exposure rate.  Consider 

the sequential assembly of an individualized test for each of 2K simulated test takers.  The first 

K  test takers are used to establish item exposure rates and the second K  test takers are used to 

create the targets.  The items administered to the thk  test taker are assembled based on knowing 

all tests administered to the previous k-1 test takers.  All items used in the assembly of the 

omniscient tests come from a pool where the items are indexed by { }D 1,2,3,...= .  Consider the 
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problem of assembling a test for the thk  test taker.  Let ix  denote a zero-one decision variable 

for item selection, Di ∈ .  The assembly process has 1ix =  when the thi  item is present on the 

test, and 0ix =  when it is not present.  Let kθ  be the true ability of the thk  test taker, randomly 

drawn from the population distribution of ability. 

A cost is associated with each item.  This cost is the value of a function ( , , )ik i i kH u u θ�  

where iu�  is a random number uniformly distributed between 0 and 1, and iu  is the empirical 

exposure rate of the thi  item.  The empirical exposure rate is measured as the total number of 

tests where the item has appeared over the total number of tests previously administered ( 1k − , 

in this case). 

The objective of the test assembly problem for the thk  test taker is the following: 

( , , )ik i i k i
i D

Minimize H u u xθ
∈
∑ � .       (3) 

The study reported here uses the following representation for ( , , )ik i i kH u u θ� : 

( , , )ik i i kH u u θ�  = 1 2 3 ( )i i i ku u Iα α α θ+ −� .     (4) 

The coefficients 1α , 2α , and 3α  are pre-defined.  Sample values and the reasons for their choice 

are given later in this section.  The computational results section provides selected summary 

results with the values. 

The first term, 1 iuα � , creates randomization in the item selection process.  This assures no 

discernible pattern in the administration of items.  The value of 1α  ≥ 0 must be large enough to 

introduce randomness, but not so large as to dominate the other terms.  The value of iu�  is 

generated anew for each test taker.  Since objective coefficient is relative to the α  values 

assigned to each term, 1 1.0α =  for all simulations. 

The second term, 2 iuα , penalizes items that have already been exposed as a linear 

expression of the empirical exposure rate.  The value of 2α  > 0 is chosen based on desired pool 

usage.  This approach gives an acceptable method to distribute items over the testing period.  The 

results of the simulation for the first K test takers are not recorded, but are used to stabilize the 
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exposure rates.  The ultimate goal is to produce targets that will effectively utilize the item pool.  

The success of achieving this goal can only be evaluated fully after the targets are defined and 

MSTs are assembled.  Experience with the items used in this study indicates that an immediate 

goal of keeping the maximum exposure rate under 15% and the median exposure rate around 2% 

produces acceptable pool utilization.  In general, 2α  should increase when the pool size 

increases and decrease when the number of items on an MST path increases. 

The third term, )(3 kiI θα− , is the focus in a standard CAT implementation where the 

objective is to maximize information.  High information items at a kθ  point should be utilized 

more than items with lower information, but over the course of the simulation, all acceptable 

items should be administered.  There is a trade-off between information and exposure rate.  The 

higher the value of 3α  relative to 2α , the higher the target information curves and fewer non-

overlapping MSTs can be assembled.   

The constraints on the optimization problem are those usually associated with automated 

test assembly.  They include limitations on cognitive skills, answer key count, topic, diversity 

and stimulus usage.  The constraints will not be stated explicitly here as they can found in 

Armstrong, Jones and Kunce (1998), Boekkooi-Timminga, E. (1990), Theunissen (1985) and 

van der Linden (1998). 

Constraints and Assembly  
A commercial mixed integer programming (MIP) package was used for the assembly of 

omniscient tests.  An introduction to general MIP theory and models are given in Nemhauser and 

Wolsey (1988).  This studied used CPLEX (ILOG, 2002) to solve the MIP problems, but any 

software for large-scale MIP solution could be used.  Computer programs written in C/C++ 

interfaced directly with the CPLEX library.  The objective function for all the problems was 

given by (3).  The details of the assembly and model constraints are not the focus of this paper.  

The following outlines the two different models that were used.  One model is for discrete items 

where the stimulus and the question can be treated as a unit.  The second model is for set based 

items where multiple items are associated with a single stimulus.  Models for set based items are 

discussed by van der Linden (2000a). 

An item pool developed for the P&P LSAT was used in the study.  All constraints for the 

omniscient testing were a scaled version of P&P LSAT constraints.  For example, if the MST 
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had half the number of items as the corresponding section in the P&P LSAT, the constraint upper 

and lower limits for word count, cognitive skills distribution and key count distribution were 

halved.  The exception was the most general cognitive skill constraint which corresponded to the 

enforcing the number of items on a form.  The requirement for this constraint was randomly 

chosen to be a value in the range for the number of items on an MST path; thus, for the 

omniscient testing assembly, the number of items on a form was fixed.  If the number of items on 

the form was not fixed, maximizing the objective would force the maximum allowable number 

because the information term in the objective function was the dominant term. 

A parameter was set in CPLEX to assure a solution within 10% of the optimal solution.  

Since randomness is built into the problem, the lack of a true optimal solution was not a concern.  

The solution should, however, be close enough to the optimal to allow the objective function to 

impact the solution.  Time for solving the MIP was not an issue as a discrete item problems 

terminated after less than one second, and the set based problems after about three seconds.   

MST with Discrete Items 

The following constraints were considered for the discrete items.   

•  Single occurrence.  An item can appear at most once on a form. 

•  Cognitive skill content.  A distribution of the cognitive skills being tested must be satisfied.   

•  Answer key count distribution.  A constraint on the distribution of the multiple-choice 
answer keys was imposed. 

•  Word count.  A range on the total number of words found on the form was enforced. 

The word count constraint was the only constraint that could not be placed in a network 

flow model (Armstrong, Jones and Kunce, 1998).  The network flow model facilitates the 

convergence of the branch-and-cut algorithm used by CPLEX.  Williams (1990) presents 

modeling methods for MIP. 

The sample pool for the study had 1,336 discrete items.  A representative discrete item 

MFSD had 3 stages, 6 bins, and between 35 and 37 items per form.  The number of zero-one 

variables was 1336, the number of constraints was 25 and the number of nonzero entries in the 

constraint matrix was 4055.  The objective function, (3), had 1 1.0α = , 2 25.0α =  and 3 75.0α = .  

The rationale used for this choice of objective parameters is given in the next paragraph.  
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Omniscient simulations were run on a desktop PC with a 2.0GHz CPU took about 25 minutes 

with 5000K = ; that is, 10000 omniscient forms were assembled.  The maximum exposure rate 

was found to be 15.1% and the median exposure rate was found to be 1.9%. 

To obtain an appropriate value for 3α , the omniscient test simulation was run without any 

randomization or exposure control for 1000 test takers; that is, 1α =0, 2α =0 and 3α =1.  The 

solutions yielded an average per item information at the kθ ’s of about .67.  Randomization alone 

should not significantly impact the item choice.  Consider two candidate items denoted by 1i  and 

2i  where 
1
( )i kI θ  is at least 10% larger than 

2
( )i kI θ .  If 1α =1, 2α =0 and 3α =25, randomization 

alone would rarely cause the assembly to choose 2i  over 1i  for the omniscient test.  The value of 

2α  was adjusted, with 1α =1 and 3α =25, to achieve a desirable exposure rate distribution.  This 

occurred at 2 75.0α = . 

MST with Set Based Items 
The following additional constraints were considered for the set based items. 

•  Single occurrence.  A stimulus can appear at most once on a form. 

•  Stimulus to form assignment.  A specified number of stimuli must be assigned to the form.  
This number equals the number of testlets on an MST path. 

•  Item set usage.  When a stimulus was assigned to a form, upper and lower bounds on the total 
number of items from the associated item set were required. 

•  Priority items in the set.  There may be a subset of items within the item set where at least 
one item from the subset must appear in the MST when the associated stimulus was assigned 
to a form. 

•  Topic specifications.  The stimuli for set based items are categorized according to general 
topics.  Every stimulus has a single general topic; for example, “science” might be a topic.  
Each MST must have a specified number of stimuli of each topic. 

•  Diversity specifications.  Certain stimuli were oriented toward a diversity group.  An MST 
may have a specified diversity representation enforced. 

The model for the set based items is more complicated than the model for discrete items.  

As with the discrete item case, much of the problem could be modeled with a network flow 
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approach but fixed charge nodes were required to account for the item set usage and priority item 

restrictions. 

Two separate set based item pools were used in the study.  The first pool had 110 stimuli 

and 950 items, and the second had 108 stimuli and 1021 items.  The assembly for the second 

pool enforced diversity constraints and the first pool had no diversity field; otherwise, all the 

constraint types mentioned above were present.  The sample MFSD for the first pool was given 

by Table 1.  The sample MFSD for the second pool had the same structure but between 5 and 8 

items per testlet, and between 31 and 33 items on a path.  The omniscient test assembly problem 

for the first pool had 1060 zero-one variables, 1227 decision variables, 228 constraints and 3713 

nonzero entries in the constraint matrix.  The omniscient test assembly problem for the second 

pool had 1129 zero-one variables, 1274 decision variables, 238 constraints and 3911 nonzero 

entries in the constraint matrix.  The objective parameters for the two pool were 1 1.0α = , 

2 50.0α =  and 3 35.0α = , and 1 1.0α = , 2 75.0α =  and 3 25.0α = , respectively.  The parameters 

were chosen using the same method as described for the discrete item types.  The total solution 

time with K =5000 was about 3.5 hours for each simulation.  The maximum item exposure rate 

for the first pool was 14.1% and the median exposure rate was 2.3%.  The second pool yielded 

an maximum exposure of 13.1% and a median rate of 2.5%. 

Omniscient Testing Administration 

The omniscient test items should be administered as they would be administered in an 

MST.  Any sequencing of the administration must be enforced.  For example, it may be desirable 

to begin the CAT may with items covering specific topics.  A testlet for the set based items 

corresponds to a stimulus and associated items.  The testlets for the discrete items were 

assembled in a random manner, where each item was equally likely to be placed in any testlet, 

and the number of items in a testlet was randomly chosen from the permissible number of items 

for a testlet.  The test was administered one testlet at a time.  If more than one testlet could be 

administered at a stage, the testlet to administer was chosen randomly with equal probability as 

the other eligible testlets.  No modification of the assembled test during the administration was 

necessary since the test taker’s ability was known.   
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Data Saved from Omniscient Testing 

During the simulated administration of the omniscient test, data is saved and used when 

deriving the targets.  Let S represent the number of stages in a given MSTD and , 1,...,ksn s S= be 

the number of items administered to test taker k  at stage s.  The mean of ksn  rounded to the 

nearest integer, denoted by , 1,...,sn s S= , is saved.  The items administered to the thk  test taker 

during the omniscient test are denoted by the following indices. 

( , , ), 1,...,2 ; 1,..., ; 1,..., ksi k s j k K s S j n= = = ;     (5) 

where s  is the stage and j  is the sequencing index of the items within the testlet at stage s . 

Each item’s ( )iCC θ  and ( )iIF θ  can be computed from (1) and (2).  Let L  represent the 

number of discrete points along the ability axis where values for the targets, ( )tTBIF θ  and 

( )tTBCC θ , will be provided.  Label these points , 1,..., Lθ =
�

� � .  This study used 21 points from 

–3.0 to +3.0 in steps of .3.  The same points are used to save the value of the stage characteristic 

curves, , ( )k sSCC θ , and stage information functions, , ( )k sSIF θ , observed for the thk  test taker at 

stage s .   

, ( , , )
1

( ) ( ), 1,...,2 ; 1,..., 1,..., ;.
sn

k s i k s j
j

SCC CC k K K s S Lθ θ
=

= = + = =∑� �

� � �   (6) 

, ( , , )
1

( ) ( ), 1,...,2 ; 1,..., 1,..., .
sn

k s i k s j
j

SIF IF k K K s S Lθ θ
=

= = + = =∑� �

� � �   (7) 

Weighted sums of the , ( )k sSCC θ
�

�  and , ( )k sSIF θ
�

�  are used to create the ( )tTBCC θ
�

�  and 

( )tTBIF θ
�

� .  The weights are derived from the probabilities found in the next section. 

Routing and Probabilities 

A path through the MST is the sequence of bins that a test taker may traverse during the 

test administration.  Each test taker visits exactly one bin from each stage.  A path of an MST 

provides a test form.  The collection of all paths in an MST provides the multiple forms derived 

from the MST.  An incomplete path is the set of bins traversed up to some stage s S< .  Let s�  

be the random variable representing the bin visited by a test taker at stage s .  The initial bin is 
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visited with certainty ( 1 1=�  with probability 1) because the design has every test taker being 

administered the same items at stage 1.  Suppose that s�  takes on the values , 1,...,s s Sφ =  

during the administration of an MST.  The sequence 1{ ,..., }Sφ φ  defines a path.  For example, 

referring to the MST of Table 1, a path is given by { }1 2 31, 3, 5φ φ φ= = = .  The possible paths are 

not known until the routing rules have been obtained. 

Path Probabilities 
Mislevy and Chang (2000) present the calculation of path probabilities in a CAT by 

considering the mechanism for administering items.  Local item independence does not imply 

that a path probability can be calculated by the product of the marginal probabilities when the 

test is adaptive.  The approach is specialized for an MST in this section.  The bin information 

function, ( )tBIF θ , and bin characteristic curve, ( )tBCC θ , for bin t  can be obtained from the 

items assigned to bins once an MST has been assembled.  The probability distributions of 

number correct could be computed from the testlets of the MST.  However, the creation of the 

MST requires the paths and targets; therefore, paths and targets must be developed from the 

design missing these attributes.  The routing rules for an MST need not be the same routing rules 

as used when creating targets.  Ability estimates or expected number correct conditioned on 

ability could be used for MST routing. 

The method used to obtain the targets for a bin at stage s  requires an estimate of the 

probability distribution of the number of correct responses for all bins in stages less than s .  It is 

assumed that the targets for all bins at stages less than s  are known.  This will be the case since 

the targets are obtained in sequence starting at bin 1.  The probability of a correct response, 

conditioned on ability, can be estimated from ( )tTBCC θ .  The probability of a correct response 

by a test taker with ability θ  to any item at bin t  of stage s  is estimated by 

( ) ( ) /t t sp TBCC nθ θ= .  Let tX  be a binomial random variable with the following distribution 

conditional on ability. 

!
( ) ( ) (1 ( )) ; 0,1,..., .

!( )!
sn jjs

t t t s
s

n
P j p p j n

j n j
θ θ θ −= = − =

−
X   (8) 

The MST assembly does attempt, even though indirectly, to match the bin targets.  Thus, 

assuming that, on the average, the expectation of number of correct responses to an arbitrary 
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testlet at bin t , conditioned on ability, equals ( )tTBCC θ  is reasonable.  Assuming the probability 

of a correct response to all items at this bin is equal may not be justifiable.  It does facilitate the 

computations and provides a practical estimate for this application.  It is easily shown that taking 

( )tp θ  as the probability of every item at bin t  maximizes the variance of the distribution, when 

compared to other estimates of number correct for testlets from bin t  where the item 

probabilities sum to ( )tTBCC θ . 

Let sY  be a random variable representing the number of correct responses by a test taker 

after she/he has been administered the items up to and including the testlet of stage s.  It is 

assumed that tX , the probability distribution as defined by (8), is an accurate representation of 

correct responses at bin t .  The number of correct responses at the completion of the test is 

denoted S≡Y Y .  Also, the first bin has 1 1=Y X .  The probability distribution of sY , 

conditioned on both the test taker’s ability and the path traversed, will be derived inductively 

starting at stage 1.  The following assumes that the routing rules are based on the cumulative 

number of correct responses at the time the routing decisions are made. 

Assume that the probability distribution of 1s−Y , conditioned on both the test taker’s 

ability and the visiting bins { }1 1,..., sφ φ− , has been computed.  To remain on the a specific path 

after leaving bin 1sφ −  (i.e., be routed to bin sφ ), the test taker must have between y  and y , 

inclusive, cumulative correct responses after the completion of the items in bin 1sφ − .  (A method 

to derive y  and y  will be presented in the next section of this paper.)  The lower limit ( y ) 

cannot be less than 0 and upper limit ( y ) cannot be more than the number of items administered 

to this point.  The path is possible; thus, there is a positive probability that the test taker can be 

routed to bin sφ  regardless of the value of θ . 

Let y  represent possible number of correct responses after stage s  given a specific path, 

and n  the number of items to administer at stage s .  Since the distribution is conditional on the 

routing, the probability distribution of sY  is the following. 
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otherwise

θ φ φ θ θ

θ φ φ

−

− −
= −


= − = ∆


= = = +




∑ Y X

Y  (9) 

where 

1 1 1 1 1( ) ( , ,..., ) ( , ,..., )
y

s s s s s
j y

P P jθ φ θ φ φ θ φ φ− − −
=

∆ = = =∑ Y    (10) 

The value of ( )s θ∆  is the probability of a test taker with ability θ  staying on this path at 

stage s, given that they have been on the path to stage 1s − .  Multiple paths could have the same 

sequence of bins up to stage s S< .  Define 1 ( )θ∆ =1.0. 

A sample MST based on Table 1 is utilized to help explain the derivation of (9).  Take 

3s =  and the path to be { }1 2 31, 3, 5φ φ φ= = = .  Consider the routing from bin 3 to bin 5.  

Assume 7y =  and 10y = , and 5n = .  The values 1s−Y  with a positive probability are between 7 

and 15, inclusive.  Take two values for y  to illustrate.  First, y  = 9.  There are three ways to 

obtain 9 correct responses at the completion of bin 3.  The test taker can enter bin 3 with 7, 8 or 9 

correct responses and obtain 0, 1 or 2 correct responses from the bin 3 testlet; therefore, the 

summation over x  is 0, 1 and 2.  Next, consider the case where y  = 14.  There are two ways to 

obtain 14 correct responses at the completion of bin 3.  The test taker can enter bin 3 with 9 or 10 

correct responses and obtain 5 or 4 correct responses from the bin 3 testlet; therefore, the 

summation over x  is 4 and 5.  The division by ( )s θ∆  is an application of Bayes formula (see 

Ross (1997), page 79) and causes the probabilities to sum to 1. 

When s S= , the probability (9) is the conditional path scoring distribution.  The 

probability of a test taker with ability θ  being routed on a path is the following. 

1
1

( ,..., ) ( )
S

S q
q

P φ φ θ θ
=

= ∆∏       (11) 

The joint probability distribution of Y  and a path conditioned only on ability is the 

following. 
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1 1 1( , ,..., ) ( , ,..., ) ( ,..., )s s sP y P y Pφ φ θ θ φ φ φ φθ= = =Y Y .  (12) 

Probabilities for Populations 
The probability of number correct through stage s of path r without conditioning on 

ability, but knowing the density function of �  (denoted by ( )f θ ), is the value of an integral.   

1 1( ,..., ) ( ) ( , ,..., )s sP k f P k dφ φ θ θ φ φ θ
+∞

−∞

= = =∫Y Y      (13) 

It is assumed that �  is distributed ( , )N µ σ ; thus, numerical integration is required.  

Gauss-Hermite weights can be used to closely approximate the true value of the integral.  The 

tables by Abramowitz and Stegun (1965) can be used to obtain the values of weights for the 

integration. 

Let tΘ  represent the subpopulation targeted by bin t ; for example from Table 1, tΘ  is 

the abilities between the 33rd and 67th percentiles.  Define ( )s t∆ Θ  to be the probability that a test 

taker from tΘ  is routed to bin sφ  given they have been on the specified path through stage 1s − , 

and ( )s∆ Θ  be the same event but for the complete population.  Thus, ( )s∆ Θ  is the fraction of 

test takers who have been on the path through stage 1s −  to reach bin sφ .  The probabilities for 

the populations are analogous to ( )s θ∆  of (10), but it is not conditioned a specific ability, but on 

the ability coming from a population.  The calculation is similar and is given by the following. 

1 1 1 1 1( ) ( , ..., ) ( , ..., )
y

s t s s t s s t s
j y

P P jφ θ φ φ θ φ φ− − −
=

∆ Θ = = ∈ Θ = = ∈ Θ∑� �   (14) 

1 1 1 1 1( ) ( ..., ) ( ..., )
y

s s s s s s
j y

P P jφ φ φ φ φ− − −
=

∆ Θ = = = =∑� �    (15) 

Given bin st φ=  at stage s , the probably of a test taker from the subpopulation of 

traveling the bin sequence { }1 ,..., sφ φ  is the following. 

1
1

( ..., ) ( )
s

s t q t
q

P φ φ θ
=

∈Θ = ∆ Θ∏      (16) 

The probability of this routing for the complete population is the following.   
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1
1

( ..., ) ( )
s

s q
q

P φ φ
=

= ∆ Θ∏       (17) 

To develop the routing rules, the fraction of the total population that comes from tΘ  and 

follows { }1 ,..., sφ φ  is needed.  In other words, the probability of tθ ∈Θ  conditioned on visiting 

bins { }1 ,..., sφ φ .  The fraction of abilities coming from tΘ  and traversing bins 1{ ,..., }sφ φ  is 

given by the following.   

1

1

( ..., ) ( )
( )

( ..., )
s t t

s t
s

P P

P

φ φ θ θ
ψ

φ φ
∈Θ ∈Θ

Θ =      (18) 

For example, assume the following values for the components of (18). 

1 1( ..., ) 0.6, ( ..., ) 0.4s t sP Pφ φ θ φ φ∈Θ = =  and ( ) 0.5tP θ ∈Θ =    (19) 

The percentile group for bin t  contains 50% of the total population and 0.6 of this 50% 

would travel the specified path up to stage s .  These numbers yield 30% of the test takers have 

ability within tΘ  and arrive at bin t  via the specified path.  Forty percent of the total population 

follows { }1 ,..., sφ φ ; thus, 75% of the test takers traversing this incomplete path come from tΘ , 

and ( ) .75s tψ Θ = . 

A Routing Rule 

Routing rules are necessary to direct a test taker to a bin at the next stage of the MST.  

Consider the case where the test taker has visited bins { }1 ,..., sφ φ .  The routing from a bin sφ  at 

stage s  to each bin at stage 1s +  is considered.  The following provides a routing rule for a 

design using the probabilities developed earlier. 

All bins of the MSTD are intended to attract a specific subpopulation.  We assume the 

total population is ( , )N µ σ .  The routing from bin sφ  at stage s  to a bin at the next stage is 

considered.  The path taken to arrive at sφ  is critical for the routing rule.  First, the probability of 

a randomly chosen test taker from the overall population arriving at bin sφ  is calculated.  This is 

( )s∆ Θ  from (15).  Each subpopulation at the next stage is considered.  The expected fraction of 

the test takers visiting bin sφ  and whose θ  value comes from each targeted subpopulation is 
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computed.  This is ( )s tψ Θ  from (18).  If any fraction is small (less than .075 say), the fraction is 

allocated proportionally to the other subpopulation fractions and the small fraction set to zero.  

Routing will not be permitted to bins when its subpopulation has little chance of arriving at bin 

sφ .  Let ( )s tψ Θ  be the adjusted expected fraction of test takers at bin sφ  arriving via the 

incomplete path 1{ ,..., }sφ φ  and coming from the subpopulation defined by bin t.  Test takers are 

routed out of bin sφ  based on these fractions and the population distribution of sY  conditioned 

on the path.  Each path will have its own routing rules. 

Let y  denote the observed number correct after the completion of bin sφ .  The objective 

of the routing is to maximize the number of test takers from tΘ  visiting bin t .  Consider the 

cumulative distribution function of the probability of (13).  Let bin t  be the bin meant for the 

lowest ability at stage 1s +  and having ( )s tψ Θ  is positive.  The value of y  of (9) for the bin is 

the smallest number of correct responses possible after the completion of bin sφ .  The upper 

limit on the branching range, y , is the value of y  where the cumulative distribution is closest to 

( )s tψ Θ .  The next bin to consider at stage 1s +  is meant for the next highest ability group.  The 

lowest number correct for this routing is the previous y  plus one.  The upper limit can be 

obtained from the cumulative distribution function by having the fraction of those test takers on 

the path and being routed to the bin as close as possible to the ( )s tψ Θ  of the bin. 

Consider a routing out of bin 1 from an MST based on the design of Table 1 to illustrate 

the process.  Assume that ten items have been administered.  The probability distribution and 

cumulative distribution of 2Y  can be computed from (9).  The first routing attempts to divide the 

test takers in half, with the lower 50% going to bin 2 and the top 50% going to bin 3.  The design 

has the arrival at bin 1 certain for all subpopulation and fractions from the subpopulations 

arriving at bin 1 are 2 2( ) .5ψ Θ =  and 2 3( ) .5ψ Θ = .  For the sample MST chosen, 11 items were 

administered at stage (i) and 1 1( 5 1) .369P φ≤ = =Y  and 1 1( 6 1) .515P φ≤ = =Y ; therefore, the 

best alternative for the attempt to split the population is to send all test takers with a total number 

correct less-than-or-equal-to 6 to bin 2, and greater than 6 to bin 3. 
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A more complex routing decision is illustrated considering routing out of bin 3 from this 

design.  Table 2 gives the cumulative distribution of 3Y  conditioned on the path 1 2{ 1, 3}φ φ= = .  

There is only one path to bin 3 (bin 2) at stage 2.  A total of 15 items have been administered to 

the test taker at the end of stage 3.  If the test taker had obtained fewer than 7 correct responses at 

the end of stage (ii) they would have been routed to bin 3; thus, the minimum number of correct 

responses after the completion of the testlet in bin 3 is 7. 

(Insert Table 2 about here) 

There are three subpopulations targeted by bins at the next stage.  These are the percentile 

groups [0,33], [33,67] and [67,100].  Figure 1 gives the expected fraction of the total population 

to visit bin 3 and the expected fraction to come from each of the subpopulations. 

(Insert Figure 1 about here) 

There is no routing from bin 3 to bin 4 because the fraction of those arriving at bin 3 and 

coming from the lowest 33rd  percentile is small ( 2 4( )ψ Θ =.059).  Routing to bin 5 is considered 

next.  The probability of someone from the percentile group targeted by bin 5 being routed to bin 

3 is .469 and 31.9% of the test takers arriving at bin 3 are from 5Θ .  The option of a test taker 

arriving at bin 3 from the subpopulation of bin 6 (top 33 percentile) is .899, and 2 6( )ψ Θ =.612.  

The adjusted numbers are 2 4( )ψ Θ =0, 2 5( )ψ Θ =.350 and 2 6( )ψ Θ =.650; in other words, the 

routing decision is based on the assumption that 35.0% of the test takers arriving at bin 3 have an 

ability from 5Θ .  Thus, the test takers with lowest 35.0% of the scores should be routed from bin 

3 to bin 5.  From the cumulative distribution presented in Table 2, it can be seen that this occurs 

closest to 10 correct.  The rule is to route test takers from bin 3 to bin 5 if he/she has 10 or fewer 

correct responses, and the remainder to bin 6. 

If the adjustment had not been made with the fractions, test takers with 7 and 8 correct 

responses after bin 3 would have been routed to bin 4.  The likelihood of someone from the 

bottom 33% of the ability scale being routed to bin 3 is small.  One classification error is the 

routing of a test taker with ability 4θ ∈Θ  to bin 5 or 6.  Another classification error is the routing 

of a test taker with 6θ ∈Θ  or 5θ ∈Θ  to bin 4.  If the rule were modified to route test takers with 

7 and 8 correct responses after bin 3 to bin 4, the probability of a misclassification would be 
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greater than the misclassification error attained by the stated rule.  Also, the suppression of 

possible routings simplifies the final structure.  A structure that is easy to work with is important 

for a successful implementation. 

Target Generation 

If there is more than one path to bin t , then ( )t kθ∆  given below is the sum of possible 

( )t kθ∆  from (10).  Let T  represent the total number of bins.  The following summarizes the 

approach to generate targets. 

Step 1.   Execute the omniscient test simulation with 2K test takers randomly drawn 

from the ( , )N µ σ  population.  Results are not recorded to the database for 

the first K test takers, but are used to stabilize the exposure rate.  For each of 

the next K test takers, save the expected number correct and information 

obtained over the ability range [ ]3, 3− +  with steps of .3 for the items 

administered at each stage.  This is given by (6) and (7).  Also, save the mean 

number of items administered at each stage during the simulation and the true 

ability of each test taker.  

Step 2.   Let t represent the current bin in the target development process.  Targets will 

be developed sequentially beginning at stage 1; thus, initially, 1t =  and 1s = .   

Step 3.   Calculate the probability that a test taker with ability kθ , 1,..., 2k K K= +  

will be routed to bin t.  This is based on (10) adjusted for possible multiple 

paths.  The values obtained for the targets are the following.  

2
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1

2

1

( ) ( )
( ) ; 1,..., .

( )

K

t k k s
k K
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t k
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θ
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Step 4.   Determine the MSTD routing rules out of bin t from the procedures found in 

the preceding section.   

Step 5.   Let 1+= tt .  If t ≤ T, set s to be the stage where bin t is found and return to 

Step 3; otherwise, terminate the process as all targets have been determined.  

Figures 2 and 3 show an attempt to fit a symmetric function given by ( )g θ  = 

2exp[ ] / ]H θ θ β−  to possible target information functions.  Both H  and β  are parameters 

adjusted for the fit.  Figure 2 presents a target for a percentile group whose ability is centered 

about 0, and Figure 3 presents a target for a high ability group.  The function ( )g θ  provides 

reasonable fit.  The characteristics of the item pool are reflected in the fit errors.  For example, 

the high ability target drops below ( )g θ  because the pool does not have enough good items with 

a difficulty close to 3.  Figure 2 shows the target a little below ( )g θ  to the left of 0 and a little 

above ( )g θ  to the right of 0.  The average difficulty of items from the pool is .31, and this can 

explain the capability to achieve more information with the positive abilities.  The pool affects 

the targets and the targets, in turn, affect the routing.   

(Insert Figures 2 and 3 about here) 

Computational Results 

The omniscient test simulations were conducted for each of the three item pools with the 

1α , 2α  and 3α  values stated in the omniscient testing section.  The targets were created with the 

process of the previous section.  Eight non-overlapping MSTs were assembled sequentially with 

CPLEX for each design.  Non-overlapping forms were assembled because the MST 

administration is envisioned to follow more closely the current practices of P&P than the open 

sitting format found in some CAT programs; that is, items are exposed to many test takers, but 

over a short duration.  Additional non-overlapping MSTs could have been assembled, but it was 

felt that eight MSTs were adequate to demonstrate the impact of design changes.  The constraints 

on each path were the same as the constraints enforced in the omniscient test, but the target 

constraints were added for the paths.  Path information functions and characteristic curves for an 

MST were required to be within plus or minus 10% of the path targets.  No attempt was made to 

minimize the distance from the target curves.  At each point θ
�
, 1,..., L=�  the conditional 

probability of traversing each path was approximated.  If the probability was less than 0.1, the 
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target constraint at that point was omitted.  This resulted in 35, 37 and 35 target constraint pairs 

appearing for the three pools, respectively.  Once the MSTs were assembled routing rules were 

determined for each MST individually. 

The MSTs were evaluated based on the scaled score derived from true score equating 

(Kolen and Brennan, 1995).  Scaled scores ranged from 120 to 180.  The conditional number 

correct distribution for each path and a conditional expected scaled score was obtained.  The 

expected squared error of the conditional score was calculated by the following. 

2( )( ( ) ( ))S
y

P Y y SCS y SCS yθθ= −∑ ;     (22) 

where ( )SCS y  is the function creating a scaled score from a true score of y , and yθ  is the true 

score evaluated at θ .  Numerical integration was used to derive the scoring error for the 

population from (22).  The square root of this error is defined as the MST’s standard error of the 

scaled score.  The fidelity coefficient is the correlation between the ( )SCS yθ  and ( )SCS y  over 

the population.  Summary results from the assembled forms are given in Table 3.   

(Table 3 about here) 

The effect of the percentiles on the MST was studied by varying the percentiles for the 

last stage of the MTSD for Table 1.  The new design had percentiles of [0,10] for bin 4, [10,90] 

for bin 5, and [90,100] for bin 6; otherwise, the new design was identical to the design previously 

studied for the first set based pool.  Since only the percentiles changed, the simulation results 

from the omniscient test simulation for the pool could be used to create the new design’s targets.  

Eight non-overlapping MSTs were assembled from the new design.  The conditional expected 

information for each of 21 abilities is given for the 16 MTSs in Table 4.  The conditional 

expected information is computed by summing, over all paths, the total information on a path 

times the probability of a test taker with the given ability traversing the path.  The change in 

information was not dramatic.  The three highest ability values obtained consistently more 

information with the new design.  Overall, the original design provided slightly more 

information for the middle abilities.  The change from varying the percentiles would be more 

pronounced if the exposure control in the omniscient testing was relaxed.  This, however, makes 

the assembly of non-overlapping MSTs more difficult. 

(Table 4 about here) 
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Conclusions 

This paper has presented a method to obtain targets for multi-stage adaptive tests (MSTs).  

The design specifies a desired population percentile group to visit each bin.  The targets for the 

bins are created by assuming the ability distribution of the population being tested.  This 

population can be represented by a probability density function, as was used for the examples of 

the paper, or a table giving the abilities of test takers from a previous administration of a related 

test.  Also, the targets depend on the data from an item pool.  The item pool must be 

representative of future pools to be used for the MST approach.  This study used an existing 

operational pool created to support P&P tests.  It is reasonable to expect that an MST approach 

will use items in a different manner than P&P testing, and the item development process may be 

modified from the one used for P&P testing.  Thus, further research is taking place to specify the 

characteristics of the item bank for an MST approach. 

The results indicate the capability of the targets to capture the desired attributes.  If more 

scoring accuracy is desired at certain ability levels, a bin targeting a narrower percentile of the 

population can be specified in the design.  In general, it has been found that three, or at most 

four, target levels are desirable at the final stage.  The small benefit of the additional levels in 

improving scoring accuracy is outweighed by the added complexity. 

The omniscient test simulation has parameters to create randomness, control item 

exposure rate and improve information.  An attempt has been made to balance the accuracy of 

the test scores and the effective usage of the item pool.  It does not appear to be practical to 

define “optimal” targets.  The future distribution of ability and the components of the future item 

pools would be needed and, even then, the multiple objectives make a precise definition of 

optimality difficult.  A lengthy appraisal process is required to set targets.  Once a test based on 

the targets for the bins have been made operational, it is difficult to change the targets.  The 

significant time and effort to create and evaluate targets prior to implementation is highly 

justified. 
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Table 1.  An MST design with 3 stages and 6 bins is given.  Each bin in the 
MST depicted is targeted for a particular population percentile range as 
indicated in the left margin.  The range on the number of items assigned to 
each bin is given in the column header.  This is a set based design with 5 to 7 
items from each set. 

 

     y 7 8 9 10 11 12 13 14 15 16 

2 y≤Y
 

.013 .081 .236 .443 .642 .799 .905 .966 .993 1.00 

Table 2.  A cumulative distribution function of the number of correct 
responses after a random test taker from a N(0,1) population has completed 
bin 3 of an MST based on the design from Table 1. 

MFS 
# 

Fidelity S.E. Score Fidelity S.E. Score Fidelity S.E. Score 

1 .93 3.69 149.85 .88 5.14 149.90 .92 4.35 149.70 
2 .93 3.69 149.86 .89 4.95 149.84 .92 4.26 149.74 
3 .93 3.69 149.86 .88 5.27 149.86 .92 4.22 149.79 
4 .93 3.75 149.78 .89 4.85 149.86 .92 4.40 149.73 
5 .93 3.76 149.78 .89 5.03 149.80 .92 4.24 149.78 
6 .93 3.68 149.84 .88 5.09 149.92 .92 4.32 149.62 
7 .94 3.64 149.84 .89 4.88 149.90 .91 4.43 149.77 
8 .93 3.74 149.83 .89 5.02 149.79 .92 4.17 149.68 
 
Table 3.  The fidelity, unconditional standard error of the scaled score and 
the expected scaled score of eight MSTs are shown.  The MSTs were 
assembled from the three pool described in the report.  

 

        Stage 

Percentile   

(i) 

10-14 items 

(ii) 

5-7 items 

(iii) 

10-14 items 

[67,100]   Bin 6 

[50,100]  Bin 3  

[0,100],[33,67] Bin 1  Bin 5 

[0,50]  Bin 2  

[0,33]   Bin 4 

             Discrete Item Pool              Set Based Pool 1             Set Based Pool 2 
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                   MSTs [0,33],[33,67],[67,100]                  MSTs [0,10],[10,90],[90,100] 

θ  1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

-3.0 1.06 1.04 0.90 1.06 0.90 1.06 1.08 0.96 1.20 1.00 0.95 1.13 1.03 0.99 1.08 1.03 
-2.7 1.38 1.43 1.25 1.48 1.26 1.42 1.48 1.28 1.53 1.35 1.29 1.48 1.38 1.41 1.44 1.35 
-2.4 1.75 1.93 1.69 1.99 1.71 1.84 1.98 1.67 1.89 1.77 1.70 1.90 1.80 1.92 1.87 1.72 
-2.1 2.18 2.51 2.21 2.57 2.23 2.31 2.56 2.13 2.29 2.26 2.15 2.36 2.26 2.48 2.37 2.15 
-1.8 2.67 3.14 2.79 3.18 2.77 2.82 3.16 2.65 2.70 2.79 2.64 2.84 2.74 3.02 2.89 2.61 
-1.5 3.18 3.74 3.39 3.79 3.29 3.33 3.70 3.18 3.12 3.31 3.16 3.32 3.20 3.50 3.38 3.08 
-1.2 3.71 4.24 3.95 4.34 3.73 3.82 4.10 3.67 3.59 3.77 3.68 3.81 3.63 3.91 3.79 3.51 
-0.9 4.22 4.56 4.40 4.78 4.09 4.24 4.33 4.06 4.10 4.11 4.12 4.30 4.01 4.26 4.08 3.88 
-0.6 4.66 4.66 4.71 5.03 4.40 4.54 4.46 4.33 4.63 4.32 4.41 4.67 4.30 4.55 4.28 4.20 
-0.3 4.96 4.63 4.84 5.08 4.62 4.71 4.54 4.51 5.04 4.43 4.53 4.78 4.52 4.76 4.44 4.50 
0.0 5.09 4.57 4.82 4.96 4.70 4.74 4.61 4.64 5.20 4.53 4.55 4.68 4.68 4.86 4.58 4.79 
+0.3 5.01 4.56 4.70 4.74 4.66 4.72 4.61 4.70 5.09 4.64 4.58 4.54 4.78 4.83 4.67 5.00 
+0.6 4.79 4.60 4.55 4.53 4.56 4.76 4.56 4.67 4.77 4.74 4.65 4.45 4.77 4.70 4.68 5.01 
+0.9 4.51 4.64 4.42 4.41 4.51 4.91 4.49 4.55 4.40 4.76 4.66 4.42 4.66 4.55 4.57 4.80 
+1.2 4.32 4.60 4.32 4.39 4.54 5.05 4.43 4.40 4.17 4.71 4.58 4.43 4.52 4.44 4.38 4.49 
+1.5 4.27 4.45 4.25 4.36 4.65 5.02 4.34 4.23 4.18 4.61 4.46 4.45 4.42 4.44 4.26 4.24 
+1.8 4.29 4.17 4.16 4.23 4.71 4.76 4.15 4.06 4.37 4.49 4.38 4.46 4.40 4.47 4.31 4.12 
+2.1 4.20 3.81 3.95 3.96 4.49 4.34 3.84 3.86 4.51 4.30 4.34 4.38 4.35 4.39 4.45 4.06 
+2.4 3.83 3.41 3.57 3.55 3.92 3.82 3.41 3.58 4.31 3.96 4.39 4.13 4.13 4.08 4.38 3.92 
+2.7 3.23 2.97 3.06 3.05 3.18 3.25 2.89 3.17 3.72 3.47 4.06 3.70 3.64 3.57 3.95 3.64 
+3.0 2.54 2.49 2.50 2.51 2.49 2.65 2.33 2.66 2.93 2.87 3.49 3.15 2.99 2.96 3.25 3.21 
 
Table 4.  The expected information conditioned on ability is given for 16 
MSTs.  Eight MSTs were assembled with final stage percentiles as [0,33], 
[33,67] and [67,100], and the other 8 MSTs with percentiles [0,10], [10,90] 
and [90,100]. 
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Figure 1.  The probability of a randomly chosen test taker following the path 
to bin 3 is given in the bin 3 box.  The boxes for bins 4, 5, and 6 give the 
probability of a test taker from the associated percentile group arriving at 
bin 3, the fraction of test takers arriving at bin 3 and coming from the 
associated percentile group, and the adjusted fractions used for routing.  

Bin 3 
 

1 2( 1, 3)P φ φ= = =.485 

Bin 6 

3 6( )∆ Θ =.899 

3 6( )ψ Θ =.612 

3 6( )ψ Θ =.635 (adjusted) 

Bin 5 

3 5( )∆ Θ =.469 

3 5( )ψ Θ =.339 

3 5( )ψ Θ =.350 (adjusted) 

Bin 4 

3 4( )∆ Θ =.087 

3 4( )ψ Θ =.059 

3 4( )ψ Θ =.0 (adjusted) 
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Figure 2.
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Figure 2.  A possible target information function for an ability group with a 
central tendency close to 0 is plotted against a symmetric function of the 
form given by 2exp[ ] / ]H θ θ β− . 
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Figure 3.
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Figure 3.  A possible target bin information function for a high ability group 
is plotted against a symmetric function of the form given by 

2exp[ ] / ]H θ θ β− . 

 
 

 

 

 

 

 

 

 

 

 

 

 




