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Abstract 

Preventing items in adaptive testing from being over- or underexposed is one of the main 

problems in computerized adaptive testing. Though the problem of overexposed items can be 

solved using a probabilistic item-exposure control method, such methods are unable to deal with 

the problem of underexposed items. Using a system of rotating item pools, on the other hand, is a 

method that potentially solves both problems. In this method, a master pool is divided into 

(possibly overlapping) smaller item pools, which are required to have similar distributions of 

content and statistical attributes. These pools are rotated among the testing sites to realize 

desirable exposure rates for the items. In this paper, a test assembly model for the problem of 

dividing a master pool into a set of smaller pools is presented. The model was motivated by 

Gulliksen's (1950) matched random subtests method. Different methods to solve the model are 

proposed. An item pool from the Law School Admission Test (LSAT) was used to evaluate the 

performances of computerized adaptive tests from systems of rotating item pools constructed 

using these methods. 

 

Key words: computerized adaptive testing, item pool design, matched random subtests method, 

mathematical programming, rotating item pools, test assembly.  
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Introduction 

In paper-and-pencil (P&P) testing, the same set of items is administered to a population 

of examinees. A disadvantage of this testing format is its inability to deal with a broad range of 

abilities in the population. This disadvantage is remedied by computerized adaptive testing 

(CAT) where each examinee takes a test with items selected to match their ability estimates 

during the test. In doing so, CAT emulates an important aspect of oral examination, namely the 

practice of an examiner who chooses a more difficult question if the examinee responds correctly 

and an easier question if (s)he responds incorrectly. A CAT algorithm implements this practice 

by updating the examinee's ability estimate, ,θ� and choosing the next item to be optimal at this 

estimate. 

Maximum-information and Bayesian item selection are commonly used criteria to select 

items (Hambleton, Swaminathan, & Rogers, 1991; van der Linden & Pashley, 2000). When an 

item is selected to maximize information at the current ability estimate, the algorithm prefers 

items for which both the difference between the current ability estimate θ� and the item difficulty 

parameter ib  is small and the item discrimination parameter ia  is high (Veerkamp & Berger, 

1999). These items are of high quality but, unfortunately, for most item pools, their number is 

low. For a population of examinees, these items are selected more often and the high exposure 

rate of these items makes them vulnerable to security breaches. Typically, the other items are 

hardly selected at all and the resources invested in writing and calibrating them have futile effect 

(Veldkamp, 2001). 

 

Various methods have been proposed to solve this problem, including methods of item-

exposure rate control, item pool design, and rotating item pools. Sympson and Hetter (1985) 
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introduced a probabilistic approach to control the exposure rate of every item in the pool (for a 

review of this method, see van der Linden, in press). McBride, Wetzel and Hetter (1997) 

advocated an algorithm that reduced the exposure rates of items most popular at the beginning of 

the test. Veldkamp and van der Linden (2000) suggested to calculate a blueprint for the item pool 

such that distribution of the exposure rates for the items in the pool tends to be even. Stocking 

and Swanson (1998) introduced a method of rotating item pools with the same goal of even 

exposure rates. The item pools in this method are assembled from a master pool by splitting it 

into several smaller pools. The item pools are randomly rotated during operational testing. The 

goal of more uniformly distributed item-exposure rates is realized by assigning items with higher 

exposure rates to a smaller number of pools and items with lower rates to a larger number of 

pools. Unfortunately, studies of this method are rare. It is the purpose of this paper to propose 

some methods for assembling systems of rotating item pools from a given master pool and 

evaluate their properties. 

In this paper, several methods to construct the system of rotating item pools are 

presented. All methods are based on a two-stage assignment process, in which items are first 

assigned to interim sets of (closely) parallel items and then from these sets to item pools. This 

process is optimized using the idea underlying the matched random subtests method introduced 

by Gulliksen (1950) to split a test into parallel subtests to the largest possible split-half 

reliability, which is always a lower bound to classical test reliability. Interestingly, the same idea 

can be generalized to the problem of assembling a system of rotating items pools. To illustrate 

how to put our methods into practice, several examples using an item pool from the Law School 

Admission Test (LSAT) are given. A constrained CAT algorithm was applied to evaluate the 

performance of the systems of rotating item pools constructed by these methods. 
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Current Methods to Construct Rotating Item Pools 

Way (1998) observes that probabilistic item-exposure control may be inadequate to 

guarantee a secure CAT program. His suggestion is that a system of rotating item pools may be a 

more promising approach to prevent item compromise. Way, Steffen, and Anderson (1998) 

discuss several examples of strategies of managing rotating item pools and using such systems to 

enhance the security of the computerized testing. 

For systems of rotating item pools to be effective, the availability of automated item-

selection procedures to assemble such pools from a master pool is crucial. These procedures 

should have the following properties: First, each pool should have similar distributions of content 

and statistical attributes to support uniform measurement quality to examinees. Second, the 

composition of the pools should support uniform usage of the items. Third, the pools should have 

enough items to allow item selection for the adaptive tests to be constrained with respect to all 

the specifications to be imposed on the test. 

Stocking and Swanson (1998) demonstrate a method to construct rotating item pools. In 

their method, the items in the master pool are assigned to pools by their weighted deviations 

model (WDM). The first step in this method is to calculate an average (nonoverlapping) pool 

from the master pool. The actual pools are then assembled to minimize the differences between 

these pools and the average pools with respect to (1) the item attributes in the constraints to be 

imposed on the CAT and (2) item information at selected θ  levels. In doing so, the deviations 

are weighed to get a single objective function. The resulting pools are expected to have similar 

distributions of content and statistical attributes and, hence, to support each test administration 

equally well. 
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Two versions of the Stocking-Swanson method exists, one with nonoverlapping and 

another with overlapping item pools. The former was presented above. However, to get more 

uniformly distributed exposure rates, a system of overlapping item pools is more efficient. This 

system allows us to reduce the exposure rate of more popular items by assigning them to a 

smaller set of pools and to increase the usage of less popular items by assigning them to a larger 

set. Overlapping pools are assembled by first calculating the required numbers of pools the items 

should figure in and then assigning the items to the pools until these numbers are realized. For 

empirical results with these methods, see Stocking and Swanson (1998). 

 

New Methods for Constructing Rotating Item Pools 

The new methods proposed for constructing rotating item pools are all based on 

techniques of constrained combinatorial optimization. The objective functions in the 

optimization problems focus on the values of the item parameters in the pools. The goal is to 

give the pools identical distributions of parameters. At the same time, constraints are introduced 

to match the pools in terms of content attributes and to control the overlap between the pools. 

All methods were motivated by Gulliksen's (1950) matched random subtests method. 

Gulliksen's method was proposed to split a test into two halves that are statistically as closely 

parallel as possible. The split-half reliability calculated from these halves is a lower bound to the 

classical test reliability. Gulliksen's method has two stages. In the first stage, the items are 

assigned to pairs of items that have minimal differences between their parameter values. In the 

second stage, the items are assigned to test halves. A formalization of Gulliksen's method as a 

problem of constrained combinatorial optimization is given in van der Linden and Boekkooi-

Timminga (1988). 
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We apply the same method to the problem of splitting a master pool into a set of smaller 

pools for use as rotating item pools in CAT. To illustrate the method, its stages for the case of 

nonoverlapping pools are briefly described: First, interim sets of items are assembled, each of a 

size equal to the number of (nonoverlapping) pools to be constructed. Second, items in the same 

interim set are assigned to different pools. If the composition of these pools is required to meet 

certain constraints to support CAT, the assignment is subject to these constraints. 

Figure 1 illustrates the general process of dividing a master pool into four nonoverlapping 

pools. In this figure, to get four nonoverlapping pools, the n items in the master pool are assigned 

to n/4 interim sets, each consisting of four different items.  

------------------------------- 

Insert Figure 1 about here 

------------------------------- 

The two stages are explained in more detail as follows: 

Stage 1: Assigning Items to Interim Sets 

In the first stage, the items in the master pool are assigned to interim sets. For notational 

simplicity, we formulate the optimization problem for interim sets consisting of two items. 

Generalization to larger interim sets is straightforward. 

A metric ijδ  is used to represent the differences between items i and j in interim sets. If 

the goal is to minimize the differences between the values of the items for the a and b parameters 

in the sets, a possible metric for these differences is  

 

jijiij bbwaaδ −+−=                (1) 
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where w is a parameter that can be used to correct for differences between the scales of the two 

parameters. Other types of metric and larger numbers of item parameters are possible. 

The problem of assigning items to interim sets can be formulated as a 0-1 mathematical 

programming problem with decision variables, ijx , I,...,ji 1=≠ , which are equal to 1 if item i 

and j are chosen in the same set and are equal to 0 otherwise, where I represents the number of 

items in the master pool. The objective function is 
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The constraint in (3) is to guarantee that every item is assigned to an interim set only once (van 

der Linden and Boekkooi-Timminga, 1988). 

Stage 2: Assigning Items to Pools 

In the second stage, the items in the interim sets are assigned to the item pools. Different 

assignment models for the assignment of items to nonoverlapping and overlapping pools are 

formulated. 

 

Nonoverlapping pools. The general idea in generating the item pools is to make them as 

similar as possible. In the mathematical programming model below, the objective function 
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minimizes the differences between the total information in the pools at several ability values, 

while constraints are introduced to assign every item exactly once. 

The model can be formulated as  

 

zmin       (4) 
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 {0,1}∈isy       (9) 

 

where i and j are indices for the items, rQ  is the rth interim set, s and p indicate item pools, kθ  is 

ability level k, )( ki θI  is the information about kθ  in item i, and isy  is a decision variable that is 

equal to one if item i assigned to pool s, and equal to zero otherwise. 
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In (5)-(6) the difference between the total information in the item pools at the ability 

values kθ  are constrained to be in the interval (-z, z). The size of this interval is minimized in (4). 

The constraints in (7) require items in the same interim set to be assigned to different pools. The 

constraints in (8) guarantee that all items are assigned once, whereas the constraints in (9) define 

the decision variables to be 0-1. This model can be modified to allow for the case of overlapping 

pools. Moreover, the model can be extended to allow for additional constraints on the test 

required to deal with such issues as test content and word count. We will address these topics 

below. 

Overlapping pools. Overlapping item pools are obtained by changing the constraint on 

number of times an item is assigned to a pool in (8). This constraint is then replaced by 

 

i,ny (r)

s
is ∀≤∑       (10) 

 

i,ny r
s

is ∀≥∑       (11) 

 

with (r)n  and rn  denoting the maximum and minimum number of item replications admitted, 

respectively. Unpopular items should have larger values (r)n  and rn , and popular items should 

have lower values. 

Whether or not an item is popular is usually known only after conducting a CAT 

simulation. Based on items performance in the CAT algorithm, we then can decide what values 

(r)n  and rn  should have. However, we can also decide on these values using the values of the 

items for the discrimination parameter (see empirical examples below). 
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Additional content constraints. The model previously described does not allow for 

possible additional content constraints on the CAT yet. Suppose, for example, that the CAT has 

to be constrained with respect to item type and word counts. In order to ensure that the pools 

have comparable distributions of these item attributes, the model in Stage 2 has to be extended 

with the following constraints: 

 

s,ny m
Vi

is
m

∀≥∑
∈

 
  

     (12) 

 

s,ny (m)

Vi
is

m

∀≤∑
∈

 
  

     (13) 
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i
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i
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where mV  is the set of items of type m in the master pool, iw  is the word count of item i, mn  and 

wn  are the lower bounds on the number of items of type m and the word count in the test, 

respectively, and (m)n  and (w)n  are the upper bounds on these attributes. 

 

Algorithms for Solving the Models 

Various algorithms for solving the previous two types of models are presented. We first 

discuss the methods for assigning items to interim sets. 
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Assigning Items to Interim Sets 

For a system of rotating nonoverlapping item pools, the number of parallel items in every 

interim set is equal to the number of pools to be created. Various methods for assigning items to 

interim sets are given. 

Sequential assignment. A simple method would be to use a greedy heuristic. This 

heuristic has been applied to test assembly problems in combination with the Weighted 

Deviation Model (Stocking & Swanson, 1993) and in combination with the Normalized 

Weighted Absolute Deviation Heuristic (Luecht, 1998). When this heuristic is applied to solve 

the model, the interim sets are constructed sequentially, that is, items with the smallest value for 

(1) are selected until all items have been used. It is obvious that this approach is easy to 

implement, but does have some drawbacks. For each subsequent item, the value of (1) will be 

larger and the quality of the interim sets will therefore deteriorate. Therefore a method based on 

simultaneous assembly of all interim sets is proposed. 

Simultaneous assignment. If the number of pools to be assembled increases, the 

combinatorial optimization problem involved in their assembly becomes larger and we may soon 

reach a point at which a heuristic is needed to solve the model. In the empirical example below, 

we used a heuristic method known as simulated annealing. Simulated annealing is an iterative 

Monte Carlo method. At each step a candidate for a new solution is generated by randomly 

modifying the previous solution, after which it is decided whether this candidate is or is not 

accepted. An attractive feature of simulated annealing is that it accepts a worse solution with a 

nonzero probability. Typically, the probability becomes smaller after some iterations. This 

feature allows the algorithm to backtrack if it gets stuck in a bad path. The algorithm is 

terminated as soon as no further improvement can be made. Examples of an earlier applications 
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of this heuristic to test assembly problems are given in van der Linden, Veldkamp and Carlson 

(submitted), and Veldkamp (1999). A more theoretical explanation of simulated annealing can be 

found, for example, in van Laarhoven and Aarts (1987). 

A simple but effective implementation of simulated annealing for the current problem is 

to generate new interim sets from randomly selected old sets. We initialized the algorithm 

solution by assigning all items to all interim sets. This initialization is possible because the final 

solution does not depend on the initial solution. (If the number of items in the master pool is not 

a multiplicity of the number of pools, a dummy interim set has to be created to which the 

remaining items are assigned.) Candidate interim sets were then constructed by randomly 

swapping items between sets. The metric in (2) was used to evaluate the candidate sets against 

the old sets. If the new value for the objective function was smaller, the candidate sets were 

accepted with probability one. If it was larger, the decision was made with a probability. At the 

next iteration step, new candidates were generated from the current interim sets. 

Assigning Items to Pools 

Two methods for assignment of items from interim sets to item pools are discussed. 

Random assignment method. Because in the first stage of the method the interim sets are 

constructed to be as similar as possible, it may be possible to assign items in the same interim set 

randomly to item pools. If items in all interim sets are assigned, we may still have a dummy set 

that had to be created because the number of items in the master pool was not a multiplicity of 

the number of pools. The items in this set can also be assigned randomly. However, in the 

empirical example below, the information functions for each pool was calculated and the items 

were assigned to the pools with the smallest values for these functions. 
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Mathematical programming. A more precise method is to solve the model in (4) until (9) 

and the additional constraints in (12) and (14) using a mathematical programming algorithm. Use 

of such algorithms is recommended especially when sequential assignment results in quick 

deterioration of the value of the objective function for the interim sets. In the empirical study 

below we used one of the standard algorithms in the mathematical programming software 

packages AIMMS (2001). 

Choosing the Number of Overlapping Pools 

If overlapping pools are to be constructed, the bounds on the number of times an item can 

be assigned, (r)n  and rn , have to be specified for each item. The choice of these numbers can 

either be based on the values of the item parameters or on the actual exposure rates of the items. 

The first method is based on the discrimination parameter of the items. Since items with higher 

ia  values have a larger chance of being selected, such items should be given low values for (r)n  

and rn . On the other hand, items with low ia  have a low probability of being selected and 

should be given higher values for (r)n  and rn . The second method is based on the actual 

exposure rates of the items. Items with high exposure rates are given low values for both (r)n  and 

rn , while items with low exposure rates are given high values. 

 

Empirical Example 

A previous pool of 2,131 items from the LSAT fitting the 3-parameter logistic model 

(Hambleton, Swaminathan & Rogers, 1991) was used as the master pool. Figure 2 shows the 

distribution of the values for the ia  and ib  parameters for the items in the pool. We ignored the 

ic  parameter because its variability was small and this parameter typically does hardly have any 
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impact on the composition of the item pools. The items in the master pool were of nine different 

types, leading to 20 content constraints. Because word counts of the items were available we 

used constraints to match the word counts of the pools as well. All constraints appeared 

relatively easy to satisfy. In this study, we first classified the items in the master pool based on 

their type and then solved the (extended) model in (1)-(3) per item type. The benefit of this 

approach was that the model in (4)-(15) reduced proportionally and (12)-(13) could be ignored. 

Observed that when the number of item of a certain type was small, the number of 

nonoverlapping pools produced would be limited since each pool had to satisfy (12)-(13). 

------------------------------- 

Insert Figure 2 about here 

------------------------------- 

Following Stocking's (1994) recommendation that the size of a CAT item pool size be at 

least 12 times the length of the adaptive test (which was 24 in our study), at most four 

nonoverlapping pools could be produced. The same restriction did not apply for the case of 

overlapping pools, however, because it allowed for the duplication of some items to meet (12)-

(13). As a result, we were able to assemble one system of nonoverlapping pools with four pools 

and two different systems of overlapping pools with six and eight pools. 

All item pools in this study were assembled using an objective function based on the 

metric in (1), with 1=w . All results were evaluated through a CAT simulation study. The CAT 

algorithm in these studies was based on a constrained CAT with shadow tests approach (van der 

Linden, 2000). In this approach, prior to the selection of an item first a full test meeting all 

constraints is assembled. From this test, the most informative item is administered to the 

examinee. After the ability estimate is updated, the shadow test is reassembled keeping all items 
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already administered. The process continues until the required number of items administered is 

reached. The shadow tests were calculated using the AIMMS (2001) optimization software 

package. Test length was fixed at 24 items and the values of the examinees for the ability 

parameter were randomly drawn from the standard normal distribution. Abilities were estimated 

by the method of maximum likelihood estimation (MLE). As long as the simulated responses for 

an examinee were all correct or all incorrect, the ability estimate for the examinee was set equal 

to 3 and -3, respectively. In each condition, 1,000 examinees were simulated and ability 

estimation was always initialized at .θ� 0=  

To evaluate the performances of the methods, the exposure rates of the items and the bias 

and mean squared error (MSE) functions for the ability estimators were calculated. No method of 

probabilistic item-exposure control was used; the effects of such methods would have 

confounded the evaluation of impact of the pool assembly methods on the exposure rates of the 

items. In a practical application, however, the use of additional exposure control may be 

necessary. 

Nonoverlapping Item Pools 

The performances of all four possible combinations of the methods of sequential and 

simultaneous assignment of items to interim sets and random assignment and mathematical 

programming were compared. Each combination was evaluated using CAT simulations. The 

simulations were based on the full systems of rotating pools, each with four nonoverlapping 

pools. Because each pool had approximately 500 items, each evaluation was based on 

approximately 2,000 items. In addition, CAT administrations directly from the master pool were 

simulated. The results for CAT from the master pool served as a point of reference for our 
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evaluation of the results in the other four conditions. In the mathematical programming method, 

item information was controlled at .,,θ� 1 and 0 1−=  

Figure 3 shows the item exposure rates for CAT from all item pools assembled by the 

four combinations of methods as well as directly from the master pool. For each method, the 

rates of only 600 of  

------------------------------- 

Insert Figure 3 about here 

------------------------------- 

the items (out of the total of 2,000 items) are given; the rates of all other items were equal to 

zero. The highest exposure rate for an item in CAT from nonoverlapping pools was less than 0.3. 

However, for CAT from the master pool the highest rate was equal to 1.0. Figure 3 also reveals 

that the number of items with nonzero rates is larger for CAT from nonoverlapping pools. These 

results show that, compared with CAT from the master pool, CAT from nonoverlapping pools 

improved the exposure rates of the items equally well for all four methods used to construct these 

pools. 

Figure 4 summarizes the errors in the ability estimates for all five conditions. Both the 

bias and the MSE functions are lower for CAT from the master pool than from nonoverlapping 

pools. The reason is the fact that during CAT from the master pool all items were available for 

selection for each of the examinees where with CAT from the nonoverlapping pools each item 

had to selected from a smaller set. For all practical purposes, the differences are small though. 

The differences between the functions for the four conditions with rotating item pools were also 

negligible.  

------------------------------- 
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Insert Figure 4 about here 

------------------------------- 

 

Overlapping Item Pools 

Unlike the previous study, only the second stage was used to construct overlapping pools. 

The upper and lower bounds (r)n  and rn  to the overlap in (10)-(11) were determined using the 

two methods presented below. For each method, systems of six and eight overlapping item pools 

were created from the master pool. 

The first method used to determine the upper and lower bounds on the item overlap 

between pools was based on the values of the items in the master pool for the discrimination 

parameter. These values were in the interval [0.2,1.7]. This interval was divided into equally 

wide intervals, six and eight intervals for the cases of six and eight overlapping pools, 

respectively. Items with the highest value for the ia  parameter (the first interval) were assigned 

only once ( (r)n  and rn  are equal to 1), items in the second interval twice ( (r)n  and rn  are equal to 

2), etc. 

The second method was based on the empirical exposure rates of the items. Using the 

exposure rates in the first study, the items were divided into two sets. The criterion was an 

exposure rate below or above 0.5. The items with larger exposure rates were assigned only once, 

the items with smaller rates were assigned to all item pools. 

The estimated exposure rates as well as the bias and MSE functions for both methods are 

given in Figure 5-7, respectively. For items that were assigned to multiple pools, the exposure 

rates were cumulated across pools. In Figure 5, however, only items with nonzero exposure rates 

are displayed. The rates were slightly more favourable than in Figure 3 but showed the same 
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pattern. Also, both for the case of six and eight overlapping pools, the method for setting the 

bounds (r)n  and rn  based on empirical exposure rates outperformed the method based on the ia  

parameter. Also, the differences between the two methods were larger for the case of eight than 

six pools. However, as Figures 6 and 7 shown, these more favourable exposure rates were 

obtained at the costs of slightly higher bias and MSE. 

----------------------------------- 

Insert Figure 5 - 7 about here 

----------------------------------- 

The differences in results between the methods for setting bounds on item overlap follow 

directly from the criterion on which they were based. In the method based on empirical exposure 

rates, every pool contains limited number of good items because these items are assigned to only 

one pool. As a result, that CAT algorithm is forced to choose considerable numbers of worse 

items and the errors in the ability estimates increase. For the method based on ia  values, the 

items in the highest category are the only ones assigned only once. Because the item pools have 

larger numbers of good items, the estimation errors are smaller but the worse items remain 

hardly used at all. 

 

Discussion 

The methods for constructing item pools presented in this paper are intended to optimize 

or to maximize the use of test items in CAT. It was shown that CAT from rotating item pools 

that do not overlap can improve the usage of items. As shown in Figure 3, the item exposure 

rates for CAT from nonoverlapping item pools were substantially better than for CAT directly 

from the master pool. The differences found between the exposure rates and statistical quality of 
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the ability estimates of the four combinations of methods used to assemble these pools were 

generally negligible, though. This finding seems to suggest that best strategy in real-life 

applications is to choose a method from these four that is easy to implement under local 

constraints. 

Though the use of nonoverlapping item pools did not dramatically increase the exposure 

rates of the less frequently items, the use of overlapping pools was more successful in this 

respect. Especially the results obtained when the method for setting the bounds (r)n  and rn  was 

based on empirical exposure rate were promising. Key to these results seems to be the fact that 

larger numbers of popular items were not allowed to be assigned to more than one pool. As a 

result, the CAT algorithm was forced to select larger numbers of less popular items, which thus 

obtained larger exposure rates. 

The experimental results also showed that improving the exposure rates of the items 

tends to results in larger errors for the ability estimates. This trade-off should not come as a 

surprise: More uniform item exposure rates can only be obtained by imposing more severe 

constraints on the item selection. These constraints result in a lower value for the objective 

function optimized during item selection, that is, in less information about the examinees' 

abilities in the test. However, it is the opinion of the authors that the size of the increase of these 

errors in the present studies was still acceptably low and could easily have been compensated, for 

example, by a small increase in the length of the test. The best possible way to deal with these 

errors is topic of further research. 

The empirical study shows that implementation of the methods proposed in this paper is 

straightforward. In theory, the methods can be applied to construct systems with large numbers 

of rotating item pools. The only possible obstacle is limited availability of some types of items in 
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the master pool. Though it seems attractive to deal with this obstacle by duplicating such items 

and assigning them to overlapping pools, and there is virtually no bound on the number of 

overlapping pools possible, we should be aware of the possible adverse effects of this measure 

on the exposure rates of some of the items as well as a possible increase in measurement error. 
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Figure Captions 

Figure 1. An illustration for constructing four nonoverlapping pools from a given master pool. 

Figure 2. Scatter plot of item parameters a and b. 

Figure 3. Item-exposure rates for CAT from master pool and nonoverlapping pools. 

Figure 4. Bias and MSE functions for CAT from master pool and nonoverlapping pools. 

Figure 5. Items-exposure rates for CAT from master pool and overlapping pools. 

Figure 6. Bias functions for CAT from master pool and overlapping pools. 

Figure 7. MSE functions for CAT from master pool and overlapping pools. 
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