%0 Conference Paper %B IACAT 2017 Conference %D 2017 %T Adaptive Item and Feedback Selection in Personalized Learning with a Network Approach %A Nikky van Buuren %A Hendrik Straat %A Theo Eggen %A Jean-Paul Fox %K feedback selection %K item selection %K network approach %K personalized learning %X

Personalized learning is a term used to describe educational systems that adapt student-specific curriculum sequencing, pacing, and presentation based on their unique backgrounds, knowledge, preferences, interests, and learning goals. (Chen, 2008; Netcoh, 2016). The technological approach to personalized learning provides data-driven models to incorporate these adaptations automatically. Examples of applications include online learning systems, educational games, and revision-aid systems. In this study we introduce Bayesian networks as a methodology to implement an adaptive framework within a personalized learning environment. Existing ideas from Computerized Adaptive Testing (CAT) with Item Response Theory (IRT), where choices about content provision are based on maximizing information, are related to the goals of personalized learning environments. Personalized learning entails other goals besides efficient ability estimation by maximizing information, such as an adaptive configuration of preferences and feedback to the student. These considerations will be discussed and their application in networks will be illustrated.

Adaptivity in Personalized Learning.In standard CAT’s there is a focus on selecting items that provide maximum information about the ability of an individual at a certain point in time (Van der Linden & Glas, 2000). When learning is the main goal of testing, alternative adaptive item selection methods were explored by Eggen (2012). The adaptive choices made in personalized learning applications require additional adaptivity with respect to the following aspects; the moment of feedback, the kind of feedback, and the possibility for students to actively influence the learning process.

Bayesian Networks and Personalized Learning.Personalized learning aims at constructing a framework to incorporate all the aspects mentioned above. Therefore, the goal of this framework is not only to focus on retrieving ability estimates by choosing items on maximum information, but also to construct a framework that allows for these other factors to play a role. Plajner and Vomlel (2016) have already applied Bayesian Networks to adaptive testing, selecting items with help of entropy reduction. Almond et al. (2015) provide a reference work on Bayesian Networks in Educational Assessment. Both acknowledge the potential of the method in terms of features such as modularity options to build finer-grained models. IRT does not allow to model sub-skills very easily and to gather information on fine-grained level, due to its dependency on the assumption of generally one underlying trait. The local independence assumption in IRT implies being interested in mainly the student’s overall ability on the subject of interest. When the goal is to improve student’s learning, we are not just interested in efficiently coming to their test score on a global subject. One wants a model that is able to map educational problems and talents in detail over the whole educational program, while allowing for dependency between items. The moment in time can influence topics to be better mastered than others, and this is exactly what we can to get out of a model. The possibility to model flexible structures, estimate abilities on a very detailed level for sub-skills and to easily incorporate other variables such as feedback in Bayesian Networks makes it a very promising method for making adaptive choices in personalized learning. It is shown in this research how item and feedback selection can be performed with help of the promising Bayesian Networks. A student involvement possibility is also introduced and evaluated.

References

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D., & Williamson, D. M. (2015). Bayesian Networks in Educational Assessment. Test. New York: Springer Science+Business Media. http://doi.org/10.1007/978-0-387-98138-3

Eggen, T.J.H.M. (2012) Computerized Adaptive Testing Item Selection in Computerized Adaptive Learning Systems. In: Eggen. TJHM & Veldkamp, BP.. (Eds). Psychometrics in Practice at RCEC. Enschede: RCEC

Netcoh, S. (2016, March). “What Do You Mean by ‘Personalized Learning?’. Croscutting Conversations in Education – Research, Reflections & Practice. Blogpost.

Plajner, M., & Vomlel, J. (2016). Student Skill Models in Adaptive Testing. In Proceedings of the Eighth International Conference on Probabilistic Graphical Models (pp. 403-414).

Van der Linden, W. J., & Glas, C. A. (2000). Computerized adaptive testing: Theory and practice. Dordrecht: Kluwer Academic Publishers.

Session Video

%B IACAT 2017 Conference %I Niigata Seiryo University %C Niigata, Japan %8 08/2017 %G eng %0 Conference Paper %B IACAT 2017 Conference %D 2017 %T The Implementation of Nationwide High Stakes Computerized (adaptive) Testing in the Netherlands %A Mia van Boxel %A Theo Eggen %K High stakes CAT %K Netherlands %K WISCAT %X

In this presentation the challenges of implementation of (adaptive) digital testing in the Facet system in the Netherlands is discussed. In the Netherlands there is a long tradition of implementing adaptive testing in educational settings. Already since the late nineties of the last century adaptive testing was used mostly in low stakes testing. Several CATs were implemented in student monitoring systems for primary education and in the general subjects language and arithmetic in vocational education. The only nationwide implemented high stakes CAT is the WISCAT-pabo: an arithmetic test for students in the first year of primary school teacher colleges. The psychometric advantages of item based adaptive testing are obvious. For example efficiency and high measurement precision. But there are also some disadvantages such as the impossibility of reviewing items during and after the test. During the test the student is not in control of his own test; e.q . he can only navigate forward to the next item. This is one of the reasons other methods of testing, such as multistage-testing, with adaptivity not on the item level but on subtest level, has become more popular to use in high stakes testing.

A main challenge of computerized (adaptive) testing is the implementation of the item bank and the test workflow in a digital system. Since 2014 a nationwide new digital system (Facet) was introduced in the Netherlands, with connections to the digital systems of different parties based on international standards (LTI and QTI). The first nationwide tests in the Facet-system were flexible exams Dutch and arithmetic for vocational (and secondary) education, taken as item response theory-based equated linear multiple forms tests, which are administered during 5 periods in a year. Nowadays there are some implementations of different methods of (multistage) adaptive testing in the same Facet system (DTT en Acet).

In this conference, other presenters of Cito will elaborate on the psychometric characteristics of this other adaptive testing methods. In this contribution, the system architecture and interoperability of the Facet system will be explained. The emphasis is on the implementation and the problems to be solved by using this digital system in all phases of the (adaptive) testing process: item banking, test construction, designing, publication, test taking, analyzing and reporting to the student. An evaluation of the use of the system will be presented.

Session Video

%B IACAT 2017 Conference %I Niigata Seiryo University %C Niigata, Japan %8 08/2017 %G eng %U https://drive.google.com/open?id=1Kn1PvgioUYaOJ5pykq-_XWnwDU15rRsf